Articles | Volume 16, issue 4/5
https://doi.org/10.5194/se-16-297-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-297-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the global geodynamic consequences of different phase boundary morphologies
Gwynfor T. Morgan
CORRESPONDING AUTHOR
School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, Wales, UK
J. Huw Davies
School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, Wales, UK
Robert Myhill
School of Earth Sciences, University of Bristol, Bristol, England, UK
James Panton
School of Earth and Environmental Sciences, Cardiff University, Park Place, Cardiff, Wales, UK
Related authors
No articles found.
Conor P. B. O'Malley, Gareth G. Roberts, James Panton, Fred D. Richards, J. Huw Davies, Victoria M. Fernandes, and Sia Ghelichkhan
Geosci. Model Dev., 17, 9023–9049, https://doi.org/10.5194/gmd-17-9023-2024, https://doi.org/10.5194/gmd-17-9023-2024, 2024
Short summary
Short summary
We wish to understand how the history of flowing rock within Earth's interior impacts deflection of its surface. Observations exist to address this problem, and mathematics and different computing tools can be used to predict histories of flow. We explore how modeling choices impact calculated vertical deflections. The sensitivity of vertical motions at Earth's surface to deep flow is assessed, demonstrating how surface observations can enlighten flow histories.
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024, https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Short summary
We numerically model the influence of an arc on back-arc extension. The arc is simulated by placing a hot region on the overriding plate. We investigate how plate ages and properties of the hot region affect back-arc extension and present regime diagrams illustrating the nature of back-arc extension for these models. We find that back-arc extension occurs not only in the hot region but also, surprisingly, away from it, and a hot region facilitates extension on the overriding plate.
Cited articles
Bina, C. R. and Helffrich, G.: Geophysical Constraints on Mantle Composition, in: Treatise on Geochemistry, 2nd edn., vol. 3, 41–65, Elsevier Inc., https://doi.org/10.1016/B978-0-08-095975-7.00202-3, 2013. a
Bina, C. R. and Liu, M.: A note on the sensitivity of mantle convection models to composition-dependent phase relations, Geophys. Res. Lett., 22, 2565–2568, https://doi.org/10.1029/95GL02546, 1995. a
Birch, F.: Elasticity and constitution of the Earth's interior, J. Geophys. Res. (1896–1977), 57, 227–286, https://doi.org/10.1029/JZ057i002p00227, 1952. a
Bunge, H. P., Richards, M. A., and Baumgardner, J. R.: A sensitivity study of three-dimensional spherical mantle convection at 108 Rayleigh number: Effects of depth-dependent viscosity, heating mode, and an endothermic phase change, J. Geophys. Res.-Sol. Ea., 102, 11991–12007, https://doi.org/10.1029/96jb03806, 1997. a, b, c
Cerpa, N. G., Sigloch, K., Garel, F., Heuret, A., Davies, D. R., and Mihalynuk, M. G.: The Effect of a Weak Asthenospheric Layer on Surface Kinematics, Subduction Dynamics and Slab Morphology in the Lower Mantle, J. Geophys. Res.-Sol. Ea., 127, e2022JB024494, https://doi.org/10.1029/2022JB024494, 2022. a
Chanyshev, A., Ishii, T., Bondar, D., Bhat, S., Kim, E. J., Farla, R., Nishida, K., Liu, Z., Wang, L., Nakajima, A., Yan, B., Tang, H., Chen, Z., Higo, Y., Tange, Y., and Katsura, T.: Depressed 660-km discontinuity caused by akimotoite–bridgmanite transition, Nature, 601, 69–73, https://doi.org/10.1038/s41586-021-04157-z, 2022. a, b, c, d
Christensen, U. R. and Yuen, D. A.: Layered convection induced by phase transitions, J. Geophys. Res., 90, 10291–10300, https://doi.org/10.1029/jb090ib12p10291, 1985. a, b, c, d
Čížková, H. and Bina, C. R.: Linked influences on slab stagnation: Interplay between lower mantle viscosity structure, phase transitions, and plate coupling, Earth Planet. Sc. Lett., 509, 88–99, https://doi.org/10.1016/j.epsl.2018.12.027, 2019. a
Clauser, C. and Huenges, E.: Thermal Conductivity of Rocks and Minerals, in: A Handbook of Physical Constants: Rock Physics and Phase Relations, vol. 3, edited by: Ahrens, T. J., American Geophysical Union, https://doi.org/10.1029/RF003p0105, 1995. a, b
Cottaar, S. and Deuss, A.: Large-scale mantle discontinuity topography beneath Europe: Signature of akimotoite in subducting slabs, J. Geophys. Res.-Sol. Ea., 121, 279–292, https://doi.org/10.1002/2015JB012452, 2016. a, b, c
Dannberg, J., Gassmöller, R., Li, R., Lithgow-Bertelloni, C., and Stixrude, L.: An entropy method for geodynamic modelling of phase transitions: capturing sharp and broad transitions in a multiphase assemblage, Geophys. J. Int., 231, 1833–1849, https://doi.org/10.1093/gji/ggac293, 2022. a, b
Deschamps, F. and Cobden, L.: Estimating core-mantle boundary temperature from seismic shear velocity and attenuation, Front. Earth Sci., 10, 1031507, https://doi.org/10.3389/feart.2022.1031507, 2022. a
Dong, J., Fischer, R. A., Stixrude, L. P., Brennan, M. C., Daviau, K., Suer, T.-A., Turner, K. M., Meng, Y., and Prakapenka, V. B.: Nonlinearity of the post-spinel transition and its expression in slabs and plumes worldwide, Nat. Commun., 16, 1039, https://doi.org/10.1038/s41467-025-56231-z, 2025. a, b
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model, Phys. Earth Planet. In., 25, 297–356, https://doi.org/10.1016/0031-9201(81)90046-7, 1981. a, b, c
Garel, F., Goes, S., Davies, D. R., Davies, J. H., Kramer, S. C., and Wilson, C. R.: Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate, Geochem. Geophys. Geosyst., 15, 1739–1765, https://doi.org/10.1002/2014GC005257, 2014. a, b
Hernández, E. R., Brodholt, J., and Alfè, D.: Structural, vibrational and thermodynamic properties of Mg2SiO4 and MgSiO3 minerals from first-principles simulations, Phys. Earth Planet. In., 240, 1–24, https://doi.org/10.1016/j.pepi.2014.10.007, 2015. a
Hirose, K.: Phase transitions in pyrolitic mantle around 670-km depth: Implications for upwelling of plumes from the lower mantle, J. Geophys. Res.-Sol. Ea., 107, ECV 3–1–ECV 3–13, https://doi.org/10.1029/2001JB000597, 2002. a
Ishii, T., Frost, D. J., Kim, E. J., Chanyshev, A., Nishida, K., Wang, B., Ban, R., Xu, J., Liu, J., Su, X., Higo, Y., Tange, Y., Mao, H.-k., and Katsura, T.: Buoyancy of slabs and plumes enhanced by curved post-garnet phase boundary, Nat. Geosci., 16, 828–832, https://doi.org/10.1038/s41561-023-01244-w, 2023. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u
Ita, J. and King, S. D.: Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state, J. Geophys. Res.-Sol. Ea., 99, 15919–15938, https://doi.org/10.1029/94JB00852, 1994. a, b
Javaheri, P., Lowman, J. P., and Tackley, P. J.: Spherical geometry convection in a fluid with an Arrhenius thermal viscosity dependence: The impact of core size and surface temperature on the scaling of stagnant-lid thickness and internal temperature, Phys. Earth Planet. In., 349, 107157, https://doi.org/10.1016/j.pepi.2024.107157, 2024. a
Jeffreys, H. and Bullen, K. E.: Seismological Tables, Tech. rep., British Association Seismological Committee, London, 1940. a
Kennett, B. L. N. and Engdahl, E. R.: Traveltimes for global earthquake location and phase identification, Geophys. J. Int., 105, 429–465, 1991. a
King, S. D.: On topography and geoid from 2‐D stagnant lid convection calculations, Geochem. Geophys. Geosyst., 10, 2008GC002250, https://doi.org/10.1029/2008GC002250, 2009. a
King, S. D. and Ita, J.: Effect of slab rheology on mass transport across a phase transition boundary, J. Geophys. Res.-Sol. Ea., 100, 20211–20222, https://doi.org/10.1029/95JB01964, 1995. a, b, c
King, S. D., Frost, D. J., and Rubie, D. C.: Why cold slabs stagnate in the transition zone, Geology, 43, 231–234, https://doi.org/10.1130/G36320.1, 2015. a
Kojitani, H., Inoue, T., and Akaogi, M.: Precise measurements of enthalpy of postspinel transition in Mg2SiO4 and application to the phase boundary calculation, J. Geophys. Res.-Sol. Ea., 121, 729–742, https://doi.org/10.1002/2015JB012211, 2016. a, b, c
Kojitani, H., Yamazaki, M., Tsunekawa, Y., Katsuragi, S., Noda, M., Inoue, T., Inaguma, Y., and Akaogi, M.: Enthalpy, heat capacity and thermal expansivity measurements of MgSiO3 akimotoite: Reassessment of its self-consistent thermodynamic data set, Phys. Earth Planet. In., 333, 106937, https://doi.org/10.1016/j.pepi.2022.106937, 2022. a, b, c, d
Li, R., Dannberg, J., Gassmöller, R., Lithgow-Bertelloni, C., and Stixrude, L.: How Phase Transitions Impact Changes in Mantle Convection Style Throughout Earth's History: From Stalled Plumes to Surface Dynamics, Geochem. Geophys. Geosyst., 26, e2024GC011600, https://doi.org/10.1029/2024GC011600, 2025. a, b
Morgan, G. T., Davies, H., Panton, J., and Myhill, R.: On the global geodynamic consequences of different phase boundary morphologies: Mantle Convection and Circulation Model outputs, Zenodo [data set], https://doi.org/10.5281/zenodo.15052985, 2025.
Müller, R. D., Flament, N., Cannon, J., Tetley, M. G., Williams, S. E., Cao, X., Bodur, Ö. F., Zahirovic, S., and Merdith, A.: A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution, Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, 2022. a, b
Nakagawa, T., Tackley, P. J., Deschamps, F., and Connolly, J. A.: Incorporating self-consistently calculated mineral physics into thermochemical mantle convection simulations in a 3-D spherical shell and its influence on seismic anomalies in Earth's mantle, Geochem. Geophys. Geosyst., 10, Q03004, https://doi.org/10.1029/2008GC002280, 2009. a
Panton, J., Davies, J. H., Elliott, T., Andersen, M., Porcelli, D., and Price, M. G.: Investigating Influences on the Pb Pseudo-Isochron Using Three-Dimensional Mantle Convection Models With a Continental Reservoir, Geochem. Geophys. Geosyst., 23, e2021GC010309, https://doi.org/10.1029/2021GC010309, 2022. a
Shearer, P. M. and Masters, T. G.: Global mapping of topography on the 660-km discontinuity, Nature, 335, 791–796, 1992. a
Stegman, D. R.: Thermochemical evolution of terrestrial planets: Earth, Mars, and the Moon, Ph.D., University of California, Berkeley, United States – California, ISBN 9780496690626, 2003. a
Steinberger, B.: Effects of latent heat release at phase boundaries on flow in the Earth's mantle, phase boundary topography and dynamic topography at the Earth's surface, Phys. Earth Planet. In., 164, 2–20, https://doi.org/10.1016/j.pepi.2007.04.021, 2007. a
Stixrude, L. and Lithgow-Bertelloni, C.: Thermodynamics of mantle minerals - II. Phase equilibria, Geophys. J. Int., 184, 1180–1213, https://doi.org/10.1111/j.1365-246X.2010.04890.x, 2011. a
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.: Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth's mantle, Nature, 361, 699–704, https://doi.org/10.1038/361699a0, 1993. a, b, c, d
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G.: Effects of multiple phase transitions in a three-dimensional spherical model of convection in Earth's mantle, J. Geophys. Res., 99, 15877–15901, https://doi.org/10.1029/94jb00853, 1994. a, b
van Heck, H. J., Davies, J. H., Elliott, T., and Porcelli, D.: Global-scale modelling of melting and isotopic evolution of Earth's mantle: melting modules for TERRA, Geosci. Model Dev., 9, 1399–1411, https://doi.org/10.5194/gmd-9-1399-2016, 2016. a
Waszek, L., Tauzin, B., Schmerr, N. C., Ballmer, M. D., and Afonso, J. C.: A poorly mixed mantle transition zone and its thermal state inferred from seismic waves, Nat. Geosci., 14, 949–955, https://doi.org/10.1038/s41561-021-00850-w, 2021. a
Yan, J., Ballmer, M. D., and Tackley, P. J.: The evolution and distribution of recycled oceanic crust in the Earth's mantle: Insight from geodynamic models, Earth Planet. Sc. Lett., 537, 116171, https://doi.org/10.1016/j.epsl.2020.116171, 2020. a
Ye, Y., Gu, C., Shim, S.-H., Meng, Y., and Prakapenka, V.: The postspinel boundary in pyrolitic compositions determined in the laser-heated diamond anvil cell, Geophys. Res. Lett., 41, 3833–3841, https://doi.org/10.1002/2014GL060060, 2014. a
Yu, Y. G., Wentzcovitch, R. M., Vinograd, V. L., and Angel, R. J.: Thermodynamic properties of MgSiO3 majorite and phase transitions near 660 km depth in MgSiO3 and Mg2SiO 4: A first principles study, J. Geophys. Res.-Sol. Ea., 116, B02208, https://doi.org/10.1029/2010JB007912, 2011. a, b
Zhong, S. and Gurnis, M.: Role of plates and temperature‐dependent viscosity in phase change dynamics, J. Geophys. Res.-Sol. Ea., 99, 15903–15917, https://doi.org/10.1029/94JB00545, 1994. a
Short summary
Phase transitions can influence mantle convection, inhibiting or promoting vertical flow. We are motivated by two examples: the post-spinel reaction proceeding via akimotoite at cool temperatures and a curving post-garnet boundary. Some have suggested these could change mantle dynamics. We find this is unlikely for both reactions: the first due to the uniqueness of thermodynamic state and the second due to the low magnitude of the boundary’s slope in pressure–temperature space and density change.
Phase transitions can influence mantle convection, inhibiting or promoting vertical flow. We are...