Articles | Volume 16, issue 4/5
https://doi.org/10.5194/se-16-351-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-351-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multiphysics property prediction from hyperspectral drill core data
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
Samuel T. Thiele
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
Moritz Kirsch
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
Richard Gloaguen
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 09599 Freiberg, Germany
Related authors
Akshay V. Kamath, Samuel T. Thiele, Hernan Ugalde, Bill Morris, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2345, https://doi.org/10.5194/egusphere-2025-2345, 2025
Short summary
Short summary
We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904, https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary
Short summary
Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
Akshay V. Kamath, Samuel T. Thiele, Hernan Ugalde, Bill Morris, Raimon Tolosana-Delgado, Moritz Kirsch, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-2345, https://doi.org/10.5194/egusphere-2025-2345, 2025
Short summary
Short summary
We present a new machine learning approach to reconstruct gravity and magnetic tensor data from sparse airborne surveys. By treating the data as derivatives of a hidden potential field and enforcing physical laws, our method improves accuracy and captures geological features more clearly. This enables better subsurface imaging in regions where traditional interpolation methods fall short.
Samuel T. Thiele, Gabor Kereszturi, Michael J. Heap, Andréa de Lima Ribeiro, Akshay Kamath, Maia Kidd, Matías Tramontini, Marina Rosas-Carbajal, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2025-1904, https://doi.org/10.5194/egusphere-2025-1904, 2025
Short summary
Short summary
Volcanic rocks are shaped by many processes, including volcanism, chemical alteration and weathering. These processes change the rock's properties, making it difficult to predict volcanic hazards or design tunnels and mines in volcanic areas. In this study, we build on earlier research to connect unique spectral signatures that can be remotely imaged using hyperspectral cameras to the density, porosity, strength, and stiffness of volcanic rocks.
Aldino Rizaldy, Pedram Ghamisi, and Richard Gloaguen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 103–109, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, 2024
Léa Géring, Moritz Kirsch, Samuel Thiele, Andréa De Lima Ribeiro, Richard Gloaguen, and Jens Gutzmer
Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, https://doi.org/10.5194/se-14-463-2023, 2023
Short summary
Short summary
We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825, https://doi.org/10.5194/se-13-793-2022, https://doi.org/10.5194/se-13-793-2022, 2022
Short summary
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Margret C. Fuchs, Jan Beyer, Sandra Lorenz, Suchinder Sharma, Axel D. Renno, Johannes Heitmann, and Richard Gloaguen
Earth Syst. Sci. Data, 13, 4465–4483, https://doi.org/10.5194/essd-13-4465-2021, https://doi.org/10.5194/essd-13-4465-2021, 2021
Short summary
Short summary
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
Cited articles
Albawi, S., Mohammed, T. A., and Al-Zawi, S.: Understanding of a convolutional neural network, 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey, 2017, 1–6, https://doi.org/10.1109/ICEngTechnol.2017.8308186, 2017. a
Asquith, G., Krygowski, D., Henderson, S., and Hurley, N.: Basic Well Log Analysis, American Association of Petroleum Geologists, https://doi.org/10.1306/Mth16823, 2004. a, b
Baker, P.: Density logging with gamma rays, Transactions of the AIME, 210, 289–294, https://doi.org/10.2118/940-g, 1957. a
Borg, G., Piestrzyński, A., Bachmann, G. H., Puttman, W., Walther, S., and Fiedler, M.: An overview of the European Kupferschiefer deposits, Economic Geology Special Publication, Special Publication, 455–486, 2012. a
Bourbié, T., Coussy, O., and Zinszner, B.: Acoustics of Porous Media, Editions TECHNIP, ISBN 0872010252, 1987. a
Christie, M.: Upscaling for Reservoir Simulation, J. Petrol. Technol., 48, 1004–1010, https://doi.org/10.2118/37324-JPT, 1996. a
Clark, R. N.: Spectroscopy of rocks and minerals, and principles of spectroscopy, in: Remote Sensing for the Earth Sciences: Manual of Remote Sensing, edited by: Rencz, A. N., vol. 3, John Wiley and Sons, 3–58, ISBN 978-0-471-29405-4, 1999. a
de la Varga, M.: k4m4th/vector-geology: vector-geology-alpha (0.0.1), Zenodo [code], https://doi.org/10.5281/zenodo.15386980, 2025. a
Géring, L., Kirsch, M., Thiele, S., De Lima Ribeiro, A., Gloaguen, R., and Gutzmer, J.: Spectral characterisation of hydrothermal alteration associated with sediment-hosted Cu–Ag mineralisation in the central European Kupferschiefer, Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, 2023. a
Kereszturi, G., Heap, M., Schaefer, L. N., Darmawan, H., Deegan, F. M., Kennedy, B., Komorowski, J.-C., Mead, S., Rosas-Carbajal, M., Ryan, A., Troll, V. R., Villeneuve, M., and Walter, T. R.: Porosity, strength, and alteration – towards a new volcano stability assessment tool using VNIR-SWIR reflectance spectroscopy, Earth Planet. Sc. Lett., 602, 117929, https://doi.org/10.1016/j.epsl.2022.117929, 2023. a
King, P. R.: The use of renormalization for calculating effective permeability, Transport Porous Med., 4, 37–58, 1989. a
Kopp, J. C., Spieth, V., and Bernhardt, H.-J.: Precious metals and selenides mineralisation in the copper-silver deposit Spremberg-Graustein, Niederlausitz, SE-Germany, Z. Dtsch. Ges. Geowiss., 163, 361–384, https://doi.org/10.1127/1860-1804/2012/0163-0361, 2012. a
Laukamp, C., Rodger, A., LeGras, M., Lampinen, H., Lau, I. C., Pejcic, B., Stromberg, J., Francis, N., and Ramanaidou, E.: Mineral physicochemistry underlying feature-based extraction of mineral abundance and composition from shortwave, mid and thermal infrared reflectance spectra, Minerals, 11, 347, https://doi.org/10.3390/min11040347, 2021. a, b, c
LeCun, Y., Bengio, Y., and Hinton, G.: Deep learning, Nature, 521, 436–444, https://doi.org/10.1038/nature14539, 2015. a
Lee, J., Cook, O. J., Argüelles, A. P., and Mehmani, Y.: Imaging geomechanical properties of shales with infrared light, Fuel, 334, 126467, https://doi.org/10.1016/j.fuel.2022.126467, 2023. a
Lipovetsky, S. and Conklin, M.: Analysis of regression in game theory approach, Appl. Stoch. Model. Bus., 17, 319–330, https://doi.org/10.1002/asmb.446, 2001. a
Lu, L., Shin, Y., Su, Y., and Karniadakis, G. E.: Dying ReLU and Initialization: Theory and Numerical Examples, Commun. Comput. Phys., 28, 1671–1706, https://doi.org/10.4208/cicp.OA-2020-0165, 2019. a
Lundberg, S. and Lee, S.-I.: A Unified Approach to Interpreting Model Predictions (Version 2) arXiv [preprint], https://doi.org/10.48550/ARXIV.1705.07874, 2017. a
McInnes, L., Healy, J., and Astels, S.: hdbscan: Hierarchical density based clustering, Journal of Open Source Software, 2, 205, https://doi.org/10.21105/joss.00205, 2017. a
Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S.: PyTorch: An Imperative Style, High-Performance Deep Learning Library (Version 1), arXiv [preprint], https://doi.org/10.48550/ARXIV.1912.01703, 2019. a
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E.: Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12, 2825–2830, 2011. a
Renard, P. and de Marsily, G.: Calculating equivalent permeability: a review, Adv. Water Resour., 20, 253–278, 1997. a
Rost, E., Hecker, C., Schodlok, M. C., and Van der Meer, F. D.: Rock sample surface preparation influences thermal infrared spectra, Minerals, 8, 475, https://doi.org/10.3390/min8110475, 2018. a
Salisbury, J. W., Hapke, B., and Eastes, J. W.: Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces, J. Geophys. Res.-Sol. Ea., 92, 702–710, https://doi.org/10.1029/jb092ib01p00702, 1987. a
Schlumberger: Log interpretation principles/applications, Schlumberger Educational Services, 1972. a
Serra, O.: Fundamentals of Well-Log Interpretation: The Acquisition of Logging Data, Elsevier, ISBN 044455341X, 1984. a
Sheriff, R. E. and Geldart, L. P.: Exploration Seismology, Cambridge University Press, https://doi.org/10.1017/cbo9781139168359, 1995. a
Spieth, V.: Zechstein Kupferschiefer at Spremberg and related sites: hot hydrothermal origin of the polymetallic Cu-Ag-Au deposit, Universität Stuttgart, https://doi.org/10.18419/OPUS-10530, 2019. pieth, V. (2019). Zechstein Kupferschiefer at Spremberg and related sites : hot hydrothermal origin of the polymetallic Cu-Ag-Au deposit. . https://doi.org/10.18419/OPUS-10530 a
Thiele, S. T., Lorenz, S., Kirsch, M., Acosta, I. C. C., Tusa, L., Herrmann, E., Möckel, R., and Gloaguen, R.: Multi-scale, multi-sensor data integration for automated 3-D geological mapping, Ore Geol. Rev., 136, 104252, https://doi.org/10.1016/j.oregeorev.2021.104252, 2021. a, b
Thiele, S. T., Kirsch, M., Lorenz, S., Saffi, H., Alami, S. E., Acosta, I. C. C., Madriz, Y., and Gloaguen, R.: Maximising the value of hyperspectral drill core scanning through real-time processing and analysis, Front. Earth Sci., 12, 1433662, https://doi.org/10.3389/feart.2024.1433662, 2024a. a, b, c, d
Thiele, S., Kirsch, M., Madriz-Diaz, Y., and Gloaguen, R.: Spremberg Hyperspectral Drillcore Data, Rodare [data set], https://doi.org/10.14278/rodare.2866, 2024b. a
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ, Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy Contributors: SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Zaini, N., Van der Meer, F., and Van der Werff, H.: Effect of grain size and mineral mixing on carbonate absorption features in the SWIR and TIR wavelength regions, Remote Sens.-Basel, 4, 987–1003, https://doi.org/10.3390/rs4040987, 2012. a
Short summary
We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
We developed a deep learning model that uses hyperspectral imaging data to predict key physical...