Articles | Volume 16, issue 6
https://doi.org/10.5194/se-16-457-2025
https://doi.org/10.5194/se-16-457-2025
Method article
 | 
20 Jun 2025
Method article |  | 20 Jun 2025

On the choice of finite element for applications in geodynamics – Part 2: A comparison of simplex and hypercube elements

Cedric Thieulot and Wolfgang Bangerth

Related authors

Quantifying mantle mixing through configurational entropy
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024,https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Benchmarking the accuracy of higher-order particle methods in geodynamic models of transient flow
Rene Gassmöller, Juliane Dannberg, Wolfgang Bangerth, Elbridge Gerry Puckett, and Cedric Thieulot
Geosci. Model Dev., 17, 4115–4134, https://doi.org/10.5194/gmd-17-4115-2024,https://doi.org/10.5194/gmd-17-4115-2024, 2024
Short summary
The effect of temperature-dependent material properties on simple thermal models of subduction zones
Iris van Zelst, Cedric Thieulot, and Timothy J. Craig
Solid Earth, 14, 683–707, https://doi.org/10.5194/se-14-683-2023,https://doi.org/10.5194/se-14-683-2023, 2023
Short summary
Benchmark forward gravity schemes: the gravity field of a realistic lithosphere model WINTERC-G
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022,https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
101 geodynamic modelling: how to design, interpret, and communicate numerical studies of the solid Earth
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022,https://doi.org/10.5194/se-13-583-2022, 2022
Short summary

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
The influence of accretionary orogenesis on subsequent rift dynamics
Zoltán Erdős, Susanne J. H. Buiter, and Joya L. Tetreault
EGUsphere, https://doi.org/10.5194/egusphere-2025-1065,https://doi.org/10.5194/egusphere-2025-1065, 2025
Short summary
Increased metamorphic conditions in the lower crust during oceanic transform fault evolution
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
Solid Earth, 15, 1419–1443, https://doi.org/10.5194/se-15-1419-2024,https://doi.org/10.5194/se-15-1419-2024, 2024
Short summary
How a volcanic arc influences back-arc extension: insight from 2D numerical models
Duo Zhang and J. Huw Davies
Solid Earth, 15, 1113–1132, https://doi.org/10.5194/se-15-1113-2024,https://doi.org/10.5194/se-15-1113-2024, 2024
Short summary
Various lithospheric deformation patterns derived from rheological contrasts between continental terranes: insights from 2-D numerical simulations
Renxian Xie, Lin Chen, Jason P. Morgan, and Yongshun John Chen
Solid Earth, 15, 789–806, https://doi.org/10.5194/se-15-789-2024,https://doi.org/10.5194/se-15-789-2024, 2024
Short summary
The influence of viscous slab rheology on numerical models of subduction
Natalie Hummel, Susanne Buiter, and Zoltán Erdős
Solid Earth, 15, 567–587, https://doi.org/10.5194/se-15-567-2024,https://doi.org/10.5194/se-15-567-2024, 2024
Short summary

Cited articles

Arnold, D., Brezzi, F., and Fortin, M.: A stable finite element for the Stokes equation, Calcolo, XXI, 337–344, https://doi.org/10.1007/BF02576171, 1984. a
Barr, T. D. and Houseman, G. A.: Deformation fields around a fault embedded in a non-linear ductile medium, Geophys. J. Int., 125, 473–490, https://doi.org/10.1111/j.1365-246X.1996.tb00012.x, 1996. a
Bercovier, M. and Pironneau, O.: Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer Math., 33, 211–224, https://doi.org/10.1007/BF01399555, 1979. a
Boffi, D., Cavallini, N., Gardini, F., and Gastaldi, L.: Local mass conservation of Stokes finite elements, J. Sci. Comput., 52, 383–400, https://doi.org/10.1007/s10915-011-9549-4, 2012. a
Braess, D.: Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, Cambridge University Press, Cambridge, ISBN 978-0-521705189, 2007. a, b, c
Short summary
One of the main numerical methods in geodynamics is the finite element method. Many types of elements have been used in the past decades in hundreds of publications. They usually fall under two categories: quadrilaterals and triangles. For the first time we compare results obtained with the most-used elements of each type on a series of geodynamical benchmarks and draw conclusions as to which are the best ones and which are to be preferably avoided.
Share