Billi, A., Salvini, F., and Storti, F.: The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability, J. Struct. Geol., 25, 1779–1794, https://doi.org/10.1016/S0191-8141(03)00037-3, 2003.
Bisdom, K., Gauthier, B. D. M., Bertotti, G., and Hardebol, N. J.: Calibrating discrete fracture-network models with a carbonate three-dimensional outcrop fracture network: Implications for naturally fractured reservoir modeling, AAPG Bull., 98, 1351–1376, https://doi.org/10.1306/02031413060, 2014.
Bonini, L., Sokoutis, D., Mulugeta, G., and Katrivanos, E.: Modelling hanging wall accommodation above rigid thrust ramps, J. Struct. Geol., 22, 1165–1179, https://doi.org/10.1016/S0191-8141(00)00033-X, 2000.
Byerlee, J.: Friction of rocks, Pure Appl. Geophys., 116, 615–626, 1978.
Cacciari, P. P. and Futai, M. M.: Modeling a Shallow Rock Tunnel Using Terrestrial Laser Scanning and Discrete Fracture Networks, Rock Mech. Rock Eng., 50, 1217–1242, https://doi.org/10.1007/s00603-017-1166-6, 2017.
Caniven, Y., Dominguez, S., Soliva, R., Cattin, R., Peyret, M., Marchandon, M., Romano, C., and Strak, V.: A new multilayered visco-elasto-plastic experimental model to study strike-slip fault seismic cycle, Tectonics, 34, 232–264, https://doi.org/10.1002/2014TC003701, 2015.
Casas, A. M., Gapais, D., Nalpas, T., Besnard, K., and Román-Berdiel, T.: Analogue models of transpressive systems, J. Struct.l Geol., 23, 733–743, https://doi.org/10.1016/S0191-8141(00)00153-X, 2001.
Childs, C., Nicol, A., Walsh, J. J., and Watterson, J.: Growth of vertically segmented normal faults, J. Struct. Geol., 18, 1389–1397, https://doi.org/10.1016/S0191-8141(96)00060-0, 1996.
Choi, J.-H., Edwards, P., Ko, K., and Kim, Y.-S.: Definition and classification of fault damage zones: A review and a new methodological approach, Earth-Sci. Rev., 152, 70–87, https://doi.org/10.1016/j.earscirev.2015.11.006, 2016.
Corti, G., Moratti, G., and Sani, F.: Relations between surface faulting and granite intrusions in analogue models of strike-slip deformation, J. Struct. Geol., 27, 1547–1562, https://doi.org/10.1016/j.jsg.2005.05.011, 2005.
Corti, G., Nencini, R., and Skyttä, P.: Modelling the influence of pre-existing brittle fabrics on the development and architecture pull-apart basins, J. Struct. Geol., 131, 103937, https://doi.org/10.1016/j.jsg.2019.103937, 2020.
Crider, J. G. and Peacock, D. C. P.: Initiation of brittle faults in the upper crust: a review of field observations, J. Struct. Geol., 26, 691–707, https://doi.org/10.1016/j.jsg.2003.07.007, 2004.
Dooley, T. and McClay, K.: Analog Modeling of Pull-Apart Basins1, AAPG Bull., 81, 1804–1826, https://doi.org/10.1306/3B05C636-172A-11D7-8645000102C1865D, 1997.
Dooley, T. P. and Schreurs, G.: Analogue modelling of intraplate strike-slip tectonics: A review and new experimental results, Tectonophysics, 574/575, 1–71, https://doi.org/10.1016/j.tecto.2012.05.030, 2012.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Fedorik, J., Zwaan, F., Schreurs, G., Toscani, G., Bonini, L., and Seno, S.: The interaction between strike-slip dominated fault zones and thrust belt structures: Insights from 4D analogue models, J. Struct. Geol., 122, 89–105, https://doi.org/10.1016/j.jsg.2019.02.010, 2019.
Galland, O., Cobbold, P. R., Hallot, E., de Bremond d'Ars, J., and Delavaud, G.: Use of vegetable oil and silica powder for scale modelling of magmatic intrusion in a deforming brittle crust, Earth Planet. Sc. Lett., 243, 786–804, https://doi.org/10.1016/j.epsl.2006.01.014, 2006.
González-Muñoz, S., Schreurs, G., Schmid, T. C., and Martín-González, F.: Influence of lateral heterogeneities on strike-slip fault behaviour: insights from analogue models, Solid Earth, 15, 1509–1523, https://doi.org/10.5194/se-15-1509-2024, 2024.
González, D., Pinto, L., Peña, M., and Arriagada, C.: 3D deformation in strike-slip systems: Analogue modelling and numerical restoration, Andean Geol., 39, 295–316, 2012.
Handin, J.: Handbook of Physical Constants, Geol. Soc. Am. Mem., 97, 223–290, https://doi.org/10.1130/MEM97-p223, 1966.
Hatem, A. E., Cooke, M. L., and Toeneboehn, K.: Strain localization and evolving kinematic efficiency of initiating strike-slip faults within wet kaolin experiments, J. Struct. Geol., 101, 96–108, https://doi.org/10.1016/j.jsg.2017.06.011, 2017.
Hubbert, M. K.: Theory of scale models as applied to the study of geologic structures, Geol. Soc. Am. Bull., 48, 1459–1519, 1937.
Jaeger, J. C., Cook, N. G. W., and Zimmerman, R.: Fundamentals of Rock Mechanics, 4th Edn., Blackwell Publishing, Oxford,
http://refhub.elsevier.com/S0040-1951(18)30250-6/rf0325 (last access: 22 November 2024), 2007.
Kim, Y.-S., Peacock, D. C. P., and Sanderson, D. J.: Fault damage zones, J. Struct. Geol., 26, 503–517, https://doi.org/10.1016/j.jsg.2003.08.002, 2004.
Klinkmüller, M., Schreurs, G., Rosenau, M., and Kemnitz, H.: Properties of granular analogue model materials: A community wide survey, Tectonophysics, 684, 23–38, https://doi.org/10.1016/j.tecto.2016.01.017, 2016.
Krezsek, C., Adam, J., and Grujic, D.: Mechanics of Fault and Expulsion Rollover Systems Developed on Passive Margins Detached on Salt, Insights from Analogue Modelling and Optica
l Strain Monitoring, Vol. 292, Geological Society Special Publications, 103–121, https://doi.org/10.1144/SP292.6, 2007.
Krstekanić, N., Willingshofer, E., Broerse, T., Matenco, L., Toljić, M., and Stojadinovic, U.: Analogue modelling of strain partitioning along a curved strike-slip fault system during backarc-convex orocline formation: Implications for the Cerna-Timok fault system of the Carpatho-Balkanides, J. Struct. Geol., 149, 104386, https://doi.org/10.1016/j.jsg.2021.104386, 2021.
Kulhawy, F. H.: Stress deformation properties of rock and rock discontinuities, Eng. Geol., 9, 327–350, https://doi.org/10.1016/0013-7952(75)90014-9, 1975.
Lambert, C., Thoeni, K., Giacomini, A., Casagrande, D., and Sloan, S.: Rockfall Hazard Analysis From Discrete Fracture Network Modelling with Finite Persistence Discontinuities, Rock Mech. Rock Eng., 45, 871–884, https://doi.org/10.1007/s00603-012-0250-1, 2012.
Lohrmann, J., Kukowski, N., Adam, J., and Oncken, O.: The impact of analogue material properties on the geometry, kinematics, and dynamics of convergent sand wedges, J. Struct. Geol., 25, 1691–1711, 2003.
Mammoliti, E., Pepi, A., Fronzi, D., Morelli, S., Volatili, T., Tazioli, A., and Francioni, M.: 3D Discrete Fracture Network Modelling from UAV Imagery Coupled with Tracer Tests to Assess Fracture Conductivity in an Unstable Rock Slope: Implications for Rockfall Phenomena, Remote Sens., 15, 1222, https://doi.org/10.3390/rs15051222, 2023.
Mandl, G.: Mechanics of tectonic faulting: Models and basic concepts, Developments in structural geology, Elsevier, New York, 407 pp.,
http://refhub.elsevier.com/S0191-8141(16)30198-5/sref130 (last access: 19 June 2024), 1988.
Marcher, T. and Vermeer, P. A.: Macromodelling of softening in non-cohesive soils, in: Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, edited by: Vermeer, P. A., Herrmann, H. J., Luding, S., Ehlers, W., Diebels, S., and Ramm, E., Springer Berlin Heidelberg, Berlin, Heidelberg, 89–110, https://doi.org/10.1007/3-540-44424-6_7, 2001.
Massaro, L., Corradetti, A., Tramparulo, F. d. A., Vitale, S., Prinzi, E. P., Iannace, A., Parente, M., Invernizzi, C., Morsalnejad, D., and Mazzoli, S.: Discrete Fracture Network Modelling in Triassic–Jurassic Carbonates of NW Lurestan, Zagros Fold-and-Thrust Belt, Iran, Geosciences, 9, 496, https://doi.org/10.3390/geosciences9120496, 2019.
Massaro, L., Adam, J., Jonade, E., and Yamada, Y.: New granular rock-analogue materials for simulation of multi-scale fault and fracture processes, Geol. Mag., 159, 2036–2059, https://doi.org/10.1017/S0016756821001321, 2022.
Massaro, L., Adam, J., and Yamada, Y.: Mechanical characterisation of new Sand-Hemihydrate rock-analogue material: Implications for modelling of brittle crust processes, Tectonophysics, 855, 229828, https://doi.org/10.1016/j.tecto.2023.229828, 2023.
Massaro, L., Adam, J., Jonade, E., Negrão, S., and Yamada, Y.: Strike-slip kinematics from crustal to outcrop-scale: the impact of material properties on analogue modelling, TIB AV-Portal [video], https://doi.org/10.5446/s_1908, 2025.
McClay, K. and Bonora, M.: Analog Models of Restraining Stepovers in Strike-Slip Fault Systems, AAPG Bull., 85, 233–260, https://doi.org/10.1306/8626C7AD-173B-11D7-8645000102C1865D, 2001.
McClay, K. and Dooley, T.: Analogue models of pull-apart basins, Geology, 23, 711–714, https://doi.org/10.1130/0091-7613(1995)023<0711:AMOPAB>2.3.CO;2, 1995.
Mourgues, R. and Cobbold, P. R.: Some tectonic consequences of fluid overpressures and seepage forces as demonstrated by sandbox modelling, Tectonophysics, 376, 75–97, https://doi.org/10.1016/S0040-1951(03)00348-2, 2003.
Mouslopoulou, V., Walsh, J. J., and Nicol, A.: Fault displacement rates on a range of timescales, Earth Planet. Sc. Lett., 278, 186–197, https://doi.org/10.1016/j.epsl.2008.11.031, 2009.
Panien, M., Schreurs, G., and Pfiffner, A.: Mechanical behaviour of granular materials used in analogue modelling: insights from grain characterisation, ring-shear tests and analogue experiments, J. Struct. Geol., 28, 1710–1724, https://doi.org/10.1016/j.jsg.2006.05.004, 2006.
Paterson, M. S.: Experimental Rock Deformation, Springer-Verlag, New York, https://doi.org/10.1007/978-3-662-11720-0, 1978.
Ramberg, H.: Model experimentation of the effect of gravity on tectonic processes, Geophys. J. Roy. Astron. Soc., 14, 307–329, 1967.
Ramberg, H.: Gravity, Deformation and the Earth's Crust, Academic Press, New York, ISBN 10: 0125768605, ISBN 13: 9780125768603, 1981.
Riedel, W.: Zur mechanik geologischer brucherscheinungen. Centralblatt für Mineralogie, Geol. Palaontol. B, 354–368, https://doi.org/10.1007/BF01803692, 1929.
Ritter, M. C., Leever, K., Rosenau, M., and Oncken, O.: Scaling the sandbox-Mechanical (dis) similarities of granular materials and brittle rock, J. Geophys. Res.-Sol. Ea., 121, 6863–6879, https://doi.org/10.1002/2016jb012915, 2016.
Schellart, W. P.: Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling, Tectonophysics, 324, 1–16, https://doi.org/10.1016/S0040-1951(00)00111-6, 2000.
Schilirò, L., Massaro, L., Forte, G., Santo, A., and Tommasi, P.: Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy, Remote Sens., 16, 93, https://doi.org/10.3390/rs16010093, 2024.
Schreurs, G.: Experiments on strike-slip faulting and block rotation, Geology, 22, 567–570, 1994.
Schreurs, G.: Fault development and interaction in distributed strike-slip shear zones; an experimental approach, Geol. Soc. Spec. Publ., 210, 35–52, 2003.
Schreurs, G. and Colletta, B.: Analogue modelling of faulting in zones of continental transpression and transtension, Geol. Soc. Lond. Spec. Publ., 135, 59–79, https://doi.org/10.1144/GSL.SP.1998.135.01.05, 1998.
Schulze, D.: A New Ring Shear Tester for Flowability and Time Consolidation Measurements, International Particle Technology Forum, Denver/Colorado, USA, 11–16,
http://refhub.elsevier.com/S1674-2001(13)00073-4/sbref0230 (last access: 5 Sepember 2024), 1994.
Shipton, Z. K. and Cowie, P. A.: Damage zone and slip-surface evolution over
µm to km scales in high-porosit
y Navajo sandstone, Utah, J. Struct. Geol., 23, 1825–1844, https://doi.org/10.1016/S0191-8141(01)00035-9, 2001.
Wang, L., Chen, W., Tan, X., Tan, X., Yang, J., Yang, D., and Zhang, X.: Numerical investigation on the stability of deforming fractured rocks using discrete fracture networks: a case study of underground excavation, Bull. Eng. Geol. Environ., 79, 133–151, https://doi.org/10.1007/s10064-019-01536-9, 2020.
Wibberley, C. A. J., Yielding, G., and Di Toro, G.: Recent advances in the understanding of fault zone internal structure: a review, Geol. Soc. Lond. Spec. Publ., 299, 5–33, https://doi.org/10.1144/sp299.2, 2008.
Wu, J. E., McClay, K., Whitehouse, P., and Dooley, T.: 4D analogue modelling of transtensional pull-apart basins, Mar. Petrol. Geol., 26, 1608–1623, https://doi.org/10.1016/j.marpetgeo.2008.06.007, 2009.
Xiao, Y., Wu, G., Lei, Y., and Chen, T.: Analogue modeling of through-going process and development pattern of strike-slip fault zone, Petrol. Explor. Dev., 44, 368–376, https://doi.org/10.1016/S1876-3804(17)30043-5, 2017.
Zeng, Q. and Yao, J.: Numerical simulation of fracture network generation in naturally fractured reservoirs, J. Nat. Gas Sci. Eng., 30, 430–443, https://doi.org/10.1016/j.jngse.2016.02.047, 2016.