Journal cover Journal topic
Solid Earth An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 2.921
IF 5-year value: 3.087
IF 5-year
CiteScore value: 4.8
SNIP value: 1.314
IPP value: 2.87
SJR value: 0.993
Scimago H <br class='widget-line-break'>index value: 38
Scimago H
h5-index value: 36
Volume 6, issue 2
Solid Earth, 6, 553–572, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Solid Earth, 6, 553–572, 2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 21 May 2015

Research article | 21 May 2015

Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

G. A. Douillet1, B. Taisne2, È Tsang-Hin-Sun3, S. K. Müller4, U. Kueppers1, and D. B. Dingwell1 G. A. Douillet et al.
  • 1Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany
  • 2Earth Observatory of Singapore, Nanyang Technological University, Singapore
  • 3Université of Brest and CNRS, Laboratoire Domaines Océaniques, Plouzaré, France
  • 4Meteorological Institute, Ludwig-Maximilians-Universität, Munich, Germany

Abstract. Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufrière Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia).

The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures.

The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin–Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of explosion centers. Finally, ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures.

Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. These are just some of the many possible triggers acting in a single environment, and they reveal the potential for insights into the eruptive and flow mechanisms of dilute pyroclastic density currents.

Publications Copernicus
Short summary
Sedimentary beds can exhibit signs of local deformation in pyroclastic strata. Patterns are reviewed and trigger mechanisms interpreted. During an eruption, basal granular flows can have a fluidized behavior, inducing over- or underpressure at the bed interface. Basal shear can overturn strata. Large blocks ejected ballistically deform the ground when landing. Explosions at the vent produce shock waves that can destabilize a bed. These syn-eruptive triggers are specific to explosive volcanism.
Sedimentary beds can exhibit signs of local deformation in pyroclastic strata. Patterns are...