Articles | Volume 6, issue 2
https://doi.org/10.5194/se-6-553-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-6-553-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves
G. A. Douillet
CORRESPONDING AUTHOR
Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany
B. Taisne
Earth Observatory of Singapore, Nanyang Technological University, Singapore
È Tsang-Hin-Sun
Université of Brest and CNRS, Laboratoire Domaines Océaniques, Plouzaré, France
S. K. Müller
Meteorological Institute, Ludwig-Maximilians-Universität, Munich, Germany
U. Kueppers
Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany
D. B. Dingwell
Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Munich, Germany
Related authors
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025, https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Short summary
At the evocation of icy landscapes, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered to be a result of uplift and counteracting erosion. We show that some of the modern relief of this region is due to fossil glacial landscapes – striated pavements, valleys, and fjords – tied to an ice age that occurred ca. 300 Myr ago. We focus on how these landscapes have escaped being erased for hundreds of millions of years.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Pierre Dietrich, François Guillocheau, Guilhem A. Douillet, Neil P. Griffis, Guillaume Baby, Daniel P. Le Héron, Laurie Barrier, Maximilien Mathian, Isabel P. Montañez, Cécile Robin, Thomas Gyomlai, Christoph Kettler, and Axel Hofmann
Earth Surf. Dynam., 13, 495–529, https://doi.org/10.5194/esurf-13-495-2025, https://doi.org/10.5194/esurf-13-495-2025, 2025
Short summary
Short summary
At the evocation of icy landscapes, Africa is not the first place that comes to mind. The modern relief of Southern Africa is generally considered to be a result of uplift and counteracting erosion. We show that some of the modern relief of this region is due to fossil glacial landscapes – striated pavements, valleys, and fjords – tied to an ice age that occurred ca. 300 Myr ago. We focus on how these landscapes have escaped being erased for hundreds of millions of years.
Eleanor Tennant, Susanna F. Jenkins, Victoria Miller, Richard Robertson, Bihan Wen, Sang-Ho Yun, and Benoit Taisne
Nat. Hazards Earth Syst. Sci., 24, 4585–4608, https://doi.org/10.5194/nhess-24-4585-2024, https://doi.org/10.5194/nhess-24-4585-2024, 2024
Short summary
Short summary
After a volcanic eruption, assessing building damage quickly is important for responding to and recovering from the disaster. Traditional damage assessment methods such as ground surveys can be time-consuming and resource-intensive, hindering rapid response and recovery efforts. To overcome this, we have developed an automated approach for tephra fall building damage assessment. Our approach uses drone-acquired optical images and deep learning to rapidly generate building damage data.
Fritz Schlunegger, Edi Kissling, Dimitri Tibo Bandou, Guilhem Amin Douillet, David Mair, Urs Marti, Regina Reber, Patrick Schläfli, and Michael Alfred Schwenk
Earth Surf. Dynam., 12, 1371–1389, https://doi.org/10.5194/esurf-12-1371-2024, https://doi.org/10.5194/esurf-12-1371-2024, 2024
Short summary
Short summary
Overdeepenings are bedrock depressions filled with sediment. We combine the results of a gravity survey with drilling data to explore the morphology of such a depression beneath the city of Bern. We find that the target overdeepening comprises two basins >200 m deep. They are separated by a bedrock riegel that itself is cut by narrow canyons up to 150 m deep. We postulate that these structures formed underneath a glacier, where erosion by subglacial meltwater caused the formation of the canyons.
Michael A. Schwenk, Patrick Schläfli, Dimitri Bandou, Natacha Gribenski, Guilhem A. Douillet, and Fritz Schlunegger
Sci. Dril., 30, 17–42, https://doi.org/10.5194/sd-30-17-2022, https://doi.org/10.5194/sd-30-17-2022, 2022
Short summary
Short summary
A scientific drilling was conducted into a bedrock trough (overdeepening) in Bern-Bümpliz (Switzerland) in an effort to advance the knowledge of the Quaternary prior to 150 000 years ago. We encountered a 208.5 m-thick succession of loose sediments (gravel, sand and mud) in the retrieved core and identified two major sedimentary sequences (A: lower, B: upper). The sedimentary suite records two glacial advances and the subsequent filling of a lake sometime between 300 000 and 200 000 years ago.
Santiago Arellano, Bo Galle, Fredy Apaza, Geoffroy Avard, Charlotte Barrington, Nicole Bobrowski, Claudia Bucarey, Viviana Burbano, Mike Burton, Zoraida Chacón, Gustavo Chigna, Christian Joseph Clarito, Vladimir Conde, Fidel Costa, Maarten De Moor, Hugo Delgado-Granados, Andrea Di Muro, Deborah Fernandez, Gustavo Garzón, Hendra Gunawan, Nia Haerani, Thor H. Hansteen, Silvana Hidalgo, Salvatore Inguaggiato, Mattias Johansson, Christoph Kern, Manne Kihlman, Philippe Kowalski, Pablo Masias, Francisco Montalvo, Joakim Möller, Ulrich Platt, Claudia Rivera, Armando Saballos, Giuseppe Salerno, Benoit Taisne, Freddy Vásconez, Gabriela Velásquez, Fabio Vita, and Mathieu Yalire
Earth Syst. Sci. Data, 13, 1167–1188, https://doi.org/10.5194/essd-13-1167-2021, https://doi.org/10.5194/essd-13-1167-2021, 2021
Short summary
Short summary
This study presents a dataset of volcanic sulfur dioxide (SO2) emissions from 2005–2017. Measurements were obtained by Network for Observation of Volcanic and Atmospheric Change (NOVAC) scanning differential optical absorption spectrometer (ScanDOAS) instruments at 32 volcanoes and processed using a standardized procedure. We show statistics of volcanic gas emissions under a variety of conditions and compare them with averages derived from measurements from space and historical inventories.
Cited articles
Allen, J. and Banks, N.: An interpretation and analysis of recumbent-folded deformed cross-bedding, Sedimentology, 19, 257–283, 1972.
Alsop, G. and Marco, S.: Soft-sediment deformation within seismogenic slumps of the Dead Sea Basin, J. Struct. Geol., 33, 433–457, 2011.
Alsop, G. I. and Marco, S.: Tsunami and seiche-triggered deformation within offshore sediments, Sediment. Geol., 261, 90–107, 2012.
Andrews, G. D. and Branney, M. J.: Emplacement and rheomorphic deformation of a large, lava-like rhyolitic ignimbrite: Grey's Landing, southern Idaho, Geol. Soc. Am. Bull., 123, 725–743, 2011.
Bernard, J., Kelfoun, K., Le Pennec, J.-L., and Vargas, S. V.: Pyroclastic flow erosion and bulking processes: comparing field-based vs. modeling results at Tungurahua volcano, Ecuador, B. Volcanol., 76, 1–16, 2014.
Borisov, A., Lyubimov, A., Kogarko, S., and Kozenko, V.: Instability of the surface of a granular medium behind sliding shock and detonation waves, Combust. Explo. Shock+, 3, 95–97, 1967.
Brand, B. D. and Clarke, A. B.: The architecture, eruptive history, and evolution of the Table Rock Complex, Oregon: From a Surtseyan to an energetic maar eruption, J. Volcanol. Geoth. Res., 180, 203–224, 2009.
Brand, B. D. and White, C. M.: Origin and stratigraphy of phreatomagmatic deposits at the Pleistocene Sinker Butte volcano, western Snake River Plain, Idaho, J. Volcanol. Geoth. Res., 160, 319–339, 2007.
Branney, M., Barry, T., and Godchaux, M.: Sheathfolds in rheomorphic ignimbrites, B. Volcanol., 66, 485–491, 2004.
Branney, M. J. and Kokelaar, B. P.: Pyroclastic density currents and the sedimentation of ignimbrites, Geo. Soc. Mem., 27, 143 pp., 2002.
Branney, M. J. and Kokelaar, P.: Volcanotectonic faulting, soft-state deformation, and rheomorphism of tuffs during development of a piecemeal caldera, English Lake District, Geol. Soc. Am. Bull., 106, 507–530, 1994.
Bridge, J. and Demicco, R.: Earth surface processes, landforms and sediment deposits, Cambridge University Press, 2008.
Brouillette, M.: The richtmyer-meshkov instability, Annu. Rev. Fluid Mech., 34, 445–468, 2002.
Brown, R. J., Orsi, G., and de Vita, S.: New insights into Late Pleistocene explosive volcanic activity and caldera formation on Ischia (southern Italy), B. Volcanol., 70, 583–603, 2008.
Caicedo-Carvajal, C. E., Glasser, B. J., and Shinbrot, T.: Granular flow transitions on sinusoidal surfaces, J. Fluid Mech., 556, 253–269, 2006.
Chan, M. A. and Bruhn, R. L.: Dynamic liquefaction of Jurassic sand dunes: processes, Origins, and implications, Earth Surf. Proc. Land., 39, 1478–1491, 2014.
Charbonnier, S. J. and Gertisser, R.: Field observations and surface characteristics of pristine block-and-ash flow deposits from the 2006 eruption of Merapi Volcano, Java, Indonesia, J. Volcanol. Geoth. Res., 177, 971–982, 2008.
Chen, J. and Lee, H. S.: Soft-sediment deformation structures in Cambrian siliciclastic and carbonate storm deposits (Shandong Province, China): Differential liquefaction and fluidization triggered by storm-wave loading, Sediment. Geol., 288, 81–94, 2013.
Conway, S. L., Shinbrot, T., and Glasser, B. J.: A Taylor vortex analogy in granular flows, Nature, 431, 433–437, 2004.
Crowe, B. M. and Fisher, R. V.: Sedimentary structures in base-surge deposits with special reference to cross-bedding, Ubehebe Craters, Death Valley, California, Geol. Soc. Am. Bull., 84, 663–682, 1973.
Denis, M., Guiraud, M., Konaté, M., and Buoncristiani, J.-F.: Subglacial deformation and water-pressure cycles as a key for understanding ice stream dynamics: evidence from the Late Ordovician succession of the Djado Basin (Niger), Int. J. Earth Sci., 99, 1399–1425, 2010.
Doronzo, D. M. and Dellino, P.: Pyroclastic density currents and local topography as seen with the conveyer model, J. Volcanol. Geoth. Res., 278, 25–39, 2014.
Douillet, G., Ghienne, J.-F., Géraud, Y., Abueladas, A., Diraison, M., and Al-Zoubi, A.: Late Ordovician tunnel valleys in southern Jordan, Geol. Soc. Sp., 368, 275–292, 2012.
Douillet, G. A.: Flow and sedimentation from pyroclastic density currents. From large scale to boundary layer processes. PhD Dissertation, October 2014, Earth and Environmental Sciences, Ludwig Maximilian University, 2014.
Douillet, G. A., Pacheco, D. A., Kueppers, U., Letort, J., Tsang-Hin-Sun, \`E., Bustillos, J., Hall, M., Ramón, P., and Dingwell, D. B.: Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador, B. Volcanol., 75, 1–20, 2013a.
Douillet, G. A., Tsang-Hin-Sun, È., Kueppers, U., Letort, J., Pacheco, D. A., Goldstein, F., Von Aulock, F., Lavallée, Y., Hanson, J. B., Bustillos, J., et al.: Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador, B. Volcanol., 75, 1–21, 2013b.
Douillet, G. A., Rasmussen, K. R., Kueppers, U., Lo Castro, D., Merrison, J. P., Iversen, J. J., and Dingwell, D. B.: Saltation threshold for pyroclasts at various bedslopes: Wind tunnel measurements, J. Volcanol. Geoth. Res., 278, 14–24, 2014.
Drazin, P. G.: Introduction to hydrodynamic stability, Cambridge university press, 2002.
Ettensohn, F., Zhang, C., Gao, L., and Lierman, R.: Soft-sediment deformation in epicontinental carbonates as evidence of paleoseismicity with evidence for a possible new seismogenic indicator: Accordion folds, Sediment. Geol., 235, 222–233, 2011.
Farin, M., Mangeney, A., and Roche, O.: Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: insights from laboratory experiments, J. Geophys. Res.-Earth, 119, 504–532, 2014.
Fedorov, A.: Mixing in wave processes propagating in gas mixtures (review), Combustion, Combust. Explo. Shock+, 40, 17–31, 2004.
Fiske, R. S.: Subaqueous pyroclastic flows in the Ohanapecosh Formation, Washington, Geol. Soc. Am. Bull., 74, 391–406, 1963.
Fiske, R. S. and Tobisch, O. T.: Paleogeographic significance of volcanic rocks of the Ritter Range pendant, central Sierra Nevada, California, Pacific Coast Paleogeography Symposium 2: Mesozoic Paleogeography of the Western United States, 391–406, 1978.
Forterre, Y. and Pouliquen, O.: Longitudinal vortices in granular flows, Phys. Rev. Lett., 86, 5886–5889, 2001.
Gençalioğlu-Kuşcu, G., Atilla, C., Cas, R. A., and Kuşcu, I.: Base surge deposits, eruption history, and depositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar), J. Volcanol. Geoth. Res., 159, 198–209, 2007.
Gernon, T., Fontana, G., Field, M., Sparks, R., Brown, R., and Mac Niocaill, C.: Pyroclastic flow deposits from a kimberlite eruption: the Orapa South Crater, Botswana, Lithos, 112, 566–578, 2009.
Gernon, T. M., Sparks, R. S. J., and Field, M.: Degassing structures in volcaniclastic kimberlite: examples from southern African kimberlite pipes, J. Volcanol. Geoth. Res., 174, 186–194, 2008.
Ghienne, J.-F.: Late Ordovician sedimentary environments, glacial cycles, and post-glacial transgression in the Taoudeni Basin, West Africa, Palaeogeogr. Palaeocl., 189, 117–145, 2003.
Giannetti, B. and Luongo, G.: Trachyandesite scoria-flow and associated trachyte pyroclastic flow and surge at Roccamonfina Volcano (Roman Region, Italy), J. Volcanol. Geoth. Res., 59, 313–334, 1994.
Gibert, L., Alfaro, P., García-Tortosa, F., and Scott, G.: Superposed deformed beds produced by single earthquakes (Tecopa Basin, California): Insights into paleoseismology, Sediment. Geol., 235, 148–159, 2011.
Goldfarb, D. J., Glasser, B. J., and Shinbrot, T.: Shear instabilities in granular flows, Nature, 415, 302–305, 2002.
Hall, M. L., Steele, A. L., Mothes, P. A., and Ruiz, M. C.: Pyroclastic density currents (PDC) of the 16–17 August 2006 eruptions of Tungurahua volcano, Ecuador: Geophysical registry and characteristics, J. Volcanol. Geoth. Res., 265, 78–93, 2013.
Jordan, S., Cas, R., and Hayman, P.: The origin of a large (>3 km) maar volcano by coalescence of multiple shallow craters: Lake Purrumbete maar, southeastern Australia, J. Volcanol. Geoth. Res., 254, 5–22, 2013.
Kelfoun, K., Samaniego, P., Palacios, P., and Barba, D.: Testing the suitability of frictional behaviour for pyroclastic flow simulation by comparison with a well-constrained eruption at Tungurahua volcano (Ecuador), B. Volcanol., 71, 1057–1075, 2009.
Komorowski, J.-C., Jenkins, S., Baxter, P. J., Picquout, A., Lavigne, F., Charbonnier, S., Gertisser, R., Preece, K., Cholik, N., Budi-Santoso, A., et al.: Paroxysmal dome explosion during the Merapi 2010 eruption: Processes and facies relationships of associated high-energy pyroclastic density currents, J. Volcanol. Geoth. Res., 261, 260–294, 2013.
Leclair, S. F. and Arnott, R. W. C.: Parallel lamination formed by high-density turbidity currents, J. Sediment. Res., 75, 1–5, 2005.
Lowe, D. R.: Water escape structures in coarse-grained sediments, Sedimentology, 22, 157–204, 1975.
Mangeney, A., Roche, O., Hungr, O., Mangold, N., Faccanoni, G., and Lucas, A.: Erosion and mobility in granular collapse over sloping beds, J. Geophys. Res.-Earth, 115, F03040, https://doi.org/10.1029/2009JF001462, 2010.
Martínez, E., Pérez-Penichet, C., Sotolongo-Costa, O., Ramos, O., Måløy, K., Douady, S., and Altshuler, E.: Uphill solitary waves in granular flows, Phys. Rev. E,, 75, 031303, https://doi.org/10.1103/PhysRevE.75.031303, 2007.
Mattsson, H. B. and Tripoli, B. A.: Depositional characteristics and volcanic landforms in the Lake Natron–Engaruka monogenetic field, northern Tanzania, J. Volcanol. Geoth. Res., 203, 23–34, 2011.
McDonough, W. F., Waibel, A. F., and Gannet, M. W.: The re-interpretation of the Leone Lake sediments as a pyroclastic surge deposit and its tectonic significance, J. Volcanol. Geoth. Res., 20, 101–115, 1984.
McPherson, J., Flannery, J. R., and Self, S.: Discussion of -Soft-sediment deformation (fluid escape) features in a coarse-grained pyroclasticsurge deposit, north-central New Mexico-, Sedimentology, 36, 943–947, 1989.
Mills, P. C.: Genesis and diagnostic value of soft-sediment deformation structures?a review, Sediment. Geol., 35, 83–104, 1983.
Mohindra, R. and Bagati, T.: Seismically induced soft-sediment deformation structures (seismites) around Sumdo in the lower Spiti valley (Tethys Himalaya), Sediment. Geol., 101, 69–83, 1996.
Moretti, M., Soria, J. M., Alfaro, P., and Walsh, N.: Asymmetrical soft-sediment deformation structures triggered by rapid sedimentation in turbiditic deposits (Late Miocene, Guadix Basin, southern Spain), Facies, 44, 283–294, 2001.
Nichols, R., Sparks, R., and Wilson, C.: Experimental studies of the fluidization of layered sediments and the formation of fluid escape structures, Sedimentology, 41, 233–253, 1994.
Niebling, M. J., Flekkøy, E. G., Måløy, K. J., and Toussaint, R.: Sedimentation instabilities: impact of the fluid compressibility and viscosity, Phys. Rev. E, 82, 051302, https://doi.org/10.1103/PhysRevE.82.051302, 2010.
Nocita, B. W.: Soft-sediment deformation (fluid escape) features in a coarse-grained pyroclastic-surge deposit, north-central New Mexico, Sedimentology, 35, 275–285, 1988.
Odonne, F., Callot, P., Debroas, E.-J., Sempere, T., Hoareau, G., and Maillard, A.: Soft-sediment deformation from submarine sliding: Favourable conditions and triggering mechanisms in examples from the Eocene Sobrarbe delta (Ainsa, Spanish Pyrenees) and the mid-Cretaceous Ayabacas Formation (Andes of Peru), Sediment. Geol., 235, 234–248, 2011.
Owen, G.: Deformation processes in unconsolidated sands, Geol. Soc. Sp., 29, 11–24, 1987.
Owen, G.: Anatomy of a water-escape cusp in Upper Proterozoic Torridon Group sandstones, Scotland, Sediment. Geol., 103, 117–128, 1996a.
Owen, G.: Experimental soft-sediment deformation: structures formed by the liquefaction of unconsolidated sands and some ancient examples, Sedimentology, 43, 279–293, 1996b.
Owen, G.: Load structures: gravity-driven sediment mobilization in the shallow subsurface, Geol. Soc. Sp., 216, 21–34, 2003.
Owen, G. and Moretti, M.: Determining the origin of soft-sediment deformation structures: a case study from Upper Carboniferous delta deposits in south-west Wales, UK, Terra Nova, 20, 237–245, 2008.
Owen, G. and Moretti, M.: Identifying triggers for liquefaction-induced soft-sediment deformation in sands, Sediment. Geol., 235, 141–147, 2011.
Owen, G., Moretti, M., and Alfaro, P.: Recognising triggers for soft-sediment deformation: current understanding and future directions, Sediment. Geol., 235, 133–140, 2011.
Peltier, A., Finizola, A., Douillet, G. A., Brothelande, E., and Garaebiti, E.: tructure of an active volcano associated with a resurgent block inferred from thermal mapping: The Yasur–Yenkahe volcanic complex (Vanuatu), J. Volcanol. Geoth. Res., 243, 59–68, 2012.
Pisarska-Jamrozy, M. and Weckwerth, P.: Soft-sediment deformation structures in a Pleistocene glaciolacustrine delta and their implications for the recognition of subenvironments in delta deposits, Sedimentology, 60, 637–665, 2013.
Pistolesi, M., Delle Donne, D., Pioli, L., Rosi, M., and Ripepe, M.: The 15 March 2007 explosive crisis at Stromboli volcano, Italy: assessing physical parameters through a multidisciplinary approach, J. Geophys. Res.-Sol. Ea., 116, https://doi.org/10.1029/2011JB008527, 2011.
Prata, G.: Complex eruption style and deposit changes during the evolution of the late Pleistocene Tower Hill maar- scoria cone Volcanic Complex, Newer Volcanics Province, Victoria, Australia, Monash University Melbourne, 2012.
Prata, G. and Cas, R.: Cyclicity in Fluctuating Phreatomagmatic and Magmatic Eruptive Styles at the 35 ka Tower Hill Volcanic Complex, Southeast Australia, Geoscience Society of New Zealand Miscellaneous Publication 131A, p. 136, 2012.
Rawcliffe, H. J. and Brown, D. J.: Lithofacies architecture of basaltic andesite lavas and their interaction with wet-sediment: Part A – Chroinn, Kerrera, NW Scotland, Scot. J. Geol., 50, 49–55, 2014.
Roche, O., Montserrat, S., Niño, Y., and Tamburrino, A.: Pore fluid pressure and internal kinematics of gravitational laboratory air-particle flows: Insights into the emplacement dynamics of pyroclastic flows, Journal of Geophysical Research: Solid Earth (1978–2012), 115, 2010.
Roche, O., Ni ino, Y., Mangeney, A., Brand, B., Pollock, N., and Valentine, G. A.: Dynamic pore-pressure variations induce substrate erosion by pyroclastic flows, Geology, 41, 1170–1110, 2013.
Røe, S.-L. and Hermansen, M.: New aspects of deformed cross-strata in fluvial sandstones: examples from Neoproterozoic formations in northern Norway, Sediment. Geol., 186, 283–293, 2006.
Rowley, P. J.: Analogue modelling of pyroclastic density current deposition, Royal Holloway, University of London. Unpublished PhD thesis, 2010.
Rowley, P. J., Kokelaar, P., Menzies, M., and Waltham, D.: Shear-derived mixing in dense granular flows, J. Sediment. Res., 81, 874–884, 2011.
Sasnett, P., Goehring, B. M., Christie-Blick, N., and Schaefer, J. M.: Do phreatomagmatic eruptions at Ubehebe Crater (Death Valley, California) relate to a wetter than present hydro-climate?, Geophys. Res. Lett., 39, 2012.
Schmincke, H.-U., Fisher, R. V., and Waters, A. C.: Antidune and chute and pool structures in the base surge deposits of the Laacher See area, Germany, Sedimentology, 20, 553–574, 1973.
Scolamacchia, T. and Schouwenaars, R.: High-speed impacts by ash particles in the 1982 eruption of El Chichon, Mexico, J. Geophys. Res.-Sol. Ea., 114, https://doi.org/10.1029/2008JB005848, 2009.
Selker, J. S.: Expressions for the formation of load casts in soft sediment, J. Sediment. Res., 63, 1149–1151, 1993.
Sherwood, J., Oyston, B., and Kershaw, A.: The age and contemporary environments of Tower Volcano, Southwest Victoria, Australia, Proceedings of the Royal Society of Victoria, 116, 69–76, 2004.
Smith, N. J. and Kokelaar, B. P.: Proximal record of the 273 ka Poris caldera-forming eruption, Las Cañadas, Tenerife, B. Volcanol., 75, 1–21, 2013.
Stinton, A. J., Cole, P. D., Stewart, R. C., Odbert, H. M., and Smith, P.: The 11 February 2010 partial dome collapse at Soufrière Hills Volcano, Montserrat, Geological Society, London, Memoirs, 39, 133–152, 2014.
Sulpizio, R. and Dellino, P.: Sedimentology, depositional mechanisms and pulsating behaviour of pyroclastic density currents, Dev. Volcano., 10, 57–96, 2008.
Valentine, G. A., Buesch, D. C., and Fisher, R. V.: Basal layered deposits of the Peach Springs Tuff, northwestern Arizona, USA, B. Volcanol., 51, 395–414, 1989.
Van Loon, A.: Soft-sediment deformation structures in siliciclastic sediments: an overview, Geologos, 15, 3–55, 2009.
Vazquez, J. A. and Ort, M. H.: Facies variation of eruption units produced by the passage of single pyroclastic surge currents, Hopi Buttes volcanic field, USA, J. Volcanol. Geoth. Res., 154, 222–236, 2006.
Vinningland, J. L., Johnsen, Ø., Flekkøy, E. G., Toussaint, R., and Måløy, K. J.: Granular rayleigh-taylor instability: Experiments and simulations, Phys. Rev. Lett., 99, 1149–1151, 2007.
Vinningland, J. L., Johnsen, Ø., Flekkøy, E. G., Toussaint, R., and Måløy, K. J.: Size invariance of the granular Rayleigh-Taylor instability, Phys. Rev. E, 81, 041308, https://doi.org/10.1103/PhysRevE.81.041308, 2010.
Voight, B., Janda, R., Douglass, P., et al.: Nature and mechanics of the Mount St Helens rockslide-avalanche of 18 May 1980, Geotechnique, 33, 243–273, 1983.
Wadge, G., Robertson, R., and Voight, B.: The Eruption of Soufriere Hills Volcano, Montserrat from 2000 to 2010, Geological Society of London, 2014.
Ward, S. N. and Day, S.: Particulate kinematic simulations of debris avalanches: interpretation of deposits and landslide seismic signals of Mount Saint Helens, 1980 May 18, Geophys. J. Int., 167, 991–1004, 2006.
Waters, A. C. and Fisher, R. V.: Base surges and their deposits: Capelinhos and Taal volcanoes, J. Geophys. Res., 76, 5596–5614, 1971.
Wayne, P. J., Vorobieff, P., Smyth, H., Bernard, T., Corbin, C., Maloney, A., Conroy, J., White, R., Anderson, M., Kumar, S., et al.: Shock-Driven Particle Transport Off Smooth and Rough Surfaces, J. Fluid. Eng.-T. ASME, 135, 061302, https://doi.org/10.1115/1.4023786, 2013.
Whelley, P. L., Jay, J., Calder, E., Pritchard, M., Cassidy, N., Alcaraz, S., and Pavez, A.: Post-depositional fracturing and subsidence of pumice flow deposits: Lascar Volcano, Chile, B. Volcanol., 74, 511–531, 2012.
Wiemer, G.: On the Role of volcanic ash in submarine landslide initiation processes, PhD dissertation, Fachbereich Geowissenschaften der Universitaet Bremen, 2014.
Short summary
Sedimentary beds can exhibit signs of local deformation in pyroclastic strata. Patterns are reviewed and trigger mechanisms interpreted.
During an eruption, basal granular flows can have a fluidized behavior, inducing over- or underpressure at the bed interface. Basal shear can overturn strata. Large blocks ejected ballistically deform the ground when landing. Explosions at the vent produce shock waves that can destabilize a bed. These syn-eruptive triggers are specific to explosive volcanism.
Sedimentary beds can exhibit signs of local deformation in pyroclastic strata. Patterns are...