Articles | Volume 7, issue 2
https://doi.org/10.5194/se-7-481-2016
https://doi.org/10.5194/se-7-481-2016
Research article
 | 
30 Mar 2016
Research article |  | 30 Mar 2016

Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples

Faisal Khan, Frieder Enzmann, and Michael Kersten

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement
Download
Short summary
X-ray microtomography image processing involves artefact reduction and image segmentation. The beam-hardening artefact is removed, applying a new algorithm, which minimizes the offsets of the attenuation data points. For the segmentation, we propose using a non-linear classifier algorithm. Statistical analysis was performed to quantify the improvement in multi-phase classification of rock cores using and without using our advanced beam-hardening correction algorithm.