Articles | Volume 7, issue 2
https://doi.org/10.5194/se-7-481-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/se-7-481-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples
Faisal Khan
Geoscience Institute, Johannes Gutenberg University, Mainz 55099, Germany
Geoscience Institute, Johannes Gutenberg University, Mainz 55099, Germany
Michael Kersten
Geoscience Institute, Johannes Gutenberg University, Mainz 55099, Germany
Related authors
No articles found.
Christopher J. L. Wilson, Mark Peternell, Filomena Salvemini, Vladimir Luzin, Frieder Enzmann, Olga Moravcova, and Nicholas J. R. Hunter
The Cryosphere, 18, 819–836, https://doi.org/10.5194/tc-18-819-2024, https://doi.org/10.5194/tc-18-819-2024, 2024
Short summary
Short summary
As the temperature increases within a deforming ice aggregate, composed of deuterium (D2O) ice and water (H2O) ice, a set of meltwater segregations are produced. These are composed of H2O and HDO and are located in conjugate shear bands and in compaction bands which accommodate the deformation and weaken the ice aggregate. This has major implications for the passage of meltwater in ice sheets and the formation of the layering recognized in glaciers.
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021, https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
Short summary
In this work, we combined different imaging and experimental measuring methods for analysis of cross-scale effects which reduce permeability of tight reservoir rocks. Simulated permeability of digital images of rocks is often overestimated, which is caused by non-resolvable clay content within the pores of a rock. By combining FIB-SEM with micro-XCT imaging, we were able to simulate the true clay mineral abundance to match experimentally measured permeability with simulated permeability.
Swarup Chauhan, Kathleen Sell, Wolfram Rühaak, Thorsten Wille, and Ingo Sass
Geosci. Model Dev., 13, 315–334, https://doi.org/10.5194/gmd-13-315-2020, https://doi.org/10.5194/gmd-13-315-2020, 2020
Short summary
Short summary
We present CobWeb 1.0, a graphical user interface for analysing tomographic images of geomaterials. CobWeb offers different machine learning techniques for accurate multiphase image segmentation and visualizing material specific parameters such as pore size distribution, relative porosity and volume fraction. We demonstrate a novel approach of dual filtration and dual segmentation to eliminate edge enhancement artefact in synchrotron-tomographic datasets and provide the computational code.
Kathleen Sell, Beatriz Quintal, Michael Kersten, and Erik H. Saenger
Solid Earth, 9, 699–711, https://doi.org/10.5194/se-9-699-2018, https://doi.org/10.5194/se-9-699-2018, 2018
Short summary
Short summary
Sediments containing hydrates dispersed in the pore space show a characteristic seismic anomaly: a high attenuation along with increasing seismic velocities. Recent major findings from synchrotron experiments revealed the systematic presence of thin water films between quartz and gas hydrate. Our numerical studies support earlier speculation that squirt flow causes high attenuation at seismic frequencies but are based on a conceptual model different to those previously considered.
Kathleen Sell, Erik H. Saenger, Andrzej Falenty, Marwen Chaouachi, David Haberthür, Frieder Enzmann, Werner F. Kuhs, and Michael Kersten
Solid Earth, 7, 1243–1258, https://doi.org/10.5194/se-7-1243-2016, https://doi.org/10.5194/se-7-1243-2016, 2016
Georg H. Grathoff, Markus Peltz, Frieder Enzmann, and Stephan Kaufhold
Solid Earth, 7, 1145–1156, https://doi.org/10.5194/se-7-1145-2016, https://doi.org/10.5194/se-7-1145-2016, 2016
Short summary
Short summary
This study improves our understanding of the evolution of pores in shales for modelling transport properties. 3-D microscopy on early and postmature Posidonia Shales showed similar porosities and pore size distributions. Large isolated pore clusters are within carbonates and clay minerals. Pores form during maturation in the postmature-matrix-filling organic matter. Modelled permeabilities are lowest perpendicular to bedding. They decrease with increasing maturity and are comparable to experimental data.
Tobias Kling, Da Huo, Jens-Oliver Schwarz, Frieder Enzmann, Sally Benson, and Philipp Blum
Solid Earth, 7, 1109–1124, https://doi.org/10.5194/se-7-1109-2016, https://doi.org/10.5194/se-7-1109-2016, 2016
Short summary
Short summary
A method is introduced to implement medical CT data of a fractured sandstone under varying confining pressures into fluid flow simulations to reproduce experimental permeabilities. The simulation results reproduce plausible fracture flow features (e.g. flow channeling, fracture closing/opening) and approximate the actual permeabilities, which are affected by the CT resolution and compositional matrix heterogeneities. Additionally, some recommendations are presented concerning future studies.
Steven Henkel, Dieter Pudlo, Frieder Enzmann, Viktor Reitenbach, Daniel Albrecht, Leonhard Ganzer, and Reinhard Gaupp
Solid Earth, 7, 917–927, https://doi.org/10.5194/se-7-917-2016, https://doi.org/10.5194/se-7-917-2016, 2016
Short summary
Short summary
This study investigates the experimentally induced effects of CO2 storage on underground reservoir sandstones by applying high-resolution computer tomography and standard petrophysical methods. The results of digital rock physic calculations derived from the µ-CT scans are compared with measurements achieved by the standard methods. Both approaches lead to similar results for coarse- and medium-grained sandstones but differ for fine-grained sediments.
Related subject area
Petrology
Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate
Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany
Matrix gas flow through “impermeable” rocks – shales and tight sandstone
Benchmark study using a multi-scale, multi-methodological approach for the petrophysical characterization of reservoir sandstones
First report of ultra-high pressure metamorphism in the Paleozoic Dunhuang orogenic belt (NW China): Constrains from P-T paths of garnet clinopyroxenite and SIMS U-Pb dating of titanite
Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations
Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach
Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry
Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems
Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting
Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks
Chemical heterogeneities in the mantle: progress towards a general quantitative description
Deeply subducted continental fragments – Part 1: Fracturing, dissolution–precipitation, and diffusion processes recorded by garnet textures of the central Sesia Zone (western Italian Alps)
Deeply subducted continental fragments – Part 2: Insight from petrochronology in the central Sesia Zone (western Italian Alps)
Interpretation of zircon coronae textures from metapelitic granulites of the Ivrea–Verbano Zone, northern Italy: two-stage decomposition of Fe–Ti oxides
Arrested development – a comparative analysis of multilayer corona textures in high-grade metamorphic rocks
Calculating structural and geometrical parameters by laboratory measurements and X-ray microtomography: a comparative study applied to a limestone sample before and after a dissolution experiment
Qualitative and quantitative changes in detrital reservoir rocks caused by CO2–brine–rock interactions during first injection phases (Utrillas sandstones, northern Spain)
Magma mixing enhanced by bubble segregation
The rheological behaviour of fracture-filling cherts: example of Barite Valley dikes, Barberton Greenstone Belt, South Africa
Magma storage and plumbing of adakite-type post-ophiolite intrusions in the Sabzevar ophiolitic zone, northeast Iran
Picroilmenites in Yakutian kimberlites: variations and genetic models
An experimental study of pyroxene crystallization during rapid cooling in a thermal gradient: application to komatiites
Floating stones off El Hierro, Canary Islands: xenoliths of pre-island sedimentary origin in the early products of the October 2011 eruption
Metamorphic history and geodynamic significance of the Early Cretaceous Sabzevar granulites (Sabzevar structural zone, NE Iran)
Kazuto Mikuni, Naoto Hirano, Shiki Machida, Hirochika Sumino, Norikatsu Akizawa, Akihiro Tamura, Tomoaki Morishita, and Yasuhiro Kato
Solid Earth, 15, 167–196, https://doi.org/10.5194/se-15-167-2024, https://doi.org/10.5194/se-15-167-2024, 2024
Short summary
Short summary
Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones (asthenosphere). The causes of the lithosphere–asthenosphere boundary (LAB) are controversial; however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry, geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at the LAB.
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, https://doi.org/10.5194/se-13-935-2022, 2022
Short summary
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
Ernest Rutter, Julian Mecklenburgh, and Yusuf Bashir
Solid Earth, 13, 725–743, https://doi.org/10.5194/se-13-725-2022, https://doi.org/10.5194/se-13-725-2022, 2022
Short summary
Short summary
Underground energy and waste storage require repurposing of existing oil and gas wells for gas storage, compressed air, hydrogen, methane, and CO2 disposal, requiring an impermeable cap rock (e.g. shales) over the porous reservoir. We measured shale permeability over a range of burial pressures and gas pore pressures. Permeability decreases markedly as effective pressure on the rocks is increased. Knowing these relationships is essential to the safe design of engineered gas reservoirs.
Peleg Haruzi, Regina Katsman, Matthias Halisch, Nicolas Waldmann, and Baruch Spiro
Solid Earth, 12, 665–689, https://doi.org/10.5194/se-12-665-2021, https://doi.org/10.5194/se-12-665-2021, 2021
Short summary
Short summary
In this paper, we evaluate a multi-methodological approach for the comprehensive characterization of reservoir sandstones. The approach enables identification of links between rock permeability and textural and topological rock descriptors quantified at microscale. It is applied to study samples from three sandstone layers of Lower Cretaceous age in northern Israel, which differ in features observed at the outcrop, hand specimen and micro-CT scales, and leads to their accurate characterization.
Zhen M. G. Li, Hao Y. C. Wang, Qian W. L. Zhang, Meng-Yan Shi, Jun-Sheng Lu, Jia-Hui Liu, and Chun-Ming Wu
Solid Earth Discuss., https://doi.org/10.5194/se-2020-95, https://doi.org/10.5194/se-2020-95, 2020
Preprint withdrawn
Short summary
Short summary
This manuscript provides the first evidence of ultra-high metamorphism in the Paleozoic Dunhuang orogenic belt (NW China). Though no coesite or diamond was found in the samples or in this orogen, the geothermobarometric computation results and petrographic textures all suggest that the garnet clinopyroxenite experienced ultra-high pressure metamorphism, and SIMS U-Pb dating of titanite indicates that the post peak, subsequent tectonic exhumation of the UHP rocks occurred in the Devonian.
Johannes Stefanski and Sandro Jahn
Solid Earth, 11, 767–789, https://doi.org/10.5194/se-11-767-2020, https://doi.org/10.5194/se-11-767-2020, 2020
Short summary
Short summary
The capacity of aqueous fluids to mobilize rare Earth elements is closely related to their molecular structure. In this study, first-principle molecular dynamics simulations are used to investigate the complex formation of yttrium with chloride and fluoride under subduction-zone conditions. The simulations predict that yttrium–fluoride complexes are more stable than their yttrium–chloride counterparts but likely less abundant due to the very low fluoride ion concentration in natural systems.
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020, https://doi.org/10.5194/se-11-307-2020, 2020
Short summary
Short summary
This study presents an approach that combines equilibrium thermodynamic modelling with oxygen isotope fractionation modelling for investigating fluid–rock interaction in metamorphic systems. An application to subduction zones shows that chemical and isotopic zoning in minerals can be used to determine feasible fluid sources and the conditions of interaction. Slab-derived fluids can cause oxygen isotope variations in the mantle wedge that may result in anomalous isotopic signatures of arc lavas.
Xin Zhong, Evangelos Moulas, and Lucie Tajčmanová
Solid Earth, 11, 223–240, https://doi.org/10.5194/se-11-223-2020, https://doi.org/10.5194/se-11-223-2020, 2020
Short summary
Short summary
In this study, we present a 1-D visco-elasto-plastic model in a spherical coordinate system to study the residual pressure preserved in mineral inclusions. This allows one to study how much residual pressure can be preserved after viscous relaxation. An example of quartz inclusion in garnet host is studied and it is found that above 600–700 °C, substantial viscous relaxation will occur. If one uses the relaxed residual quartz pressure for barometry, erroneous results will be obtained.
Federico Lucci, Gerardo Carrasco-Núñez, Federico Rossetti, Thomas Theye, John Charles White, Stefano Urbani, Hossein Azizi, Yoshihiro Asahara, and Guido Giordano
Solid Earth, 11, 125–159, https://doi.org/10.5194/se-11-125-2020, https://doi.org/10.5194/se-11-125-2020, 2020
Short summary
Short summary
Understanding the anatomy of active magmatic plumbing systems is essential to define the heat source(s) feeding geothermal fields. Mineral-melt thermobarometry and fractional crystallization (FC) models were applied to Quaternary volcanic products of the Los Humeros Caldera (Mexico). Results point to a magmatic system controlled by FC processes and made of magma transport and storage layers within the crust, with significant implications on structure and longevity of the geothermal reservoir.
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Ariadni A. Georgatou and Massimo Chiaradia
Solid Earth, 11, 1–21, https://doi.org/10.5194/se-11-1-2020, https://doi.org/10.5194/se-11-1-2020, 2020
Short summary
Short summary
We study the petrographical and geochemical occurrence of magmatic sulfide minerals in volcanic rocks for areas characterised by different geodynamic settings, some of which are associated with porphyry (Cu and/or Au) and Au epithermal mineralisation. The aim is to investigate the role of magmatic sulfide saturation processes in depth for ore generation in the surface.
Massimiliano Tirone
Solid Earth, 10, 1409–1428, https://doi.org/10.5194/se-10-1409-2019, https://doi.org/10.5194/se-10-1409-2019, 2019
Short summary
Short summary
The prevalent assumption in solid Earth science is that if we have different lithologies in the mantle they are separately in chemical equilibrium and together in chemical disequilibrium; this is the condition that at the moment defines a chemically heterogeneous mantle. The main contribution of this study is to show that this may not be the case. We can have (partial) chemical equilibration between the two and still observe a chemically heterogeneous mantle.
Francesco Giuntoli, Pierre Lanari, and Martin Engi
Solid Earth, 9, 167–189, https://doi.org/10.5194/se-9-167-2018, https://doi.org/10.5194/se-9-167-2018, 2018
Short summary
Short summary
Continental high-pressure terranes in orogens offer insight into deep recycling and transformation processes that occur in subduction zones. These remain poorly understood, and currently debated ideas need testing. We document complex garnet zoning in eclogitic mica schists from the Sesia Zone (western Italian Alps). These retain evidence of two orogenic cycles and provide detailed insight into resorption, growth, and diffusion processes induced by fluid pulses under high-pressure conditions.
Francesco Giuntoli, Pierre Lanari, Marco Burn, Barbara Eva Kunz, and Martin Engi
Solid Earth, 9, 191–222, https://doi.org/10.5194/se-9-191-2018, https://doi.org/10.5194/se-9-191-2018, 2018
Short summary
Short summary
Subducted continental terranes commonly comprise an assembly of subunits that reflect the different tectono-metamorphic histories they experienced in the subduction zone. Our challenge is to unravel how, when, and in which part of the subduction zone these subunits were juxtaposed. Our study documents when and in what conditions re-equilibration took place. Results constrain the main stages of mineral growth and deformation, associated with fluid influx that occurred in the subduction channel.
Elizaveta Kovaleva, Håkon O. Austrheim, and Urs S. Klötzli
Solid Earth, 8, 789–804, https://doi.org/10.5194/se-8-789-2017, https://doi.org/10.5194/se-8-789-2017, 2017
Short summary
Short summary
This is a study of unusual coronae textures formed by zircon in granulitic metapelites, Ivrea–Verbano Zone (northern Italy). Zircon coronas occur in two generations: (1) thick (5–20 µm) crescent-shaped aggregates and (2) thin (≤ 1 µm) thread-shaped and tangled coronae. Both are found in the same petrological context, so that the difference between two generations is very conspicuous. Formation of zircon coronae is attributed to the two-stage decomposition of Fe–Ti oxides, a rich source of Zr.
Paula Ogilvie and Roger L. Gibson
Solid Earth, 8, 93–135, https://doi.org/10.5194/se-8-93-2017, https://doi.org/10.5194/se-8-93-2017, 2017
Short summary
Short summary
Coronas are vital clues to the presence of arrested reaction in metamorphic rocks. We review formation mechanisms of coronas and approaches utilized to model their evolution in P–T–X space. Forward modelling employing calculated chemical potential gradients allows a far more nuanced understanding of the intricacies that govern metamorphic reaction. These models have critical implications for the limitations and opportunities coronas afford in interpreting the evolution of metamorphic terranes.
Linda Luquot, Vanessa Hebert, and Olivier Rodriguez
Solid Earth, 7, 441–456, https://doi.org/10.5194/se-7-441-2016, https://doi.org/10.5194/se-7-441-2016, 2016
Short summary
Short summary
To evaluate oil and gas production, accurate characterization (usually based on laboratory experiments) of reservoir rock properties needs to be performed. X-ray scanning samples enable obtaining 3-D images of the rock inner structure from which those properties can be obtained using images processing. This article shows that these two approaches are complementary and yield consistent results. Moreover, image-based calculations allow to save a huge amount of time compared to lab-based measures.
E. Berrezueta, B. Ordóñez-Casado, and L. Quintana
Solid Earth, 7, 37–53, https://doi.org/10.5194/se-7-37-2016, https://doi.org/10.5194/se-7-37-2016, 2016
Short summary
Short summary
The aim of this article is to describe and interpret qualitative and quantitative changes at the rock matrix scale of Cretaceous sandstones (northern Spain) exposed to supercritical CO2 and brine. Experimental CO2-rich brine injection was performed in a reactor chamber under realistic conditions of deep saline formations (P ≈ 7.8 MPa, T ≈ 38 °C and 24 h exposure time). SEM and optical microscopy, aided by optical image processing and chemical analyses were used to study the rock samples.
S. Wiesmaier, D. Morgavi, C. J. Renggli, D. Perugini, C. P. De Campos, K.-U. Hess, W. Ertel-Ingrisch, Y. Lavallée, and D. B. Dingwell
Solid Earth, 6, 1007–1023, https://doi.org/10.5194/se-6-1007-2015, https://doi.org/10.5194/se-6-1007-2015, 2015
Short summary
Short summary
We reproduced in an experiment the mixing of two different magmas by bubbles. Bubbles form filaments when dragging portions of one magma into another and thus mingle both magmas. Bubble mixing must be an accelerating process in nature, because formed filaments are channels of low resistance for subsequently rising bubbles. In natural gas-rich magmas, this may be an important mechanism for magma mixing. Natural samples from Axial Seamount show evidence for bubble mixing.
M. Ledevin, N. Arndt, A. Davaille, R. Ledevin, and A. Simionovici
Solid Earth, 6, 253–269, https://doi.org/10.5194/se-6-253-2015, https://doi.org/10.5194/se-6-253-2015, 2015
Short summary
Short summary
We investigate the composition, physical and rheological properties of fluids at the origin of Palaeoarchean chert dikes in South Africa. The dikes formed by repetitive hydraulic fracturing as overpressured oceanic fluids were released at low temperatures as a siliceous slurry. The gelation capacity of silica conferred the chert precursor a viscoelastic, probably thixotrope behaviour. It is an additional step to understand fluid circulations towards the ocean floor, the habitat of early life.
K. Jamshidi, H. Ghasemi, V. R. Troll, M. Sadeghian, and B. Dahren
Solid Earth, 6, 49–72, https://doi.org/10.5194/se-6-49-2015, https://doi.org/10.5194/se-6-49-2015, 2015
I. V. Ashchepkov, N. V. Alymova, A. M. Logvinova, N. V. Vladykin, S. S. Kuligin, S. I. Mityukhin, H. Downes, Yu. B. Stegnitsky, S. A. Prokopiev, R. F. Salikhov, V. S. Palessky, and O. S. Khmel'nikova
Solid Earth, 5, 915–938, https://doi.org/10.5194/se-5-915-2014, https://doi.org/10.5194/se-5-915-2014, 2014
S. Bouquain, N. T. Arndt, F. Faure, and G. Libourel
Solid Earth, 5, 641–650, https://doi.org/10.5194/se-5-641-2014, https://doi.org/10.5194/se-5-641-2014, 2014
V. R. Troll, A. Klügel, M.-A. Longpré, S. Burchardt, F. M. Deegan, J. C. Carracedo, S. Wiesmaier, U. Kueppers, B. Dahren, L. S. Blythe, T. H. Hansteen, C. Freda, D. A. Budd, E. M. Jolis, E. Jonsson, F. C. Meade, C. Harris, S. E. Berg, L. Mancini, M. Polacci, and K. Pedroza
Solid Earth, 3, 97–110, https://doi.org/10.5194/se-3-97-2012, https://doi.org/10.5194/se-3-97-2012, 2012
M. Nasrabady, F. Rossetti, T. Theye, and G. Vignaroli
Solid Earth, 2, 219–243, https://doi.org/10.5194/se-2-219-2011, https://doi.org/10.5194/se-2-219-2011, 2011
Cited articles
Alpaydin, E.: Introduction to machine learning, MIT Press, Cambridge, 2004.
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M.,
Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T.,
Saenger, E. H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.:
Digital rock physics benchmarks – Part I: Imaging and segmentation, Comput.
Geosci., 50, 25–32, 2013.
Aronszajn, S.: Theory of reproducting kernels, T. Am. Math. Soc., 686,
337–404, 1950.
Berg, S., Ott, H., Klapp, S. A., Schwing, A., Neiteler, R., Brussee, N.,
Makurat, A., Leu, L., Enzmann, F., Schwarz, J. O., Kersten, M., Irvine, S.,
and Stampanoni, M.: Real-time 3d imaging of Haines jumps in porous media
flow, P. Natl. Acad. Sci. USA., 110, 3755–3759, 2013.
Berg, S., Armstrong, R. T., Georgiadis A., Ott, H., Schwing, A., Neiteler,
R., Brussee, N., Makurat, A., Rücker M., Leu, L., Wolf M., Khan F.,
Enzmann, F., and Kersten, M.: Onset of oil mobilization and nonwetting-phase
cluster-size distribution, Petrophysics, 56, 15–22, 2015.
Brabant, L., Pauwels, E., Dierick, M., Van Loo, D., Boone, M. A., and Van
Hoorebeke, L.: A novel beam hardening correction method requiring no prior
knowledge, incorporated in an iterative reconstruction algorithm, NDT&E
Int., 51, 68–73, 2012.
Brown, C. D., and Davis, H. T.: Receiver operating characteristics curves and
related decision measures: a tutorial, Chemometr. Intell. Lab., 80, 24–38,
2006.
Caicedo, A. and Van Huffel, S.: Weighted LS-SVM for function estimation
applied to artifact removal in bio-signal processing, Eng. Med. Biol. Soc. Ann., 2010, 988–91, https://doi.org/10.1109/IEMBS.2010.5627628, 2010.
Chapelle, O., Haffner, P., and Vapnik, V. N.: Support vector machines for
histogram-based image classification, IEEE T. Neural Networ., 10,
1055–1064, 1999.
Chauhan, S., Rühaak, W., Khan, F., Enzmann, F., Mielke, P., Kersten, M.,
and Sass, I.: Processing of rock core microtomography images: using seven
different machine learning algorithms, Comput. Geosci., 86, 120–128, 2016.
Cnudde, V. and Boone, M. A.: High-resolution X-ray computed tomography in
geosciences: A review of the current technology and applications, Earth-Sci.
Rev., 123, 1–17, 2013.
Culligan, K. A., Wildenschild, D., Christensen, B. S., Gray, W. G., Rivers,
M. L., and Tompson, A. B.: Interfacial area measurements for unsaturated flow
through porous media, Water Resour. Res., 40, W12413,
https://doi.org/10.1029/2004WR003278, 2004.
Enzmann, F., Meier, T., Janz, M., Jovanovic, Z., Rheingans, K., Schwarz, J.,
Göbbels, J., and Kersten, M.: Bestimmung der durchflusswirksamen
Porosität an Bohrkernproben mittels Computer-Tomographie, Deutsche
Gesellschaft für Geowissenschaften, Heft 242, 90–96, 2009.
Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett., 27,
861–874, 2006.
Feldkamp, L. A., Davis, L. C., and Kress, J. W.: Practical cone-beam algorithm,
J. Opt. Soc. Am. A., 1, 612–619, 1984.
Fusseis, F., Xiao, X., Schrank, C., and De Carlo, F.: A brief guide to
synchrotron radiation-based microtomography in (structural) geology and rock
mechanics, J. Struct. Geol., 65, 1–16, 2014.
Gallagher, N. C. and Wise, G. L.: A theoretical analysis of the properties of
median filters, IEEE T. Acoust. Speech, 29, 1136–1141, 1981.
Ghorbanzade, M. and Fatemi, M. H.: Classification of central nervous system
agents by least squares support vector machine based on their structural
descriptors: A comparative study, Chemometr. Intell. Lab., 110, 102–107,
2012.
Hanley, J. A. and McNeil, B. J.: The meaning and use of the area under a
receiver operating characteristic (ROC) curve, Radiology, 143, 29–36, 1982.
Hemes, S., Desbois, G., Urai, J. L., Schröppel, B., and Schwarz, J.-O.:
Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol,
Belgium) using a combination of X-ray μ-CT, 2-D BIB-SEM and FIB-SEM
tomography, Mat. Res. S. C., 208, 1–20, 2015.
Herring, A. L., Andersson, L., Schlüter, S., Sheppard, A., and
Wildenschild, D.: Efficiently engineering pore-scale processes: The role of
force dominance and topology during nonwetting phase trapping in porous
media, Adv. Water Resour., 79, 91–102, 2015.
Huber, F., Enzmann, F., Wenka, A., Bouby, M., Bentz, M., and Schäfer,
T.: Natural micro-scale heterogeneity induced solute nanoparticle
retardation in fractured crystalline rock, J. Contam. Hydrol., 133, 40–52,
2012.
Iassonov, P. and Tuller, M.: Application of segmentation for correction of
intensity bias in X-ray computed tomography images, Vadose Zone J., 9,
187–191, 2010.
Jovanović, Z., Khan, F., Enzmann, F., and Kersten, M.: Simultaneous
segmentation and beam-hardening correction in computed microtomography of
rock cores, Comput. Geosci., 56, 142–150, 2013.
Kaestner, A., Lehmann, E., and Stampanoni, M.: Imaging and image processing
in porous media research, Adv. Water Resour., 31, 1174–1187, 2008.
Khan, F., Enzmann, F., and Kersten, M.: 3-D simulation of the permeability
tensor in a soil aggregate on basis of nanotomographic imaging and LBE
solver, J. Soil. Sediment., 12, 86–96, 2012.
Kotsiantis, S. B.: Supervised machine learning: A review of classification
techniques, Informatica, 31, 249–268, 2007.
Krumm, M., Kasperl, S., and Franz, M.: Reducing non-linear artifacts of
multi-material objects in industrial 3-D computed tomography, NDT&E Int.,
41, 242–251, 2008.
Kumahor, S. K., de Rooij, G.H., Schlüter, S., and Vogel, H.-J.: Water
flow and solute transport in unsaturated sand – A comprehensive
experimental approach, Vadose Zone J., 14, https://doi.org/10.2136/vzj2014.08.0105,
2015.
Landry, C. J., Karpyn, Z. T., and Ayala, O.: Pore-scale lattice Boltzmann
modeling and 4-D X-ray computed microtomography imaging of fracture-matrix
fluid transfer, Transport Porous Med., 103, 449–468, 2014.
Leu, L., Berg, S., Enzmann, F., Armstrong, R. T., and Kersten, M.: Fast X-ray
micro-tomography of multi-phase flow in Berea sandstone: a sensitivity study
on image processing, Transport Porous Med., 105, 451–469, 2014.
Luts, J., Ojeda, F., Van de Plas, R., De Moor, B., Huffel, S. V., and
Suykens, J. A. K.: A tutorial on support vector machine-based methods for
classification problems in chemometrics, Anal. Chim. Acta, 665, 129–145,
2010.
Molins, S., Trebotich, D., Yang, L., Ajo-Franklin, J. B., Ligocki, T. J.,
Shen, C., and Steefel, C. I.: Pore-scale controls on calcite dissolution
rates from flow-through laboratory and numerical experiments, Environ. Sci.
Technol., 48, 7453–7460, 2014.
Schlüter, S., Sheppard, A., Brown, K., and Wildenschild, D.: Image
processing of multiphase images obtained via X-ray microtomography: A
review, Water Resour. Res., 50, 3615–3639, 2014.
Schwarz, J.-O. and Enzmann, F.: Simulation of fluid flow on fractures and
implications for reactive transport simulations, Transport Porous Med., 96,
501–525, 2013.
Sell, K., Enzmann, F., Kersten, M., and Spangenberg, E.: Microtomographic
quantification of hydraulic clay mineral displacement effects during a
CO2 sequestration experiment with saline aquifer sandstone, Environ.
Sci. Technol., 47, 198–204, 2013.
Selvaraj, H., Selvi, S. T., Selvathi, D., and Gewali, L.: Brain MRI slices
classification using least squares support vector machine, IC–MED, 1,
21–33, 2007.
Suykens, J. A. K. and Vandewalle, J.: Least squares support vector machine
classifiers, Neural Process. Lett., 9, 293–300, 1999.
Suykens, J. A. K., Van Gestel, T., De Brabanter, J., De Moor, B., and Vandewalle,
J.: Least Squares Support Vector Machines, World Scientific, Singapore, ISBN 981-238-151-1, 2002.
Van Gestel, T., Suykens, J. A. K., Lanckriet, G., Lambrechts, A., De Moor, B.,
and Vandewalle, J.: Multiclass LS-SVMs: moderated outputs and
coding-decoding schemes, Neural Process. Lett., 15, 45–58, 2002.
Vapnik, V.: The nature of statistical learning theory, Springer, New York,
1995.
Vlassenbroeck, J., Dierick, M., Masschaele, B., Cnudde, V., Van Hoorebeke,
L., and Jacobs, P.: Software tools for quantification of X-ray
microtomography, Nucl. Instrum. Meth A., 580, 442–445, 2007.
Short summary
X-ray microtomography image processing involves artefact reduction and image segmentation. The beam-hardening artefact is removed, applying a new algorithm, which minimizes the offsets of the attenuation data points. For the segmentation, we propose using a non-linear classifier algorithm. Statistical analysis was performed to quantify the improvement in multi-phase classification of rock cores using and without using our advanced beam-hardening correction algorithm.
X-ray microtomography image processing involves artefact reduction and image segmentation. The...