Articles | Volume 9, issue 5
https://doi.org/10.5194/se-9-1061-2018
https://doi.org/10.5194/se-9-1061-2018
Research article
 | 
10 Sep 2018
Research article |  | 10 Sep 2018

Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas

Fernando O. Marques, Nibir Mandal, Subhajit Ghosh, Giorgio Ranalli, and Santanu Bose

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Fernando Ornelas Marques on behalf of the Authors (02 Jul 2018)
ED: Publish subject to technical corrections (09 Jul 2018) by Taras Gerya
ED: Publish subject to technical corrections (09 Jul 2018) by Federico Rossetti (Executive editor)
AR by Fernando Ornelas Marques on behalf of the Authors (08 Aug 2018)  Manuscript 
Short summary
We couple Himalayan tectonics to numerical simulations to show how upward-tapering channel (UTC) flow can be used to explain the evidence. The simulations predict high tectonic overpressure (TOP > 2), which increases exponentially with a decrease in UTC mouth width, and with increase in velocity and channel viscosity. The highest TOP occurs at depths < −60 km, which, combined with the flow in the UTC, forces high-pressure rocks to exhume along the channel’s hanging wall, as in the Himalayas.