Articles | Volume 9, issue 5
https://doi.org/10.5194/se-9-1061-2018
https://doi.org/10.5194/se-9-1061-2018
Research article
 | 
10 Sep 2018
Research article |  | 10 Sep 2018

Channel flow, tectonic overpressure, and exhumation of high-pressure rocks in the Greater Himalayas

Fernando O. Marques, Nibir Mandal, Subhajit Ghosh, Giorgio Ranalli, and Santanu Bose

Related subject area

Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Tectonics
Analogue modelling of basin inversion: a review and future perspectives
Frank Zwaan, Guido Schreurs, Susanne J. H. Buiter, Oriol Ferrer, Riccardo Reitano, Michael Rudolf, and Ernst Willingshofer
Solid Earth, 13, 1859–1905, https://doi.org/10.5194/se-13-1859-2022,https://doi.org/10.5194/se-13-1859-2022, 2022
Short summary
Insights into the interaction of a shale with CO2
Eleni Stavropoulou and Lyesse Laloui
Solid Earth, 13, 1823–1841, https://doi.org/10.5194/se-13-1823-2022,https://doi.org/10.5194/se-13-1823-2022, 2022
Short summary
Tectonostratigraphic evolution of the Slyne Basin
Conor M. O'Sullivan, Conrad J. Childs, Muhammad M. Saqab, John J. Walsh, and Patrick M. Shannon
Solid Earth, 13, 1649–1671, https://doi.org/10.5194/se-13-1649-2022,https://doi.org/10.5194/se-13-1649-2022, 2022
Short summary
Control of crustal strength, tectonic inheritance, and stretching/ shortening rates on crustal deformation and basin reactivation: insights from laboratory models
Benjamin Guillaume, Guido M. Gianni, Jean-Jacques Kermarrec, and Khaled Bock
Solid Earth, 13, 1393–1414, https://doi.org/10.5194/se-13-1393-2022,https://doi.org/10.5194/se-13-1393-2022, 2022
Short summary
Construction of the Ukrainian Carpathian Wedge from low-temperature thermochronology and tectono-stratigraphic analysis
Marion Roger, Arjan de Leeuw, Peter van der Beek, Laurent Husson, Edward R. Sobel, Johannes Glodny, and Matthias Bernet
EGUsphere, https://doi.org/10.5194/egusphere-2022-828,https://doi.org/10.5194/egusphere-2022-828, 2022
Short summary

Cited articles

Andersen, T. B., Jamtveit, B., Dewey, J. F., and Swensson, E.: Subduction and eduction of continental crust: major mechanism during continent–continent collision and orogenic extensional collapse, a model based on the south Caledonides, Terra Nova, 3, 303–310, 1991.
Angel, R. J., Nimis, P., Mazzucchelli, M. L., Alvaro, M., and Nestola, F.: How large are departures from lithostatic pressure? Constraints from host–inclusion elasticity, J. Metamorphic Geol., 33, 801–813, 2015.
Beaumont, C., Jamieson, R. A., Nguyen, M. H., and Lee, B.: Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation, Nature, 414, 738–742, 2001.
Beaumont, C., Jamieson, R. A., Butler, J. P., and Warren, C. J.: Crustal structure: a key constraint on the mechanism of ultra-high-pressure rock exhumation, Earth Planet. Sc. Lett. 287, 116–129, 2009.
Brun, J.-P. and Faccenna, C.: Exhumation of high-pressure rocks driven by slab rollback, Earth Planet. Sc. Lett., 272, 1–7, 2008.
Short summary
We couple Himalayan tectonics to numerical simulations to show how upward-tapering channel (UTC) flow can be used to explain the evidence. The simulations predict high tectonic overpressure (TOP > 2), which increases exponentially with a decrease in UTC mouth width, and with increase in velocity and channel viscosity. The highest TOP occurs at depths < −60 km, which, combined with the flow in the UTC, forces high-pressure rocks to exhume along the channel’s hanging wall, as in the Himalayas.