Articles | Volume 10, issue 5
https://doi.org/10.5194/se-10-1541-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-1541-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Can anaerobic oxidation of methane prevent seafloor gas escape in a warming climate?
Christian Stranne
CORRESPONDING AUTHOR
Department of Geological Sciences, Stockholm University, 106 91
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106
91 Stockholm, Sweden
Matt O'Regan
Department of Geological Sciences, Stockholm University, 106 91
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106
91 Stockholm, Sweden
Martin Jakobsson
Department of Geological Sciences, Stockholm University, 106 91
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106
91 Stockholm, Sweden
Volker Brüchert
Department of Geological Sciences, Stockholm University, 106 91
Stockholm, Sweden
Bolin Centre for Climate Research, Stockholm University, 106
91 Stockholm, Sweden
Marcelo Ketzer
Department of biology and environmental science, Linnaeus University,
391 82 Kalmar, Sweden
Related authors
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Kelly A. Hogan, Martin Jakobsson, Larry Mayer, Brendan T. Reilly, Anne E. Jennings, Joseph S. Stoner, Tove Nielsen, Katrine J. Andresen, Egon Nørmark, Katrien A. Heirman, Elina Kamla, Kevin Jerram, Christian Stranne, and Alan Mix
The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, https://doi.org/10.5194/tc-14-261-2020, 2020
Short summary
Short summary
Glacial sediments in fjords hold a key record of environmental and ice dynamic changes during ice retreat. Here we use a comprehensive geophysical survey from the Petermann Fjord system in NW Greenland to map these sediments, identify depositional processes and calculate glacial erosion rates for the retreating palaeo-Petermann ice stream. Ice streaming is the dominant control on glacial erosion rates which vary by an order of magnitude during deglaciation and are in line with modern rates.
Martin Jakobsson, Matt O'Regan, Carl-Magnus Mörth, Christian Stranne, Elizabeth Weidner, Jim Hansson, Richard Gyllencreutz, Christoph Humborg, Tina Elfwing, Alf Norkko, Joanna Norkko, Björn Nilsson, and Arne Sjöström
Earth Surf. Dynam., 8, 1–15, https://doi.org/10.5194/esurf-8-1-2020, https://doi.org/10.5194/esurf-8-1-2020, 2020
Short summary
Short summary
We studied coastal sea floor terraces in parts of the Baltic Sea using various types of sonar data, sediment cores, and video. Terraces (~1 m high, > 100 m long) are widespread in depths < 15 m and are formed in glacial clay. Our study supports an origin from groundwater flow through silty layers, undermining overlying layers when discharged at the sea floor. Submarine groundwater discharge like this may be a significant source of freshwater to the Baltic Sea that needs to be studied further.
Martin Jakobsson, Christian Stranne, Matt O'Regan, Sarah L. Greenwood, Bo Gustafsson, Christoph Humborg, and Elizabeth Weidner
Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, https://doi.org/10.5194/os-15-905-2019, 2019
Short summary
Short summary
The bottom topography of the Baltic Sea is analysed using the digital depth model from the European Marine Observation and Data Network (EMODnet) published in 2018. Analyses include depth distribution vs. area and seafloor depth variation on a kilometre scale. The limits for the Baltic Sea and analysed sub-basins are from HELCOM. EMODnet is compared with the previously most widely used depth model and the area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper.
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018, https://doi.org/10.5194/os-14-503-2018, 2018
Short summary
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Erik Gustafsson, Christoph Humborg, Göran Björk, Christian Stranne, Leif G. Anderson, Marc C. Geibel, Carl-Magnus Mörth, Marcus Sundbom, Igor P. Semiletov, Brett F. Thornton, and Bo G. Gustafsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-115, https://doi.org/10.5194/bg-2017-115, 2017
Preprint withdrawn
Short summary
Short summary
In this study we quantify key carbon cycling processes on the East Siberian Arctic Shelf. A specific aim is to determine the pathways of terrestrial organic carbon (OC) supplied by rivers and coastline erosion – and particularly to what extent degradation of terrestrial OC contributes to air-sea CO2 exchange. We estimate that the shelf is a weak CO2 sink, although this sink is considerably reduced mainly by degradation of eroded OC and to a lesser extent by degradation of riverine OC.
Felicity Alice Holmes, Jamie Barnett, Henning Åkesson, Mathieu Morlighem, Johan Nilsson, Nina Kirchner, and Martin Jakobsson
EGUsphere, https://doi.org/10.5194/egusphere-2024-3839, https://doi.org/10.5194/egusphere-2024-3839, 2024
Short summary
Short summary
Northern Greenland contains some of the ice sheet's last remaining glaciers with floating ice tongues. One of these is Ryder Glacier, which has been relatively stable in recent decades in contrast to nearby glaciers. Here, we use a computer model to simulate Ryder Glacier until 2300 under both a low and high emissions scenario. Very high levels of surface melt under a high emissions future leads to a sea-level rise contribution an order of magnitude higher than under a low emissions future.
Erik Gustafsson, Bo G. Gustafsson, Martijn Hermans, Christoph Humborg, and Christian Stranne
Geosci. Model Dev., 17, 7157–7179, https://doi.org/10.5194/gmd-17-7157-2024, https://doi.org/10.5194/gmd-17-7157-2024, 2024
Short summary
Short summary
Methane (CH4) cycling in the Baltic Proper is studied through model simulations, enabling a first estimate of key CH4 fluxes. A preliminary budget identifies benthic CH4 release as the dominant source and two main sinks: CH4 oxidation in the water (92 % of sinks) and outgassing to the atmosphere (8 % of sinks). This study addresses CH4 emissions from coastal seas and is a first step toward understanding the relative importance of open-water outgassing compared with local coastal hotspots.
Allison P. Lepp, Lauren E. Miller, John B. Anderson, Matt O'Regan, Monica C. M. Winsborrow, James A. Smith, Claus-Dieter Hillenbrand, Julia S. Wellner, Lindsay O. Prothro, and Evgeny A. Podolskiy
The Cryosphere, 18, 2297–2319, https://doi.org/10.5194/tc-18-2297-2024, https://doi.org/10.5194/tc-18-2297-2024, 2024
Short summary
Short summary
Shape and surface texture of silt-sized grains are measured to connect marine sediment records with subglacial water flow. We find that grain shape alteration is greatest in glaciers where high-energy drainage events and abundant melting of surface ice are inferred and that the surfaces of silt-sized sediments preserve evidence of glacial transport. Our results suggest grain shape and texture may reveal whether glaciers previously experienced temperate conditions with more abundant meltwater.
Flor Vermassen, Clare Bird, Tirza M. Weitkamp, Kate F. Darling, Hanna Farnelid, Céline Heuzé, Allison Y. Hsiang, Salar Karam, Christian Stranne, Marcus Sundbom, and Helen K. Coxall
EGUsphere, https://doi.org/10.5194/egusphere-2024-1091, https://doi.org/10.5194/egusphere-2024-1091, 2024
Short summary
Short summary
We provide the first systematic survey of planktonic foraminifera in the high Arctic Ocean. Our results describe the abundance and species composition under summer sea-ice. They indicate that the polar specialist N. pachyderma is the only species present, with subpolar species absent. The dataset will be a valuable reference for continued monitoring of the state of planktonic foraminifera communities as they respond to the ongoing sea-ice decline and the ‘Atlantification’ of the Arctic Ocean.
Lara F. Pérez, Paul C. Knutz, John R. Hopper, Marit-Solveig Seidenkrantz, Matt O'Regan, and Stephen Jones
Sci. Dril., 33, 33–46, https://doi.org/10.5194/sd-33-33-2024, https://doi.org/10.5194/sd-33-33-2024, 2024
Short summary
Short summary
The Greenland ice sheet is highly sensitive to global warming and a major contributor to sea level rise. In Northeast Greenland, ice–ocean–tectonic interactions are readily observable today, but geological records that illuminate long-term trends are lacking. NorthGreen aims to promote scientific drilling proposals to resolve key scientific questions on past changes in the Northeast Greenland margin that further affected the broader Earth system.
John Prytherch, Sonja Murto, Ian Brown, Adam Ulfsbo, Brett F. Thornton, Volker Brüchert, Michael Tjernström, Anna Lunde Hermansson, Amanda T. Nylund, and Lina A. Holthusen
Biogeosciences, 21, 671–688, https://doi.org/10.5194/bg-21-671-2024, https://doi.org/10.5194/bg-21-671-2024, 2024
Short summary
Short summary
We directly measured methane and carbon dioxide exchange between ocean or sea ice and the atmosphere during an icebreaker-based expedition to the central Arctic Ocean (CAO) in summer 2021. These measurements can help constrain climate models and carbon budgets. The methane measurements, the first such made in the CAO, are lower than previous estimates and imply that the CAO is an insignificant contributor to Arctic methane emission. Gas exchange rates are slower than previous estimates.
Julia Muchowski, Martin Jakobsson, Lars Umlauf, Lars Arneborg, Bo Gustafsson, Peter Holtermann, Christoph Humborg, and Christian Stranne
Ocean Sci., 19, 1809–1825, https://doi.org/10.5194/os-19-1809-2023, https://doi.org/10.5194/os-19-1809-2023, 2023
Short summary
Short summary
We show observational data of highly increased mixing and vertical salt flux rates in a sparsely sampled region of the northern Baltic Sea. Co-located acoustic observations complement our in situ measurements and visualize turbulent mixing with high spatial resolution. The observed mixing is generally not resolved in numerical models of the area but likely impacts the exchange of water between the adjacent basins as well as nutrient and oxygen conditions in the Bothnian Sea.
Johan Nilsson, Eef van Dongen, Martin Jakobsson, Matt O'Regan, and Christian Stranne
The Cryosphere, 17, 2455–2476, https://doi.org/10.5194/tc-17-2455-2023, https://doi.org/10.5194/tc-17-2455-2023, 2023
Short summary
Short summary
We investigate how topographical sills suppress basal glacier melt in Greenlandic fjords. The basal melt drives an exchange flow over the sill, but there is an upper flow limit set by the Atlantic Water features outside the fjord. If this limit is reached, the flow enters a new regime where the melt is suppressed and its sensitivity to the Atlantic Water temperature is reduced.
Gabriel West, Darrell S. Kaufman, Martin Jakobsson, and Matt O'Regan
Geochronology, 5, 285–299, https://doi.org/10.5194/gchron-5-285-2023, https://doi.org/10.5194/gchron-5-285-2023, 2023
Short summary
Short summary
We report aspartic and glutamic acid racemization analyses on Neogloboquadrina pachyderma and Cibicidoides wuellerstorfi from the Arctic Ocean (AO). The rates of racemization in the species are compared. Calibrating the rate of racemization in C. wuellerstorfi for the past 400 ka allows the estimation of sample ages from the central AO. Estimated ages are older than existing age assignments (as previously observed for N. pachyderma), confirming that differences are not due to taxonomic effects.
Jesse R. Farmer, Katherine J. Keller, Robert K. Poirier, Gary S. Dwyer, Morgan F. Schaller, Helen K. Coxall, Matt O'Regan, and Thomas M. Cronin
Clim. Past, 19, 555–578, https://doi.org/10.5194/cp-19-555-2023, https://doi.org/10.5194/cp-19-555-2023, 2023
Short summary
Short summary
Oxygen isotopes are used to date marine sediments via similar large-scale ocean patterns over glacial cycles. However, the Arctic Ocean exhibits a different isotope pattern, creating uncertainty in the timing of past Arctic climate change. We find that the Arctic Ocean experienced large local oxygen isotope changes over glacial cycles. We attribute this to a breakdown of stratification during ice ages that allowed for a unique low isotope value to characterize the ice age Arctic Ocean.
Raisa Alatarvas, Matt O'Regan, and Kari Strand
Clim. Past, 18, 1867–1881, https://doi.org/10.5194/cp-18-1867-2022, https://doi.org/10.5194/cp-18-1867-2022, 2022
Short summary
Short summary
This research contributes to efforts solving research questions related to the history of ice sheet decay in the Northern Hemisphere. The East Siberian continental margin sediments provide ideal material for identifying the mineralogical signature of ice sheet derived material. Heavy mineral analysis from marine glacial sediments from the De Long Trough and Lomonosov Ridge was used in interpreting the activity of the East Siberian Ice Sheet in the Arctic region.
Jaclyn Clement Kinney, Karen M. Assmann, Wieslaw Maslowski, Göran Björk, Martin Jakobsson, Sara Jutterström, Younjoo J. Lee, Robert Osinski, Igor Semiletov, Adam Ulfsbo, Irene Wåhlström, and Leif G. Anderson
Ocean Sci., 18, 29–49, https://doi.org/10.5194/os-18-29-2022, https://doi.org/10.5194/os-18-29-2022, 2022
Short summary
Short summary
We use data crossing Herald Canyon in the Chukchi Sea collected in 2008 and 2014 together with numerical modelling to investigate the circulation in the western Chukchi Sea. A large fraction of water from the Chukchi Sea enters the East Siberian Sea south of Wrangel Island and circulates in an anticyclonic direction around the island. To assess the differences between years, we use numerical modelling results, which show that high-frequency variability dominates the flow in Herald Canyon.
Henrieka Detlef, Brendan Reilly, Anne Jennings, Mads Mørk Jensen, Matt O'Regan, Marianne Glasius, Jesper Olsen, Martin Jakobsson, and Christof Pearce
The Cryosphere, 15, 4357–4380, https://doi.org/10.5194/tc-15-4357-2021, https://doi.org/10.5194/tc-15-4357-2021, 2021
Short summary
Short summary
Here we examine the Nares Strait sea ice dynamics over the last 7000 years and their implications for the late Holocene readvance of the floating part of Petermann Glacier. We propose that the historically observed sea ice dynamics are a relatively recent feature, while most of the mid-Holocene was marked by variable sea ice conditions in Nares Strait. Nonetheless, major advances of the Petermann ice tongue were preceded by a shift towards harsher sea ice conditions in Nares Strait.
Matt O'Regan, Thomas M. Cronin, Brendan Reilly, Aage Kristian Olsen Alstrup, Laura Gemery, Anna Golub, Larry A. Mayer, Mathieu Morlighem, Matthias Moros, Ole L. Munk, Johan Nilsson, Christof Pearce, Henrieka Detlef, Christian Stranne, Flor Vermassen, Gabriel West, and Martin Jakobsson
The Cryosphere, 15, 4073–4097, https://doi.org/10.5194/tc-15-4073-2021, https://doi.org/10.5194/tc-15-4073-2021, 2021
Short summary
Short summary
Ryder Glacier is a marine-terminating glacier in north Greenland discharging ice into the Lincoln Sea. Here we use marine sediment cores to reconstruct its retreat and advance behavior through the Holocene. We show that while Sherard Osborn Fjord has a physiography conducive to glacier and ice tongue stability, Ryder still retreated more than 40 km inland from its current position by the Middle Holocene. This highlights the sensitivity of north Greenland's marine glaciers to climate change.
Colin Ware, Larry Mayer, Paul Johnson, Martin Jakobsson, and Vicki Ferrini
Geosci. Instrum. Method. Data Syst., 9, 375–384, https://doi.org/10.5194/gi-9-375-2020, https://doi.org/10.5194/gi-9-375-2020, 2020
Short summary
Short summary
Geographic coordinates (latitude and longitude) are widely used in geospatial applications, and terrains are often defined by regular grids in geographic coordinates. However, because of convergence of lines of longitude near the poles there is oversampling in the latitude (zonal) direction. Also, there is no standard way of defining a hierarchy of grids to consistently deal with data having different spatial resolutions. The proposed global geographic grid system solves both problems.
Francesco Muschitiello, Matt O'Regan, Jannik Martens, Gabriel West, Örjan Gustafsson, and Martin Jakobsson
Geochronology, 2, 81–91, https://doi.org/10.5194/gchron-2-81-2020, https://doi.org/10.5194/gchron-2-81-2020, 2020
Short summary
Short summary
In this study we present a new marine chronology of the last ~30 000 years for a sediment core retrieved from the central Arctic Ocean. Our new chronology reveals substantially faster sedimentation rates during the end of the last glacial cycle, the Last Glacial Maximum, and deglaciation than previously reported, thus implying a substantial re-interpretation of paleoceanographic reconstructions from this sector of the Arctic Ocean.
Zhongshi Zhang, Qing Yan, Ran Zhang, Florence Colleoni, Gilles Ramstein, Gaowen Dai, Martin Jakobsson, Matt O'Regan, Stefan Liess, Denis-Didier Rousseau, Naiqing Wu, Elizabeth J. Farmer, Camille Contoux, Chuncheng Guo, Ning Tan, and Zhengtang Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-38, https://doi.org/10.5194/cp-2020-38, 2020
Manuscript not accepted for further review
Short summary
Short summary
Whether an ice sheet once grew over Northeast Siberia-Beringia has been debated for decades. By comparing climate modelling with paleoclimate and glacial records from around the North Pacific, this study shows that the Laurentide-Eurasia-only ice sheet configuration fails in explaining these records, while a scenario involving the ice sheet over Northeast Siberia-Beringia succeeds. It highlights the complexity in glacial climates and urges new investigations across Northeast Siberia-Beringia.
Kelly A. Hogan, Martin Jakobsson, Larry Mayer, Brendan T. Reilly, Anne E. Jennings, Joseph S. Stoner, Tove Nielsen, Katrine J. Andresen, Egon Nørmark, Katrien A. Heirman, Elina Kamla, Kevin Jerram, Christian Stranne, and Alan Mix
The Cryosphere, 14, 261–286, https://doi.org/10.5194/tc-14-261-2020, https://doi.org/10.5194/tc-14-261-2020, 2020
Short summary
Short summary
Glacial sediments in fjords hold a key record of environmental and ice dynamic changes during ice retreat. Here we use a comprehensive geophysical survey from the Petermann Fjord system in NW Greenland to map these sediments, identify depositional processes and calculate glacial erosion rates for the retreating palaeo-Petermann ice stream. Ice streaming is the dominant control on glacial erosion rates which vary by an order of magnitude during deglaciation and are in line with modern rates.
Martin Jakobsson, Matt O'Regan, Carl-Magnus Mörth, Christian Stranne, Elizabeth Weidner, Jim Hansson, Richard Gyllencreutz, Christoph Humborg, Tina Elfwing, Alf Norkko, Joanna Norkko, Björn Nilsson, and Arne Sjöström
Earth Surf. Dynam., 8, 1–15, https://doi.org/10.5194/esurf-8-1-2020, https://doi.org/10.5194/esurf-8-1-2020, 2020
Short summary
Short summary
We studied coastal sea floor terraces in parts of the Baltic Sea using various types of sonar data, sediment cores, and video. Terraces (~1 m high, > 100 m long) are widespread in depths < 15 m and are formed in glacial clay. Our study supports an origin from groundwater flow through silty layers, undermining overlying layers when discharged at the sea floor. Submarine groundwater discharge like this may be a significant source of freshwater to the Baltic Sea that needs to be studied further.
Gabriel West, Darrell S. Kaufman, Francesco Muschitiello, Matthias Forwick, Jens Matthiessen, Jutta Wollenburg, and Matt O'Regan
Geochronology, 1, 53–67, https://doi.org/10.5194/gchron-1-53-2019, https://doi.org/10.5194/gchron-1-53-2019, 2019
Short summary
Short summary
We report amino acid racemization analyses of foraminifera from well-dated sediment cores from the Yermak Plateau, Arctic Ocean. Sample ages are compared with model predictions, revealing that the rates of racemization generally conform to a global compilation of racemization rates at deep-sea sites. These results highlight the need for further studies to test and explain the origin of the purportedly high rate of racemization indicated by previous analyses of central Arctic sediments.
Martin Jakobsson, Christian Stranne, Matt O'Regan, Sarah L. Greenwood, Bo Gustafsson, Christoph Humborg, and Elizabeth Weidner
Ocean Sci., 15, 905–924, https://doi.org/10.5194/os-15-905-2019, https://doi.org/10.5194/os-15-905-2019, 2019
Short summary
Short summary
The bottom topography of the Baltic Sea is analysed using the digital depth model from the European Marine Observation and Data Network (EMODnet) published in 2018. Analyses include depth distribution vs. area and seafloor depth variation on a kilometre scale. The limits for the Baltic Sea and analysed sub-basins are from HELCOM. EMODnet is compared with the previously most widely used depth model and the area of deep water exchange between the Bothnian Sea and the Northern Baltic Proper.
Birgit Wild, Natalia Shakhova, Oleg Dudarev, Alexey Ruban, Denis Kosmach, Vladimir Tumskoy, Tommaso Tesi, Hanna Joß, Helena Alexanderson, Martin Jakobsson, Alexey Mazurov, Igor Semiletov, and Örjan Gustafsson
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-229, https://doi.org/10.5194/tc-2018-229, 2018
Revised manuscript not accepted
Short summary
Short summary
The thaw and degradation of subsea permafrost on the Arctic Ocean shelves is one of the key uncertainties concerning natural greenhouse gas emissions since difficult access limits the availability of observational data. In this study, we describe sediment properties and age constraints of a unique set of three subsea permafrost cores from the East Siberian Arctic Shelf, as well as content, origin and degradation state of organic matter at the current thaw front.
Stefano Manzoni, Petr Čapek, Philipp Porada, Martin Thurner, Mattias Winterdahl, Christian Beer, Volker Brüchert, Jan Frouz, Anke M. Herrmann, Björn D. Lindahl, Steve W. Lyon, Hana Šantrůčková, Giulia Vico, and Danielle Way
Biogeosciences, 15, 5929–5949, https://doi.org/10.5194/bg-15-5929-2018, https://doi.org/10.5194/bg-15-5929-2018, 2018
Short summary
Short summary
Carbon fixed by plants and phytoplankton through photosynthesis is ultimately stored in soils and sediments or released to the atmosphere during decomposition of dead biomass. Carbon-use efficiency is a useful metric to quantify the fate of carbon – higher efficiency means higher storage and lower release to the atmosphere. Here we summarize many definitions of carbon-use efficiency and study how this metric changes from organisms to ecosystems and from terrestrial to aquatic environments.
Zhongshi Zhang, Qing Yan, Elizabeth J. Farmer, Camille Li, Gilles Ramstein, Terence Hughes, Martin Jakobsson, Matt O'Regan, Ran Zhang, Ning Tan, Camille Contoux, Christophe Dumas, and Chuncheng Guo
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-79, https://doi.org/10.5194/cp-2018-79, 2018
Revised manuscript not accepted
Short summary
Short summary
Our study challenges the widely accepted idea that the Laurentide-Eurasian ice sheets gradually extended across North America and Northwest Eurasia, and suggests the growth of the NH ice sheets is much more complicated. We find climate feedbacks regulate the distribution of the NH ice sheets, producing swings between two distinct ice sheet configurations: the Laurentide-Eurasian and a circum-Arctic configuration, where large ice sheets existed over Northeast Siberia and the Canadian Rockies.
Christian Stranne, Larry Mayer, Martin Jakobsson, Elizabeth Weidner, Kevin Jerram, Thomas C. Weber, Leif G. Anderson, Johan Nilsson, Göran Björk, and Katarina Gårdfeldt
Ocean Sci., 14, 503–514, https://doi.org/10.5194/os-14-503-2018, https://doi.org/10.5194/os-14-503-2018, 2018
Short summary
Short summary
The ocean surface mixed layer depth (MLD) is an important parameter within several research disciplines, as variations in the MLD influence air–sea CO2 exchange and ocean primary production. A new method is presented in which acoustic mapping of the MLD is done remotely by means of echo sounders. This method allows for observations of high-frequency variability in the MLD, as horizontal and temporal resolutions can be increased by orders of magnitude compared to traditional in situ measurements.
Volker Brüchert, Lisa Bröder, Joanna E. Sawicka, Tommaso Tesi, Samantha P. Joye, Xiaole Sun, Igor P. Semiletov, and Vladimir A. Samarkin
Biogeosciences, 15, 471–490, https://doi.org/10.5194/bg-15-471-2018, https://doi.org/10.5194/bg-15-471-2018, 2018
Short summary
Short summary
We determined the aerobic and anaerobic degradation rates of land- and marine-derived organic material in East Siberian shelf sediment. Marine plankton-derived organic carbon was the main source for the oxic dissolved carbon dioxide production, whereas terrestrial organic material significantly contributed to the production of carbon dioxide under anoxic conditions. Our direct degradation rate measurements provide new constraints for the present-day Arctic marine carbon budget.
Göran Björk, Martin Jakobsson, Karen Assmann, Leif G. Andersson, Johan Nilsson, Christian Stranne, and Larry Mayer
Ocean Sci., 14, 1–13, https://doi.org/10.5194/os-14-1-2018, https://doi.org/10.5194/os-14-1-2018, 2018
Short summary
Short summary
This study presents detailed bathymetric data along with hydrographic data at two deep passages across the Lomonosov Ridge in the Arctic Ocean. The southern channel is relatively smooth with a sill depth close to 1700 m. Hydrographic data reveals an eastward flow in the southern part and opposite in the northern part. The northern passage is characterized by a narrow and steep ridge with a sill depth of 1470 m. Here, water exchange appears to occur in well-defined but irregular vertical layers.
Laura Gemery, Thomas M. Cronin, Robert K. Poirier, Christof Pearce, Natalia Barrientos, Matt O'Regan, Carina Johansson, Andrey Koshurnikov, and Martin Jakobsson
Clim. Past, 13, 1473–1489, https://doi.org/10.5194/cp-13-1473-2017, https://doi.org/10.5194/cp-13-1473-2017, 2017
Short summary
Short summary
Continuous, highly abundant and well-preserved fossil ostracodes were studied from radiocarbon-dated sediment cores collected on the Lomonosov Ridge (Arctic Ocean) that indicate varying oceanographic conditions during the last ~50 kyr. Ostracode assemblages from cores taken during the SWERUS-C3 2014 Expedition, Leg 2, reflect paleoenvironmental changes during glacial, deglacial, and interglacial transitions, including changes in sea-ice cover and Atlantic Water inflow into the Eurasian Basin.
Matt O'Regan, Jan Backman, Natalia Barrientos, Thomas M. Cronin, Laura Gemery, Nina Kirchner, Larry A. Mayer, Johan Nilsson, Riko Noormets, Christof Pearce, Igor Semiletov, Christian Stranne, and Martin Jakobsson
Clim. Past, 13, 1269–1284, https://doi.org/10.5194/cp-13-1269-2017, https://doi.org/10.5194/cp-13-1269-2017, 2017
Short summary
Short summary
Past glacial activity on the East Siberian continental margin is poorly known, partly due to the lack of geomorphological evidence. Here we present geophysical mapping and sediment coring data from the East Siberian shelf and slope revealing the presence of a glacially excavated cross-shelf trough reaching to the continental shelf edge north of the De Long Islands. The data provide direct evidence for extensive glacial activity on the Siberian shelf that predates the Last Glacial Maximum.
Thomas M. Cronin, Matt O'Regan, Christof Pearce, Laura Gemery, Michael Toomey, Igor Semiletov, and Martin Jakobsson
Clim. Past, 13, 1097–1110, https://doi.org/10.5194/cp-13-1097-2017, https://doi.org/10.5194/cp-13-1097-2017, 2017
Short summary
Short summary
Global sea level rise during the last deglacial flooded the Siberian continental shelf in the Arctic Ocean. Sediment cores, radiocarbon dating, and microfossils show that the regional sea level in the Arctic rose rapidly from about 12 500 to 10 700 years ago. Regional sea level history on the Siberian shelf differs from the global deglacial sea level rise perhaps due to regional vertical adjustment resulting from the growth and decay of ice sheets.
Martin Jakobsson, Christof Pearce, Thomas M. Cronin, Jan Backman, Leif G. Anderson, Natalia Barrientos, Göran Björk, Helen Coxall, Agatha de Boer, Larry A. Mayer, Carl-Magnus Mörth, Johan Nilsson, Jayne E. Rattray, Christian Stranne, Igor Semiletov, and Matt O'Regan
Clim. Past, 13, 991–1005, https://doi.org/10.5194/cp-13-991-2017, https://doi.org/10.5194/cp-13-991-2017, 2017
Short summary
Short summary
The Arctic and Pacific oceans are connected by the presently ~53 m deep Bering Strait. During the last glacial period when the sea level was lower than today, the Bering Strait was exposed. Humans and animals could then migrate between Asia and North America across the formed land bridge. From analyses of sediment cores and geophysical mapping data from Herald Canyon north of the Bering Strait, we show that the land bridge was flooded about 11 000 years ago.
Johan Nilsson, Martin Jakobsson, Chris Borstad, Nina Kirchner, Göran Björk, Raymond T. Pierrehumbert, and Christian Stranne
The Cryosphere, 11, 1745–1765, https://doi.org/10.5194/tc-11-1745-2017, https://doi.org/10.5194/tc-11-1745-2017, 2017
Short summary
Short summary
Recent data suggest that a 1 km thick ice shelf extended over the glacial Arctic Ocean during MIS 6, about 140 000 years ago. Here, we theoretically analyse the development and equilibrium features of such an ice shelf. The ice shelf was effectively dammed by the Fram Strait and the mean ice-shelf thickness was controlled primarily by the horizontally integrated mass balance. Our results can aid in resolving some outstanding questions of the state of the glacial Arctic Ocean.
Clint M. Miller, Gerald R. Dickens, Martin Jakobsson, Carina Johansson, Andrey Koshurnikov, Matt O'Regan, Francesco Muschitiello, Christian Stranne, and Carl-Magnus Mörth
Biogeosciences, 14, 2929–2953, https://doi.org/10.5194/bg-14-2929-2017, https://doi.org/10.5194/bg-14-2929-2017, 2017
Short summary
Short summary
Continental slopes north of the East Siberian Sea are assumed to hold large amounts of methane. We present pore water chemistry from the 2014 SWERUS-C3 expedition. These are among the first results generated from this vast climatically sensitive region, and they imply that abundant methane, including gas hydrates, do not characterize the East Siberian Sea slope or rise. This contradicts previous modeling and discussions, which due to the lack of data are almost entirely based assumption.
Leif G. Anderson, Göran Björk, Ola Holby, Sara Jutterström, Carl Magnus Mörth, Matt O'Regan, Christof Pearce, Igor Semiletov, Christian Stranne, Tim Stöven, Toste Tanhua, Adam Ulfsbo, and Martin Jakobsson
Ocean Sci., 13, 349–363, https://doi.org/10.5194/os-13-349-2017, https://doi.org/10.5194/os-13-349-2017, 2017
Short summary
Short summary
We use data collected in 2014 to show that the outflow of nutrient-rich water occurs much further to the west than has been reported in the past. We suggest that this is due to much less summer sea-ice coverage in the northwestern East Siberian Sea than in the past decades. Further, our data support a more complicated flow pattern in the region where the Mendeleev Ridge reaches the shelf compared to the general cyclonic circulation within the individual basins as suggested historically.
Christof Pearce, Aron Varhelyi, Stefan Wastegård, Francesco Muschitiello, Natalia Barrientos, Matt O'Regan, Thomas M. Cronin, Laura Gemery, Igor Semiletov, Jan Backman, and Martin Jakobsson
Clim. Past, 13, 303–316, https://doi.org/10.5194/cp-13-303-2017, https://doi.org/10.5194/cp-13-303-2017, 2017
Short summary
Short summary
The eruption of the Alaskan Aniakchak volcano of 3.6 thousand years ago was one of the largest Holocene eruptions worldwide. The resulting ash is found in several Alaskan sites and as far as Newfoundland and Greenland. In this study, we found ash from the Aniakchak eruption in a marine sediment core from the western Chukchi Sea in the Arctic Ocean. Combined with radiocarbon dates on mollusks, the volcanic age marker is used to calculate the marine radiocarbon reservoir age at that time.
Erik Gustafsson, Christoph Humborg, Göran Björk, Christian Stranne, Leif G. Anderson, Marc C. Geibel, Carl-Magnus Mörth, Marcus Sundbom, Igor P. Semiletov, Brett F. Thornton, and Bo G. Gustafsson
Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-115, https://doi.org/10.5194/bg-2017-115, 2017
Preprint withdrawn
Short summary
Short summary
In this study we quantify key carbon cycling processes on the East Siberian Arctic Shelf. A specific aim is to determine the pathways of terrestrial organic carbon (OC) supplied by rivers and coastline erosion – and particularly to what extent degradation of terrestrial OC contributes to air-sea CO2 exchange. We estimate that the shelf is a weak CO2 sink, although this sink is considerably reduced mainly by degradation of eroded OC and to a lesser extent by degradation of riverine OC.
Joanna E. Sawicka and Volker Brüchert
Biogeosciences, 14, 325–339, https://doi.org/10.5194/bg-14-325-2017, https://doi.org/10.5194/bg-14-325-2017, 2017
Short summary
Short summary
The biogeochemistry of methane was studied in high-latitude fjord-type estuarine sediment in the Baltic Sea from April 2012 to April 2013. A large variability in methane-producing and methane-oxidizing processes was observed over the year. Oxygen was the most important regulator for the methane flux. In addition to eutrophication effects, free gas movement is suggested as a factor controlling methane concentrations.
Stefano Bonaglia, Astrid Hylén, Jayne E. Rattray, Mikhail Y. Kononets, Nils Ekeroth, Per Roos, Bo Thamdrup, Volker Brüchert, and Per O. J. Hall
Biogeosciences, 14, 285–300, https://doi.org/10.5194/bg-14-285-2017, https://doi.org/10.5194/bg-14-285-2017, 2017
Short summary
Short summary
Understanding nitrogen (N) cycling mechanisms in the ocean is crucial for improving ecosystem management. Here we study N processes by in situ lander and isotope tracer techniques in – so far overlooked – sediments with low organic loads. Denitrification and anammox are the main N transformation processes. However, we demonstrate high contribution of dissimilatory nitrate reduction to ammonium, which recycles a major portion of fixed N to the water column and sustains primary production.
F. O. Nitsche, K. Gohl, R. D. Larter, C.-D. Hillenbrand, G. Kuhn, J. A. Smith, S. Jacobs, J. B. Anderson, and M. Jakobsson
The Cryosphere, 7, 249–262, https://doi.org/10.5194/tc-7-249-2013, https://doi.org/10.5194/tc-7-249-2013, 2013
Related subject area
Subject area: The evolving Earth surface | Editorial team: Stratigraphy, sedimentology, geomorphology, morphotectonics, and palaeontology | Discipline: Sedimentology
What does it take to restore geological models with “natural” boundary conditions?
Impact of stress regime change on the permeability of a naturally fractured carbonate buildup (Latemar, the Dolomites, northern Italy)
The influence of extraction of various solvents on chemical properties on Chang 7 shale, Ordos Basin, China
Deep vs. shallow – two contrasting theories? A tectonically activated Late Cretaceous deltaic system in the axial part of the Mid-Polish Trough: a case study from southeast Poland
Miocene high elevation in the Central Alps
What makes seep carbonates ignore self-sealing and grow vertically: the role of burrowing decapod crustaceans
Dawn and dusk of Late Cretaceous basin inversion in central Europe
Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging
Birth and closure of the Kallipetra Basin: Late Cretaceous reworking of the Jurassic Pelagonian–Axios/Vardar contact (northern Greece)
Sediment history mirrors Pleistocene aridification in the Gobi Desert (Ejina Basin, NW China)
Tectonic processes, variations in sediment flux, and eustatic sea level recorded by the 20 Myr old Burdigalian transgression in the Swiss Molasse basin
Miocene basement exhumation in the Central Alps recorded by detrital garnet geochemistry in foreland basin deposits
Precipitation of dolomite from seawater on a Carnian coastal plain (Dolomites, northern Italy): evidence from carbonate petrography and Sr isotopes
The Ogooue Fan (offshore Gabon): a modern example of deep-sea fan on a complex slope profile
Formation of linear planform chimneys controlled by preferential hydrocarbon leakage and anisotropic stresses in faulted fine-grained sediments, offshore Angola
From oil field to geothermal reservoir: assessment for geothermal utilization of two regionally extensive Devonian carbonate aquifers in Alberta, Canada
Sedimentary mechanisms of a modern banded iron formation on Milos Island, Greece
Melchior Schuh-Senlis, Guillaume Caumon, and Paul Cupillard
Solid Earth, 15, 945–964, https://doi.org/10.5194/se-15-945-2024, https://doi.org/10.5194/se-15-945-2024, 2024
Short summary
Short summary
This paper presents the application of a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method is applied to a model based on a laboratory experiment. The results show that using force conditions in the computation of the deformation allows us to assess the value of some previously unknown physical parameters of the different materials inside the model.
Onyedika Anthony Igbokwe, Jithender J. Timothy, Ashwani Kumar, Xiao Yan, Mathias Mueller, Alessandro Verdecchia, Günther Meschke, and Adrian Immenhauser
Solid Earth, 15, 763–787, https://doi.org/10.5194/se-15-763-2024, https://doi.org/10.5194/se-15-763-2024, 2024
Short summary
Short summary
We present a workflow that models the impact of stress regime change on the permeability of fractured Latemar carbonate buildup using a displacement-based linear elastic finite-element method (FEM) and outcrop data. Stress-dependent heterogeneous apertures and effective permeability were calculated and constrained by the study area's stress directions. Simulated far-field stresses at NW–SE subsidence deformation and N–S Alpine deformation increased the overall fracture aperture and permeability.
Yan Cao, Zhijun Jin, Rukai Zhu, and Kouqi Liu
Solid Earth, 14, 1169–1179, https://doi.org/10.5194/se-14-1169-2023, https://doi.org/10.5194/se-14-1169-2023, 2023
Short summary
Short summary
Fourier transform infrared (FTIR) was performed on shale before and after solvent extraction. The extraction yield from shale with THF is higher than other solvents. The organic-C-normalized yield of a mature sample is higher than other samples. The aromaticity of organic matter increases, and the length of organic matter aliphatic chains does not vary monotonically with increasing maturity. The results will help in the selection of organic solvents for oil-washing experiments of shale.
Zbyszek Remin, Michał Cyglicki, and Mariusz Niechwedowicz
Solid Earth, 13, 681–703, https://doi.org/10.5194/se-13-681-2022, https://doi.org/10.5194/se-13-681-2022, 2022
Short summary
Short summary
Traditionally, the axial part of the Polish Basin, i.e. the Mid-Polish Trough, was interpreted as the deepest and most subsiding part of the basin during the Cretaceous times. We interpret this area conversely, as representing a landmass – the Łysogóry–Dobrogea Land. Inversion-related tectonics, uplift on the one hand and enhanced subsidence on the other, drove the development of the Szozdy Delta within the axial part of the basin. New heavy mineral data suggest different burial histories.
Emilija Krsnik, Katharina Methner, Marion Campani, Svetlana Botsyun, Sebastian G. Mutz, Todd A. Ehlers, Oliver Kempf, Jens Fiebig, Fritz Schlunegger, and Andreas Mulch
Solid Earth, 12, 2615–2631, https://doi.org/10.5194/se-12-2615-2021, https://doi.org/10.5194/se-12-2615-2021, 2021
Short summary
Short summary
Here we present new surface elevation constraints for the middle Miocene Central Alps based on stable and clumped isotope geochemical analyses. Our reconstructed paleoelevation estimate is supported by isotope-enabled paleoclimate simulations and indicates that the Miocene Central Alps were characterized by a heterogeneous and spatially transient topography with high elevations locally exceeding 4000 m.
Jean-Philippe Blouet, Patrice Imbert, Sutieng Ho, Andreas Wetzel, and Anneleen Foubert
Solid Earth, 12, 2439–2466, https://doi.org/10.5194/se-12-2439-2021, https://doi.org/10.5194/se-12-2439-2021, 2021
Short summary
Short summary
Biochemical reactions related to hydrocarbon seepage are known to induce carbonates in marine sediments. Seep carbonates may act as seals and force lateral deviations of rising hydrocarbons. However, crustacean burrows may act as efficient vertical fluid channels allowing hydrocarbons to pass through upward, thereby allowing the vertical growth of carbonate stacks over time. This mechanism may explain the origin of carbonate columns in marine sediments throughout hydrocarbon provinces worldwide.
Thomas Voigt, Jonas Kley, and Silke Voigt
Solid Earth, 12, 1443–1471, https://doi.org/10.5194/se-12-1443-2021, https://doi.org/10.5194/se-12-1443-2021, 2021
Short summary
Short summary
Basin inversion in central Europe is believed to have started during Late Cretaceous (middle Turonian) and probably proceeded until the Paleogene. Data from different marginal troughs in central Europe point to an earlier start of basin inversion (in the Cenomanian). The end of inversion is overprinted by general uplift but had probably already occurred in the late Campanian to Maastrichtian. Both the start and end of inversion occurred with low rates of uplift and subsidence.
Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten
Solid Earth, 12, 1–14, https://doi.org/10.5194/se-12-1-2021, https://doi.org/10.5194/se-12-1-2021, 2021
Short summary
Short summary
In this work, we combined different imaging and experimental measuring methods for analysis of cross-scale effects which reduce permeability of tight reservoir rocks. Simulated permeability of digital images of rocks is often overestimated, which is caused by non-resolvable clay content within the pores of a rock. By combining FIB-SEM with micro-XCT imaging, we were able to simulate the true clay mineral abundance to match experimentally measured permeability with simulated permeability.
Lydia R. Bailey, Filippo L. Schenker, Maria Giuditta Fellin, Miriam Cobianchi, Thierry Adatte, and Vincenzo Picotti
Solid Earth, 11, 2463–2485, https://doi.org/10.5194/se-11-2463-2020, https://doi.org/10.5194/se-11-2463-2020, 2020
Short summary
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
Georg Schwamborn, Kai Hartmann, Bernd Wünnemann, Wolfgang Rösler, Annette Wefer-Roehl, Jörg Pross, Marlen Schlöffel, Franziska Kobe, Pavel E. Tarasov, Melissa A. Berke, and Bernhard Diekmann
Solid Earth, 11, 1375–1398, https://doi.org/10.5194/se-11-1375-2020, https://doi.org/10.5194/se-11-1375-2020, 2020
Short summary
Short summary
We use a sediment core from the Gobi Desert (Ejina Basin, NW China) to illustrate the landscape history of the area. During 2.5 million years a sediment package of 223 m thickness has been accumulated. Various sediment types document that the area turned from a playa environment (shallow water environment with multiple flooding events) to an alluvial–fluvial environment after the arrival of the Heihe in the area. The river has been diverted due to tectonics.
Philippos Garefalakis and Fritz Schlunegger
Solid Earth, 10, 2045–2072, https://doi.org/10.5194/se-10-2045-2019, https://doi.org/10.5194/se-10-2045-2019, 2019
Short summary
Short summary
The controls on the 20 Myr old Burdigalian transgression in the Swiss Molasse basin have been related to a reduction in sediment flux, a rise in global sea level, or tectonic processes in the adjacent Alps. Here, we readdress this problem and extract stratigraphic signals from the Upper Marine Molasse deposits in Switzerland. In conclusion, we consider rollback tectonics to be the main driving force controlling the transgression, which is related to a deepening and widening of the basin.
Laura Stutenbecker, Peter M. E. Tollan, Andrea Madella, and Pierre Lanari
Solid Earth, 10, 1581–1595, https://doi.org/10.5194/se-10-1581-2019, https://doi.org/10.5194/se-10-1581-2019, 2019
Short summary
Short summary
The Aar and Mont Blanc regions in the Alps are large granitoid massifs characterized by high topography. We analyse when these granitoids were first exhumed to the surface. We test this by tracking specific garnet grains, which are exclusively found in the granitoid massifs, in the sediments contained in the alpine foreland basin. This research ties in with ongoing debates on the timing and mechanisms of mountain building.
Maximilian Rieder, Wencke Wegner, Monika Horschinegg, Stefanie Klackl, Nereo Preto, Anna Breda, Susanne Gier, Urs Klötzli, Stefano M. Bernasconi, Gernot Arp, and Patrick Meister
Solid Earth, 10, 1243–1267, https://doi.org/10.5194/se-10-1243-2019, https://doi.org/10.5194/se-10-1243-2019, 2019
Short summary
Short summary
The formation of dolomite (CaMg(CO3)2), an abundant mineral in Earth's geological record, is still incompletely understood. We studied dolomites embedded in a 100 m thick succession of coastal alluvial clays of Triassic age in the southern Alps. Observation by light microscopy and Sr isotopes suggests that dolomites may spontaneously from concentrated evaporating seawater, in coastal ephemeral lakes or tidal flats along the western margin of the Triassic Tethys sea.
Salomé Mignard, Thierry Mulder, Philippe Martinez, and Thierry Garlan
Solid Earth, 10, 851–869, https://doi.org/10.5194/se-10-851-2019, https://doi.org/10.5194/se-10-851-2019, 2019
Short summary
Short summary
A large quantity a continental material is transported to the oceans by the world rivers. Once in the ocean, these particles can be transported down the continental shelf thanks to underwater avalanches. The repetition of such massive events can form very important sedimentary deposits at the continent–ocean transition. Data obtained during an oceanic cruise in 2010 allowed us to study such a system located offshore of Gabon and to evaluate the importance sediment transport in this area.
Sutieng Ho, Martin Hovland, Jean-Philippe Blouet, Andreas Wetzel, Patrice Imbert, and Daniel Carruthers
Solid Earth, 9, 1437–1468, https://doi.org/10.5194/se-9-1437-2018, https://doi.org/10.5194/se-9-1437-2018, 2018
Short summary
Short summary
A newly discovered type of hydrocarbon leakage structure is investigated following the preliminary works of Ho (2013; et al. 2012, 2013, 2016): blade-shaped gas chimneys instead of classical cylindrical ones. These so-called
Linear Chimneysare hydraulic fractures caused by overpressured hydrocarbon fluids breaching cover sediments along preferential directions. These directions are dictated by anisotropic stresses induced by faulting in sediments and pre-existing salt-diapiric structures.
Leandra M. Weydt, Claus-Dieter J. Heldmann, Hans G. Machel, and Ingo Sass
Solid Earth, 9, 953–983, https://doi.org/10.5194/se-9-953-2018, https://doi.org/10.5194/se-9-953-2018, 2018
Short summary
Short summary
This study focuses on the assessment of the geothermal potential of two extensive upper Devonian aquifer systems within the Alberta Basin (Canada). Our work provides a first database on geothermal rock properties combined with detailed facies analysis (outcrop and core samples), enabling the identification of preferred zones in the reservoir and thus allowing for a more reliable reservoir prediction. This approach forms the basis for upcoming reservoir studies with a focus on 3-D modelling.
Ernest Chi Fru, Stephanos Kilias, Magnus Ivarsson, Jayne E. Rattray, Katerina Gkika, Iain McDonald, Qian He, and Curt Broman
Solid Earth, 9, 573–598, https://doi.org/10.5194/se-9-573-2018, https://doi.org/10.5194/se-9-573-2018, 2018
Short summary
Short summary
Banded iron formations (BIFs) are chemical sediments last seen in the marine sedimentary record ca. 600 million years ago. Here, we report on the formation mechanisms of a modern BIF analog in the Cape Vani sedimentary basin (CVSB) on Milos Island, Greece, demonstrating that rare environmental redox conditions, coupled to submarine hydrothermal activity and microbial processes, are required for these types of rocks to form in the modern marine biosphere.
Cited articles
Archer, D., Buffett, B., and Brovkin, V.: Ocean methane hydrates as a slow
tipping point in the global carbon cycle, P. Natl. Acad. Sci. USA, 106, 20596–20601,
https://doi.org/10.1073/pnas.0800885105, 2009.
Barnes, R. O. and Goldberg, E. D.: Methane production and consumption in
anoxic marine sediments, Geology, 4, 297–300,
https://doi.org/10.1130/0091-7613(1976)4<297:MPACIA>2.0.CO;2, 1976.
Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann,
H., Bertics, V. J., Dumke, I., Dünnbier, K., Ferré, B., Graves, C.,
Gross, F., Hissmann, K., Hühnerbach, V., Krause, S., Lieser, K.,
Schauer, J., and Steinle, L.: Temporal Constraints on Hydrate-Controlled
Methane Seepage off Svalbard, Science, 343, 284–287,
https://doi.org/10.1126/science.1246298, 2014.
Bhatnagar, G., Chatterjee, S., Chapman, W. G., Dugan, B., Dickens, G. R., and
Hirasaki, G. J.: Analytical theory relating the depth of the sulfate-methane
transition to gas hydrate distribution and saturation, Geochem. Geophy.
Geosy., 12, Q03003, https://doi.org/10.1029/2010GC003397, 2011.
Biastoch, A., Treude, T., Rüpke, L. H., Riebesell, U., Roth, C.,
Burwicz, E. B., Park, W., Latif, M., Böning, C. W., Madec, G., and
Wallmann, K.: Rising Arctic Ocean temperatures cause gas hydrate
destabilization and ocean acidification, Geophys. Res. Lett., 38, L08602,
https://doi.org/10.1029/2011GL047222, 2011.
Boetius, A. and Wenzhöfer, F.: Seafloor oxygen consumption fuelled by
methane from cold seeps, Nat. Geosci., 6, 725, https://doi.org/10.1038/ngeo1926,
2013.
Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F.,
Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U., and Pfannkuche, O.: A
marine microbial consortium apparently mediating anaerobic oxidation of
methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
Borowski, W. S., Paull, C. K., and Ussler, W.: Marine pore-water sulfate
profiles indicate in situ methane flux from underlying gas hydrate, Geology,
24, 655–658, https://doi.org/10.1130/0091-7613(1996)024<0655:MPWSPI>2.3.CO;2, 1996.
Boswell, R. and Collett, S. T.: Current perspectives on gas hydrate
resources, Energ. Environ. Sci., 4, 1206–1215,
https://doi.org/10.1039/C0EE00203H, 2011.
Buffett, B. and Archer, D.: Global inventory of methane clathrate:
sensitivity to changes in the deep ocean, Earth Planet. Sc.
Lett., 227, 185–199, https://doi.org/10.1016/j.epsl.2004.09.005, 2004.
Dale, A. W., Sommer, S., Haeckel, M., Wallmann, K., Linke, P., Wegener, G.,
and Pfannkuche, O.: Pathways and regulation of carbon, sulfur and energy
transfer in marine sediments overlying methane gas hydrates on the Opouawe
Bank (New Zealand), Geochim. Cosmochim. Ac., 74, 5763–5784,
https://doi.org/10.1016/j.gca.2010.06.038, 2010.
Darnell, K. N. and Flemings, P. B.: Transient seafloor venting on
continental slopes from warming-induced methane hydrate dissociation:
TRANSIENT SEAFLOOR VENTING FROM HYDRATES, Geophys. Res. Lett.,
42, 10765–10772, https://doi.org/10.1002/2015GL067012, 2015.
Dickens, G. R.: Modeling the Global Carbon Cycle with a Gas Hydrate
Capacitor: Significance for the Latest Paleocene Thermal Maximum, in: Natural
Gas Hydrates: Occurrence, Distribution, and Detection, edited by: Paull, C. K. and Dillon, W. P., 19–38, American Geophysical Union, https://doi.org/10.1029/GM124p0019, 2001.
Dickens, G. R., O'Neil, J. R., Rea, D. K., and Owen, R. M.: Dissociation of oceanic methane
hydrate as a cause of the carbon isotope excursion at the end of the
Paleocene, Palaeogeogr. Palaeocl., 10, 965–971, https://doi.org/10.1029/95PA02087, 1995.
Egger, M., Riedinger, N., Mogollón, J. M., and Jørgensen, B. B.:
Global diffusive fluxes of methane in marine sediments, Nat. Geosci.,
11, 421–425, https://doi.org/10.1038/s41561-018-0122-8, 2018.
Freeze, R. A. and Cherry, J. A.: Groundwater, 604 pp., Prentice-Hall,
Englewood Cliffs, NJ, 1979.
Giambalvo, E. R., Fisher, A. T., Martin, J. T., Darty, L., and Lowell, R. P.:
Origin of elevated sediment permeability in a hydrothermal seepage zone,
eastern flank of the Juan de Fuca Ridge, and implications for transport of
fluid and heat, J. Geophys. Res.-Solid, 105,
913–928, https://doi.org/10.1029/1999JB900360, 2000.
Hinrichs, K.-U. and Boetius, A.: The Anaerobic Oxidation of Methane: New
Insights in Microbial Ecology and Biogeochemistry, in: Ocean Margin Systems,
edited by: Wefer, P. D. G., Billett, D. D., Hebbeln, D. D.,
Jørgensen, P. D. B. B., Schlüter, P. D. M., and van Weering, D. T. C. E.,
457–477, Springer Berlin Heidelberg,
https://doi.org/10.1007/978-3-662-05127-6_28
2002.
Hoehler, T. M. and Alperin, M. J.: Anaerobic methane oxidation by a
methanogen-sulfate reducer consortium: geochemical evidence and biochemical
considerations, in: Microbial Growth on C1 Compounds: Proceedings of the 8th
International Symposium on Microbial Growth on C1 Compounds, held in San
Diego, USA, 27 August–1 September 1995, edited by: Lidstrom, M. E. and
Tabita, F. R., 326–333, Springer Netherlands, Dordrecht, 1996.
Hunter, S. J., Goldobin, D. S., Haywood, A. M., Ridgwell, A., and Rees, J.
G.: Sensitivity of the global submarine hydrate inventory to scenarios of
future climate change, Earth Planet. Sc. Lett., 367, 105–115,
https://doi.org/10.1016/j.epsl.2013.02.017, 2013.
Kennett, J. P., Cannariato, K. G., Hendy, I. L., and Behl, R. J.:
Methane hydrates in quaternary climate change: the clathrate gun hypothesis, 54, 1–9, 2003.
Kirschke, S., Bousquet, P., Ciais, P., Saunois, M., Canadell, J. G.,
Dlugokencky, E. J., Bergamaschi, P., Bergmann, D., Blake, D. R., Bruhwiler,
L., Cameron-Smith, P., Castaldi, S., Chevallier, F., Feng, L., Fraser, A.,
Heimann, M., Hodson, E. L., Houweling, S., Josse, B., Fraser, P. J.,
Krummel, P. B., Lamarque, J.-F., Langenfelds, R. L., Quéré, C. L.,
Naik, V., O'Doherty, S., Palmer, P. I., Pison, I., Plummer, D., Poulter, B.,
Prinn, R. G., Rigby, M., Ringeval, B., Santini, M., Schmidt, M., Shindell,
D. T., Simpson, I. J., Spahni, R., Steele, L. P., Strode, S. A., Sudo, K.,
Szopa, S., Werf, G. R. van der, Voulgarakis, A., van Weele, M., Weiss, R.
F., Williams, J. E., and Zeng, G.: Three decades of global methane sources
and sinks, Nat. Geosci., 6, 813, https://doi.org/10.1038/ngeo1955, 2013.
Knittel, K. and Boetius, A.: Anaerobic Oxidation of Methane: Progress with
an Unknown Process, Annu. Rev. Microbiol., 63, 311–334,
https://doi.org/10.1146/annurev.micro.61.080706.093130, 2009.
Kretschmer, K., Biastoch, A., Rüpke, L., and Burwicz, E.: Modeling the
fate of methane hydrates under global warming, Global Biogeochem. Cy.,
29, 610–625, https://doi.org/10.1002/2014GB005011, 2015.
Luff, R. and Wallmann, K.: Fluid flow, methane fluxes, carbonate
precipitation and biogeochemical turnover in gas hydrate-bearing sediments
at Hydrate Ridge, Cascadia Margin: numerical modeling and mass balances,
Geochim. Cosmochim. Ac., 67, 3403–3421, 2003.
Malinverno, A. and Pohlman, J. W.: Modeling sulfate reduction in methane
hydrate-bearing continental margin sediments: Does a sulfate-methane
transition require anaerobic oxidation of methane?, Geochem. Geophy.
Geosy., 12, Q07006, https://doi.org/10.1029/2011GC003501, 2011.
Martens, C. S. and Berner, R. A.: Interstitial water chemistry of anoxic
Long Island Sound sediments. 1. Dissolved gases1, Limnol. Oceanogr., 22,
10–25, https://doi.org/10.4319/lo.1977.22.1.0010, 1977.
Martens, C. S. and Val Klump, J.: Biogeochemical cycling in an organic-rich
coastal marine basin – I. Methane sediment-water exchange processes,
Geochim. Cosmochim. Ac., 44, 471–490,
https://doi.org/10.1016/0016-7037(80)90045-9, 1980.
Mau, S., Valentine, D. L., Clark, J. F., Reed, J., Camilli, R., and Washburn,
L.: Dissolved methane distributions and air-sea flux in the plume of a
massive seep field, Coal Oil Point, California, Geophys. Res. Lett., 34,
L22603, https://doi.org/10.1029/2007GL031344, 2007.
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest,
A.: Fate of rising methane bubbles in stratified waters: How much methane
reaches the atmosphere?, J. Geophys. Res., 111, C09007,
https://doi.org/10.1029/2005JC003183, 2006.
Michaelis, W., Seifert, R., Nauhaus, K., Treude, T., Thiel, V., Blumenberg,
M., Knittel, K., Gieseke, A., Peterknecht, K., Pape, T., Boetius, A., Amann,
R., Jørgensen, B. B., Widdel, F., Peckmann, J., Pimenov, N. V., and Gulin,
M. B.: Microbial Reefs in the Black Sea Fueled by Anaerobic Oxidation of
Methane, Science, 297, 1013–1015, https://doi.org/10.1126/science.1072502, 2002.
Milkov, A. V.: Global estimates of hydrate-bound gas in marine sediments:
how much is really out there?, Earth-Sci. Rev., 66, 183–197,
https://doi.org/10.1016/j.earscirev.2003.11.002, 2004.
Miller, D. J., Ketzer, J. M., Viana, A. R., Kowsmann, R. O., Freire, A. F.
M., Oreiro, S. G., Augustin, A. H., Lourega, R. V., Rodrigues, L. F.,
Heemann, R., Preissler, A. G., Machado, C. X., and Sbrissa, G. F.: Natural
gas hydrates in the Rio Grande Cone (Brazil): A new province in the western
South Atlantic, Mar. Petrol. Geol., 67, 187–196,
https://doi.org/10.1016/j.marpetgeo.2015.05.012, 2015.
Moridis, G. J.: TOUGH+HYDRATE v1.2 User's Manual: A Code for the
Simulation of System Behavior in Hydrate-Bearing Geologic Media,
eScholarship, available at:
http://escholarship.org/uc/item/3mk82656 (last access: 25 March 2015), 2014.
Nakajima, T., Kakuwa, Y., Yasudomi, Y., Itaki, T., Motoyama, I., Tomiyama,
T., Machiyama, H., Katayama, H., Okitsu, O., Morita, S., Tanahashi, M., and
Matsumoto, R.: Formation of pockmarks and submarine canyons associated with
dissociation of gas hydrates on the Joetsu Knoll, eastern margin of the Sea
of Japan, J. Asian Earth Sci., 90, 228–242,
https://doi.org/10.1016/j.jseaes.2013.10.011, 2014.
Nauhaus, K., Albrecht, M., Elvert, M., Boetius, A., and Widdel, F.: In vitro
cell growth of marine archaeal-bacterial consortia during anaerobic
oxidation of methane with sulfate, Environ. Microbiol., 9,
187–196, https://doi.org/10.1111/j.1462-2920.2006.01127.x, 2007.
Neuzil, C. E.: How permeable are clays and shales?, Water Resour.
Res., 30, 145–150, https://doi.org/10.1029/93WR02930, 1994.
Niemann, H., Lösekann, T., de Beer, D., Elvert, M., Nadalig, T.,
Knittel, K., Amann, R., Sauter, E. J., Schlüter, M., Klages, M.,
Foucher, J. P., and Boetius, A.: Novel microbial communities of the Haakon
Mosby mud volcano and their role as a methane sink, Nature, 443,
854–858, https://doi.org/10.1038/nature05227, 2006.
Reagan, M. T. and Moridis, G. J.: Dynamic response of oceanic hydrate
deposits to ocean temperature change, J. Geophys. Res., 113, C12023,
https://doi.org/10.1029/2008JC004938, 2008.
Reagan, M. T., Moridis, G. J., Elliott, S. M., and Maltrud, M.: Contribution
of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane
plumes, J. Geophys. Res., 116, C09014, https://doi.org/10.1029/2011JC007189, 2011.
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 107,
486–513, https://doi.org/10.1021/cr050362v, 2007.
Rodrigues, L. F., Ketzer, J. M., Lourega, R. V., Augustin, A. H., Sbrissa,
G., Miller, D., Heemann, R., Viana, A., Freire, A. F. M., Morad, S.,
Rodrigues, L. F., Ketzer, J. M., Lourega, R. V., Augustin, A. H., Sbrissa,
G., Miller, D., Heemann, R., Viana, A., Freire, A. F. M., and Morad, S.: The
influence of methane fluxes on the sulfate/methane interface in sediments
from the Rio Grande Cone Gas Hydrate Province, southern Brazil, Brazilian
J. Geology, 47, 369–381, https://doi.org/10.1590/2317-4889201720170027,
2017.
Roussel, E. G., Cragg, B. A., Webster, G., Sass, H., Tang, X., Williams, A.
S., Gorra, R., Weightman, A. J., and Parkes, R. J.: Complex coupled metabolic
and prokaryotic community responses to increasing temperatures in anaerobic
marine sediments: critical temperatures and substrate changes, FEMS
Microbiol. Ecol., 91, fiv084, https://doi.org/10.1093/femsec/fiv084, 2015.
Ruppel, C. D.: Methane Hydrates and Contemporary Climate Change, Nature Education Knowledge, 3, 29, 2011.
Ruppel, C. D. and Kessler, J. D.: The interaction of climate change and
methane hydrates, Rev. Geophys., 55, 2016RG000534,
https://doi.org/10.1002/2016RG000534, 2017.
Saffer, D. M.: The permeability of active subduction plate boundary faults,
Geofluids, 15, 193–215, https://doi.org/10.1111/gfl.12103, 2015.
Sivan, O., Schrag, D. P., and Murray, R. W.: Rates of methanogenesis and
methanotrophy in deep-sea sediments, Geobiology, 5, 141–151,
https://doi.org/10.1111/j.1472-4669.2007.00098.x, 2007.
Spinelli, G. A., Giambalvo, E. R., and Fisher, A. T.: Sediment permeability,
distribution, and influence on fluxes in oceanic basement, Hydrogeology of
the Oceanic Lithosphere, 1, 151–188, 2004.
Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, B., and Midgley, B. M.: IPCC, 2013:
climate change 2013: the physical science basis. Contribution of working
group I to the fifth assessment report of the intergovernmental panel on
climate change, Cambridge Univ. Press, Cambridge, UK, 2013.
Stranne, C., O'Regan, M., Dickens, G. R., Crill, P., Miller, C., Preto, P.,
and Jakobsson, M.: Dynamic simulations of potential methane release from
East Siberian continental slope sediments, Geochem. Geophy. Geosy.,
17, 872–886, https://doi.org/10.1002/2015GC006119, 2016a.
Stranne, C., O'Regan, M., and Jakobsson, M.: Overestimating climate
warming-induced methane gas escape from the seafloor by neglecting
multiphase flow dynamics, Geophys. Res. Lett., 43, 2016GL070049,
https://doi.org/10.1002/2016GL070049, 2016b.
Stranne, C., O'Regan, M., and Jakobsson, M.: Modeling fracture propagation
and seafloor gas release during seafloor warming-induced hydrate
dissociation, Geophys. Res. Lett., 44, 2017GL074349,
https://doi.org/10.1002/2017GL074349, 2017.
Suess, E.: Marine cold seeps, in: Handbook of Hydrocarbon and Lipid Microbiology, edited by: Timmis, K. N., McGenity, T. J., Meer, J. R., and Lorenzo, V., Springer, Berlin Heidelberg,
187–203, 2010.
Thatcher, K. E., Westbrook, G. K., Sarkar, S., and Minshull, T. A.: Methane
release from warming-induced hydrate dissociation in the West Svalbard
continental margin: Timing, rates, and geological controls, J. Geophys. Res.-Solid, 118, 22–38, https://doi.org/10.1029/2012JB009605, 2013.
Treude, T., Boetius, A., Knittel, K., Wallmann, K., and Jørgensen, B. B.:
Anaerobic oxidation of methane above gas hydrates at Hydrate Ridge, NE
Pacific Ocean, Mar. Ecol.-Prog. Ser., 264, 1–14, 2003.
Valentine, D. L.: Emerging topics in marine methane biogeochemistry, Annu. Rev. Mar. Sci., 3, 147–171, 2011.
Wallmann, K., Pinero, E., Burwicz, E., Haeckel, M., Hensen, C., Dale, A., and
Ruepke, L.: The Global Inventory of Methane Hydrate in Marine Sediments: A
Theoretical Approach, Energies, 5, 2449–2498, https://doi.org/10.3390/en5072449,
2012.
Wallmann, K., Riedel, M., Hong, W. L., Patton, H., Hubbard, A., Pape, T.,
Hsu, C. W., Schmidt, C., Johnson, J. E., Torres, M. E., Andreassen, K.,
Berndt, C., and Bohrmann, G.: Gas hydrate dissociation off Svalbard induced
by isostatic rebound rather than global warming, Nat. Commun.,
9, 83, https://doi.org/10.1038/s41467-017-02550-9, 2018.