Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-225-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-10-225-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structural expression of a fading rift front: a case study from the Oligo-Miocene Irbid rift of northwest Arabia
The Dr. Moses Strauss Department of Marine Geosciences, Leon H.
Charney School of Marine Sciences, Haifa University, Mt. Carmel, Haifa
31905, Israel
Amit Segev
Geological Survey of Israel, 30 Malkhe Israel, Jerusalem 95501,
Israel
Zvi Ben-Avraham
Department of Geophysics and Planetary Sciences, Tel Aviv University,
Tel Aviv 69978, Israel
Uri Schattner
The Dr. Moses Strauss Department of Marine Geosciences, Leon H.
Charney School of Marine Sciences, Haifa University, Mt. Carmel, Haifa
31905, Israel
Related authors
No articles found.
Michel Michaelovitch de Mahiques, Javier Alcántara-Carrió, Francisco José Lobo, Uri Schattner, Rosangela Felício dos Santos, Samara Cazzoli y Goya, Raissa Basti Ramos, José Gustavo Natorf de Abreu, Luiz Antonio Pereira de Souza, Rubens Cesar Lopes Figueira, and Marcia Caruso Bícego
Solid Earth Discuss., https://doi.org/10.5194/se-2018-140, https://doi.org/10.5194/se-2018-140, 2019
Publication in SE not foreseen
Short summary
Short summary
This paper is a contribution to the knowledge of the geological processes on the SW Atlantic. We tried to integrate data from different time-scales, such as the geological evolution (millions of years) to the hydrodynamic processes (days to years). The results allowed us to recognize the importance of the geological inheritance to the present morphology of submerged areas.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Reflection tomography by depth warping: a case study across the Java trench
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
Multi-scale analysis and modelling of aeromagnetic data over the Bétaré-Oya area in eastern Cameroon, for structural evidence investigations
Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations
A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems
Seismic attenuation and dispersion in poroelastic media with fractures of variable aperture distributions
Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network
Srishti Singh and Radheshyam Yadav
Solid Earth, 14, 937–959, https://doi.org/10.5194/se-14-937-2023, https://doi.org/10.5194/se-14-937-2023, 2023
Short summary
Short summary
We use numerical models to study the stresses arising from gravitational potential energy (GPE) variations and shear tractions associated with mantle convection in the Zagros–Iran region. The joint models predicted consistent deviatoric stresses that can explain most of the deformation indicators. Stresses associated with mantle convection are found to be higher than those from GPE, thus indicating the deformation in this region may primarily be caused by the mantle, except in eastern Iran.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Andrei Maksymowicz, Daniela Montecinos-Cuadros, Daniel Díaz, María José Segovia, and Tomás Reyes
Solid Earth, 13, 117–136, https://doi.org/10.5194/se-13-117-2022, https://doi.org/10.5194/se-13-117-2022, 2022
Short summary
Short summary
This work analyses the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Results show a segmentation of the continental wedge along and perpendicular to the margin. The extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods. This analysis highlights the role of the overriding plate on the seismotectonic process.
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
Christian Emile Nyaban, Théophile Ndougsa-Mbarga, Marcelin Bikoro-Bi-Alou, Stella Amina Manekeng Tadjouteu, and Stephane Patrick Assembe
Solid Earth, 12, 785–800, https://doi.org/10.5194/se-12-785-2021, https://doi.org/10.5194/se-12-785-2021, 2021
Short summary
Short summary
A multi-scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward continuation, and 2.75D modelling was applied over Cameroon between the latitudes 5°30'–6° N and the longitudes 13°30'–14°45' E. Major families of faults oriented ENE–WSW, E–W, NW–SE, and N–S with a NE–SW prevalence were mapped. Depths of interpreted faults range from 1000 to 3400 m, mylonitic veins were identified, and 2.75D modelling revealed fault depths greater than 1200 m.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Simón Lissa, Nicolás D. Barbosa, J. Germán Rubino, and Beatriz Quintal
Solid Earth, 10, 1321–1336, https://doi.org/10.5194/se-10-1321-2019, https://doi.org/10.5194/se-10-1321-2019, 2019
Short summary
Short summary
We quantify the effects that 3-D fractures with realistic distributions of aperture have on seismic wave attenuation and velocity dispersion. Attenuation and dispersion are caused by fluid pressure diffusion between the fractures and the porous background. We show that (i) both an increase in the density of contact areas and a decrease in their correlation length reduce attenuation and (ii) a simple planar fracture can be used to emulate the seismic response of realistic fracture models.
Dietrich Lange, Frederik Tilmann, Tim Henstock, Andreas Rietbrock, Danny Natawidjaja, and Heidrun Kopp
Solid Earth, 9, 1035–1049, https://doi.org/10.5194/se-9-1035-2018, https://doi.org/10.5194/se-9-1035-2018, 2018
Short summary
Cited articles
Abelson, M., Sneh, A., Rosensaft, M., Borshevsky, A., Shaliv, G., and
Wollman, S.: Reconstruction of the rock layers in the Galilee – Early
Cretaceous to present – for the Kalanit project, Israel Geological Survey
Report GSI/28/2009, Jerusalem, 12 pp., 2009 (in Hebrew).
Agar, R. A.: The Najd fault system revisited; a two-way strike-slip orogen in
the Saudi Arabian Shield, J. of Struct. Geol., 9, 41–48,
https://doi.org/10.1016/0191-8141(87)90042-3, 1987.
Aizenberg, E.: Report on the Sarid 1 and Gid'on Structure Holes in Emek
Yizre'el, Naphta Israel Petroleum Corp., Tel-Aviv, Israel, 1967.
Allen, P. A. and Allen, J. R. (Eds.): Basin Analysis – Principles and
Applications, 2nd Edition, Blackwell Publishing, Oxford, UK, 2005.
Al Kwatli, M. A., Gillot, P. Y., Zeyen, H., Hildenbrand, A., and Al Gharib,
I.: Volcano-tectonic evolution of the northern part of the Arabian plate in
the light of new K–Ar ages and remote sensing: Harrat Ash Shaam volcanic
province (Syria), Tectonophysics, 580, 192–207,
https://doi.org/10.1016/j.tecto.2012.09.017, 2012.
ArRajehi, A., McClusky, S. Reilinger, R. Daoud, M., Alchalbi, A., Ergintav,
S., Gomez, F., Sholan, J., Bou-Rabee, F., Ogubazghi, G., Haileab, B.,
Fisseha, S., Asfaw, L., Mahmoud, S., Rayan, A., Bendik, R., and Kogan L.:
Geodetic constraints on present-day motion of the Arabian Plate: Implications
for Red Sea and Gulf of Aden rifting, Tectonics, 29, TC3011,
https://doi.org/10.1029/2009TC002482, 2010.
Avni, Y.: The geology, paleogeography and landscape evolution in the central
Negev highlands and the western Ramon structure, Israel Geological Survey
Report GSI/6/91, Jerusalem, 153 pp., 1991 (in Hebrew with English abstract).
Avni, Y.: The structural and landscape evolution of the western Ramon
structure, Israel J. Earth Sci., 42, 177–187, 1993.
Avni, Y.: Paleogeography and tectonics of the central Negev and the Dead Sea
rift western margin during the Late Neogene and Quaternary, Ph.D. Thesis, the
Hebrew University, Jerusalem, and the Israel Geological Survey Report
GSI/24/98, Jerusalem, Israel, 231 pp., 1998 (in Hebrew with English
abstract).
Avni, Y., Segev, A., and Ginat, H: Oligocene regional denudation of the
northern Afar dome: pre and syn-breakup stages of the Afro-Arabian plate,
Geol. Soc. Am. Bull., 124, 1871–1897, https://doi.org/10.1130/B30634.1, 2012.
Baer, G., Aharon, L., Heimann, A., Shaliv, G., and Agnon, A.: The Nahal Tavor
vent: interplay of Miocene tectonics, dikes and volcanism in the Lower
Galilee, Israel J. Earth Sci., 55, 1–16, 2006.
Baldridge, W. S., Eyal, Y., Bartov, Y., and Steinitz, G., and Eyal, M.:
Miocene magmatism of Sinai related to the opening of the Red Sea,
Tectonophysics, 197, 181–201, 1991.
Bar, O., Gvirtzman, Z., Feinstein, S., and Zilberman, E.: Accelerated
subsidence and sedimentation in the Levant basin during the Late Tertiary and
concurrent uplift of the Arabian platform: Tectonic versus counteracting
sedimentary loading effects, Tectonics, 32, 334–350, 2013.
Bar, O., Zilberman, E., Feinstein, S., Calvo, R., and Gvirtzman, Z.: The
uplift history of the Arabian Plateau as inferred from geomorphologic
analysis of its northwestern edge, Tectonophysics, 671, 9–23, 2016.
Bartov, Y., Steinitz, G., Eyal, M., and Eyal, Y.: Sinistral movement along
the Gulf of Aqaba – Its age and relation to the opening of the Red Sea,
Nature, 285, 220–222, https://doi.org/10.1038/285220a0, 1980.
Bartov, Y., Sneh, A., Fleischer, L. Arad, V., and Rosensaft, M.: Potentially
active faults in Israel – stage B, Israel Geological Survey Report
GSI/29/2002, 8 pp., 2002 (in Hebrew).
Bayer, H. J., Hötzl, H., Jado, A. R., Roscher, B., and Voggenreiter, W.:
Sedimentary and structural evolution of the northwest Arabian Red Sea margin,
Tectonophysics, 153, 137–151, 1988.
Bayer, H. J., Hötzl, H., El-Isa, Z., Mechie, J., Prodehl, C., and
Saffarini, G.: Large tectonic and lithospheric structures of the Red Sea
region, J. Afr. Earth Sci., 8, 565–587, 1989.
Beauchamp, W., Barazangi, M., Demnati, A., and El Alji, M.: Intracontinental
Rifting and Inversion: Missour Basin and Atlas Mountains, Morocco, Am. Assoc.
Petr. Geol. B., 80, 1459–1482, 1996.
Beauchamp, W., Allmending, R. W., Barazangi, M., Demnati, A., El Alji, M.,
and Dahmani, M.: Inversion tectonics and the evolution of the High Atlas
Mountains, Morocco, based on a geological-geophysical transect, Tectonics,
18, 163–184, 1999.
Bellahsen, N., Faccenna, C., Funiciello, F., Daniel, J. M., and Jolivet, L.:
Why did Arabia separate from Africa? Insights from 3-D laboratory
experiments, Earth Planet. Sc. Lett., 216, 365–381, 2003.
Ben-Avraham, Z. and Ginzburg, A.: Displaced terranes and crustal evolution of
the Levant and the eastern Mediterranean, Tectonics, 9, 613–622, 1990.
Ben David, R.: Stages in the evolution of landscape in the Makhtesh Ramon and
Nahal Neqarot area- Field excursion, Israel J. Earth Sci., 42, 189–196,
1993.
Ben David, R. and Mazor, E.: Stages in the evolution of Makhtesh Ramon and it
drainage system, Israel J. Earth Sci., 37, 125–135, 1988.
Bender, F.: Geology of Jordan, Berlin, Gebrüder Borntraeger, 196 pp.,
1974.
Bentor, Y. K.: The crustal evolution of the Arabo-Nubian Massif with special
reference to the Sinai Peninsula, Precambrian Res., 28, 1–74, 1985.
Blake, G. S.: On the occurrence of marine Miocene in Palestine, Geol. Mag.,
72, 140–142, 1935.
Bohannon, R. G., Naesar, C. W., Schmidt, D. L., and Zimmerman, R. A.: The
timing of uplift, volcanism and rifting peripheral to the Red Sea: A case for
passive rifting?, J. Geophys. Res., 94, 1683–1701, 1989.
Bosworth, W.: Discussion on the structural evolution of extensional basin
margins, J. Geol. Soc. London, 142, 939–942, 1985.
Bosworth, W.: A model for the three-dimensional evolution of continental
basins, north-east Africa, Geol. Rundsch., 83, 671–688, 1994.
Bosworth, W., Lambiase, J., and Keisler, R.: A new look at Gregory's Rift:
The structural style of continental rifting, EOS, AGU Transact., 67,
577–583, 1986.
Bosworth, W., Huchon, P., and McClay, K.: The Red Sea and Gulf of Aden
Basins, J. Afr. Earth Sci., 43, 334–378,
https://doi.org/10.1016/j.jafrearsci.2005.07.020, 2005.
Brew, G., Lupa, J., Barazangi, M., Sawaf, T., Al-Imam, A., and Zaza, T.:
Structure and tectonic development of the Ghab Basin and the Dead Sea fault
system, Syria, J. Geol. Soc. London, 158, 665–674, 2001.
Brueseke, M. E., Hobbs, J. M., Bulen, C. L., Mertzman, S. A., Puckett, R. E.,
Walker, J. D., and Feldman, J.: Cambrian intermediate-mafic magmatism along
the Laurentian margin; evidence for flood basalt volcanism from well cuttings
in the Southern Oklahoma Aulacogen (U.S.A.), Lithos, 260, 164–177,
https://doi.org/10.1016/j.lithos.2016.05.016, 2016.
Burgess, C. F., Rosendahl B. R., Sander S., Burgess C. A., Lambiase J.,
Derksen S., and Meader N.: The structural and stratigraphic evolution of Lake
Tanganyika: a case history in continental rifting, in: Rifting and the
Opening of the Atlantic Ocean, edited by: Manspeizer, W., Elsevier,
Amsterdam, 861–881, 1988.
Busby, C. J. and Ingersoll, R. V.: Tectonics of Sedimentary Basins, Blackwell
Science, Oxford, UK, 579 pp., 1995.
Camp, V. E. and Roobol, M. J.: Upwelling asthenosphere beneath Western Arabia
and its regional implications, J. Geophys. Res., 97, 15255–15271,
https://doi.org/10.1029/92JB00943, 1992.
Chang, S. J., Merino, M., Van Der Lee, S., Stein, S., and C. A., Stein:
Mantle flow beneath Arabia offset from the opening Red Sea, Geophys. Res.
Lett., 38, L04301, https://doi.org/10.1029/2010GL045852, 2011.
Courtillot, V., Armijo, R., and Tapponnier P.: The Sinai triple junction
revisited, Tectonophysics, 141, 181–190, https://doi.org/10.1016/0040-1951(87)90184-3,
1987.
d'Acremont, E., Leroy, S., Beslier, M. O., Bellahsen, N., Fournier, M.,
Robin, C., Maia, M., and Gente, P.: Structure and evolution of the eastern
Gulf of Aden conjugate margins from seismic reflection data, Geophys. J.
Int., 160, 869–890, https://doi.org/10.1111/j.1365-246X.2005.02524.x, 2005.
de Castro, D. L. and Bezerra, F. H. R.: Fault evolution in the Potiguar rift
termination, equatorial margin of Brazil, Solid Earth, 6, 185–196,
https://doi.org/10.5194/se-6-185-2015, 2015.
Dekel, A.: Geology of Emek-Dotan area, MSc. Thesis, Tel-Aviv University,
Tel-Aviv, Israel, 62 pp., 1988 (in Hebrew).
Dembo, N., Hamiel, Y., and Granot, R.: Intraplate rotational deformation
induced by faults: Carmel-Gilboa fault system as a case study, Israel
Geological Survey Report GSI/19/2015, 32 pp., 2015.
De Vicente, G. and Muñoz-Martin, A.: The Madrid Basin and the Central
System: A tectonostratigraphic analysis from 2-D seismic lines,
Tectonophysics, 602, 259–285, https://doi.org/10.1016/j.tecto.2012.04.003, 2013.
Dézes, P., Schmid, S. M., and Ziegler, P. A.: Evolution of the European
Cenozoic Rift System: interaction of the Alpine and Pyrenean orogens with
their foreland lithosphere, Tectonophysics, 389, 1–33,
https://doi.org/10.1016/j.tecto.2004.06.011, 2004.
Dicker, T.: The Geology of central Yizre'el Valley, MSc. Thesis, the Hebrew
University, Jerusalem, Israel, 1964.
Dicker, T.: The Geology of central Yizre'el Valley, Israel J. Earth Sci., 18,
39–69, 1969.
Dunbar, J. A. and Sawyer, D. S.: Three-dimensional dynamical model of
continental rift propagation and margin plateau formation, J. Geophys. Res.,
101, 27845–27863, 1996.
Ebinger, C. J. and Casey, M.: Continental breakup in magmatic provinces: an
Ethiopian example, Geology, 29, 527–530, 2001.
Ebinger, C. J., Rosendahl, B. R., and Reynolds, D. J.: Tectonic model of the
Malawi Rift, Africa, Tectonophysics, 141, 215–235, 1987.
Ebinger, C. J., Deino, A. L., Drake, R. E., and Tesha, A. L.: Chronology of
volcanism and rift basin propagation: Rungwe volcanic province, East Africa,
J. Geophys. Res., 94, 15785–15803, 1989.
Enachescu, M.: Structural setting and petroleum potential of the Orphan
basin, offshore Newfoundland and Labrador, Canadian Society of Exploration
Geophysicists Recorder, 31, 5–13, 2006.
Evison, F. F.: On the growth of continents by plastic flow under gravity,
Geophys. J. Roy. Astr. S., 3, 155–190, 1959.
Eyal, Y.: Stress field fluctuations along the Dead Sea rift since the middle
Miocene, Tectonics, 15, 157–170, 1996.
Eyal, Y. and Reches, Z.: Tectonic analysis of the Dead Sea rift region since
the Late Cretaceous based on mesostructures, Tectonics, 2, 167–185, 1983.
Eyal, Y., Gross, M. R., Engelder, T., and Becker, A.: Joint development
during fluctuation of regional stress field in southern Israel, J. Struct.
Geol., 23, 279–296, 2001.
Faccenna, C., Becker, T. W., Jolivet, L., and Keskin, M.: Mantle convection
in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean
trench rollback, Earth Planet. Sc. Lett., 375, 254–269,
https://doi.org/10.1016/j.epsl.2013.05.043, 2013.
Feraud, G., Giannerini, G., and Campredon, R.: Dyke Swarms as Paleostress
Indicators in Areas Adjacent to Continental Collision Zones: Examples from
the European and Northwest Arabian Plates, Mafic Dyke Swarms, International
Lithosphere Program, Erindale College, University of Toronto, Ontario,
Canada, 273–278, 1985.
Freund, R.: Geometry of faulting in Galilee, Israel J. Earth Sci., 19,
117–140, 1970.
Freund, R.: The concept of a sinistral megashear, in: Lake Kinneret, edited
by: Serruya, C., Monographiae biologicae, 32, Dr. W. Junk B. V. Publishers,
The Hague, the Netherlands, 27–31, 1978.
Frieslander, U.: Seismic interpretation of the Revaya region (Bet She'an
valley), Geophysical Institute of Israel, Lod, Report 648/25/97, 1997 (in
Hebrew).
Frizon de Lamotte, D., Raulin, C., Mouchot, N., Wrobel-Daveau, J.-C.,
Blanpied, C., and Ringenbach, J.-C.: The southernmost margin of the Tethys
realm during the Mesozoic and Cenozoic: Initial geometry and timing of the
inversion processes, Tectonics, 30, TC3002, https://doi.org/10.1029/2010TC002691, 2011.
Gardosh, M. and Bruner, I.: Seismic survey in Bet She'an region, Geophysical
Institute of Israel Report 348/27/98, Lod, 1998 (in Hebrew).
Gardosh, M., Druckman, Y., Buchbinder, B., and Rybakov, M.: The Levant Basin
offshore Israel: stratigraphy, structure, tectonic evolution and implications
for hydrocarbon exploration – revised edition, Geophysical Institute of
Israel Report 429/328/08, Lod, Israel Geological Survey Report GSI/4/2008,
Jerusalem, Israel, 118 pp., 2008.
Garfunkel, Z.: The tectonics of the western margins of the southern Arava, a
contribution to the understanding of rifting, Ph.D. Thesis, the Hebrew
University of Jerusalem, Jerusalem, Israel, 203 pp., 1970 (in Hebrew with
English abstract).
Garfunkel, Z.: Internal structure of the dead-sea leaky transform (rift) in
relation to plate kinematics, Tectonophysics, 80, 81–108, 1981.
Garfunkel, Z.: Dead Sea leaky transform (rift) in relation to plate
kinematics, Tectonophysics, 80, 81–108, 1989.
Garfunkel, Z.: Constrains on the origin and history of the Eastern
Mediterranean basin, Tectonophysics, 298, 5–35, 1998.
Garfunkel, Z.: Early Palaeozoic sediments of NE Africa and Arabia, Products
of continental-scale erosion, sediment transport, and deposition, Israel J.
Earth Sci., 51, 135–156, 2002.
Garfunkel, Z.: Origin of the Eastern Mediterranean basin: a re-evaluation,
Tectonophysics, 391, 11–34, 2004.
Garfunkel, Z. and Bartov, Y.: The tectonics of the Suez rift, Israel Geologic
Survey Bulletin, 71, 1–44, 1977.
Garfunkel, Z. and Ben-Avraham, Z.: Basins along the Dead Sea Transform,
Peri-tethyan Rift/Wrench Basins and Passive Margins, in: Peri-tethys Memoir
6, edited by: Ziegler, P. A., Cavazza, W., Robertson, A. H. F., and
Crasquin-Soleau, S., Museum National d'Histoire Naturelle, Paris, 607–627,
2001.
Garfunkel, Z. and Derin, B.: Permian-early Mesozoic tectonism and continental
margin formation in Israel and its implications for the history of the
Eastern Mediterranean, in: The Geological Evolution of the Eastern
Mediterranean, edited by: Dixon, R. J. and Robertson, A. H. F., Geol. Soc.
London Spec. Pub., 17, 187–201, 1984.
Garfunkel, Z. and Horowitz, A.: The Upper Tertiary and Quaternary morphology
of the Negev, Israel, Israel J. Earth Sci., 15, 101–117, 1966.
Gev, I.: Salinization phenomena of the soils in Yizrael Valley as a result of
the hydrogeological System, MSc Thesis, Ben-Gurion University in the Negev,
Beer Sheva, Israel, 149 pp., 1989 (in Hebrew with English abstract).
Giannérini, G., Campredon, R., Féraud, G., and Abou, Z. B.:
Déformations intraplaques et volcanisme associé; exemple de la
bordure NW de la plaque Arabique au Cénozoïque (Intraplate
deformation and associated volcanism; example of the northwestern edge of the
Arabian Plate during the Cenozoic), B. Soc. Geol. Fr., 4, 937–947, 1988.
Ginzburg, A., Ben-Avraham, Z., Makris, J., Hubral, P., and Rotstein, Y.:
Crustal structure of northern Israel, Mar. Petrol. Geol., 11, 501–506, 1994.
Gomez, F., Khawlie, M., Tabet, C., Darkal, A., Khair, K., and Barazangi, M.:
Late Cenozoic uplift along the northern Dead Sea transform in Lebanon and
Syria, Earth Planet. Sc. Lett., 241, 913–931, 2006.
Gomez, F., Karam, G., Khawlie, M., McClusky, S., Vernant, P., Reilinger, R.,
Jaafar, R., Tabet, C., Khair, K., and Barazangi, M.: Global Positioning
System measurements of strain accumulation and slip transfer through the
restraining bend along the Dead Sea fault system in Lebanon, Geophys. J.
Int., 168, 1021–1028, https://doi.org/10.1111/j.1365-246X.2006.03328.x,
2007.
Guiraud, R. and Bosworth, W.: Senonian basin inversion and rejuvenation of
rifting in Africa and Arabia: synthesis and implications to plate-scale
tectonics, Tectonophysics, 282, 39–82, 1997.
Gvirtzman, Z., Steinberg, J., Bar, O., Buchbinder, B., Zilberman, E.,
Siman-Tov, R., Calvo, R. Grossowicz, L. Almogi-Labin, A., and Rosensaft, M.:
Retreating Late Tertiary shorelines in Israel: Implications for the exposure
of north Arabia and Levant during Neotethys closure, Lithosphere, 3, 95–109,
2011.
Haq, B. U., Hardenbol, J., and Vail, P. R.: Chronology of sea-level
fluctuations since the Triassic, Science, 235, 1156–1167, 1987.
Hansen, S. E. and Nyblade, A. A.: The deep seismic structure of the
Ethiopia/Afar hotspot and the African superplume, Geophys. J. Int., 194,
118–124, https://doi.org/10.1093/gji/ggt116, 2013.
Hardy, C., Homberg, C., Eyal, Y., Barrier, E., and Müller, C.: Tectonic
evolution of the southern Levant margin since Mesozoic, Tectonophysics, 494,
211–225, 2010.
Hatzor, Y.: The Geology of Mt. Gilboa, Israel Geological Survey Report
GSI/15/91, Jerusalem, Israel, 107 pp., 1988 (in Hebrew with English
abstract).
Heimann, A., Steinitz, G., Mor, D., and Shaliv G.: The geochronology of the
Cover Basalt: revised K-Ar and new 40-Ar/39-Ar results?, Geological Survey of
Israel Report GSI/6/96, 35 pp., 1996.
Hempton, M. R.: Constraints on Arabian plate motion and extensional history
of the Red Sea, Tectonics, 6, 687–705, 1987.
Hensen, F. R. S.: Observations on the geology of the petroleum occurrences of
the Middle East, Proceedings of 3rd World Petroleum Congress, The Hague, the
Netherlands, World Petroleum Congress, Volume 1, 118–140, 1951.
Hoffman, P., Dewey, J. F., and Burke, K.: Aulacogens and their genetic
relation to geosynclines, with a Proterozoic example from Great Slave lake,
Canada, in: Modern and ancient geosynclinal sedimentation, edited by: Dott
Jr., R.H. and Shaver, R. H.:, Soc. Econ. Pa, 19, 38–55, 1974.
Hofmann, C. and Courtillot, V.: Timing of the Ethiopian food basalt event and
implications for plume birth and global change, Nature, 389, 838–841, 1997.
Hofstetter, A., van Eck, T., and Shapira, A.: Seismic activity along the
fault branches of the Dead Sea – Jordan transform: the Carmel–Tirtza fault
system, Tectonophysics, 267, 317–330, 1996.
Horowitz, A.: The Quaternary of Israel, Academic Press, New York, 394 pp.,
1979.
Horowitz, A.: Palynology of Arid Lands, Elsevier, Amsterdam, Netherlands, 546
pp., 1992.
Horowitz, A.: The Jordan Rift Valley, AA. Balkema publishers, Rotterdam,
Netherlands, 730 pp., 2001.
Hurwitz, S., Garfunkel, Z., Ben-Gai, Y., Reznikov, M., Rotstein, Y., and
Gvirtzman, H.: The tectonic framework of a complex pull-apart basin: seismic
reflection observations in the Sea of Galilee, Dead Sea transform,
Tectonophysics, 359, 289–306, 2002.
Ilani, S., Harlavan, Y., Tarawneh, K., Rabba, I., Weinberger, R., Ibrahim,
K., Peltz, S., and Steinitz, G.: New K–Ar ages of basalts from the Harrat
Ash Shaam volcanic field in Jordan: implications for the span and duration of
the upper-mantle upwelling beneath the western Arabian plate, Geology, 29,
171–174, 2001.
Inbar, N.: The evaporitic subsurface body of Kinnarot basin stratigraphy,
structure, geohydrology, PhD thesis, Tel-Aviv University, Tel-Aviv, 131 pp.,
2012.
Joffe, S. and Garfunkel, Z.: Plate kinematics of the circum Red Sea – a
re-evaluation, Tectonophysics, 153, 271–294, 1987.
Kafri, U.: Neogene to Early Quaternary drainage systems in the Lower Galilee,
Israel and their relationship to young tectonics, Israel J. Earth Sci., 51,
79–102, https://doi.org/10.1560/WH4Y-3NNT-TQ2W-1D9D, 2002.
Kafri, U. and Ecker, A.: Neogene and Quaternary subsurface geology and
hydrogeology of the Zevulun plain, Israel Geological Survey Bulletin, 37, 13
pp., 1964.
Khalil, S. M. and McClay, K. R.: Extensional fault-related folding,
northwestern Red Sea Egypt, J. of Struct. Geol. 24, 743–762,
https://doi.org/10.1016/s0191-8141(01)00118-3, 2002.
Khalil, S. M. and McClay, K. R.: 3D geometry and kinematic evolution of
extensional fault-related folds, NW Red Sea, Egypt, in: The geometry and
growth of normal faults, edited by: Childs, C., Holdsworth, R. E., Jackson,
C. A. L., Manzocchi, T., Walsh, J. J., and Yielding, G., Geol. Soc. London,
Spec. Pub., 439, 109–130, https://doi.org/10.1144/SP439.11, 2017.
Klang, A. and Sherman, J.: Emeq Yizreel Area Seismic Reflection Survey, The
Institute for Petroleum Research and Geophysics of Israel, Report
S.I.809-3/70, 6 pp., 1972.
Krenkel, E.: Der Syrische Bogen, Zentralblatt Mineralogie, 9, 274–281, 1924.
Krienitz, M. S., Haase, K. M., Mezger, K., van den Bogaard, P., Thiemann, V.,
and Shaikh- Mashail, M. A.: Tectonic events, continental intraplate
volcanism, and mantle plume activity in northern Arabia: constraints from
geochemistry and Ar–Ar dating of Syrian lavas, Geochem. Geophy. Geosy., 10,
Q04008, https://doi.org/10.1029/2008GC002254, 2009.
Krijgsman, W., Hilgen, F. J., Raffi, I., Sierro, F. J., and Wilson, D. S.:
Chronology, causes and progression of the Messinian salinity crisis, Nature,
400, 652–655, 1999.
Lesti, C., Giordano, G., Salvini, F., and Cas, R.: Volcano tectonic setting
of the intraplate, Pliocene-Holocene, Newer Volcanic Province (southeast
Australia): Role of crustal fracture zones, J. Geophys. Res., 113, B07407,
https://doi.org/10.1029/2007JB005110, 2008.
Letouzey, J. and Tremolieres, P.: Paleostress around the Mediterranean since
the Mesozoic from microtectonics: comparison with Plate tectonic data, Rock
Mech., 8, 173–192, 1980.
Lizarralde, D., Axen, G. J., Brown, H. E., Fletcher, J. M.,
Gonzales-Fernandez, A., Harding, A. J., Holbrook, W. S., Kent, G. M., Paramo,
P., Sutherland, F., and Umhoefer, P. J.: Variation in styles of rifting in
the Gulf of California, Nature, 448, 466–469, https://doi.org/10.1038/nature06035, 2007.
Lyakhovsky, V., Segev, A., Schattner, U., and Weinberger, R.: Deformation and
seismicity associated with continental rift zones propagating toward
continental margins, Geochem. Geophy. Geosy., 13, 1–21,
https://doi.org/10.1029/2011GC003927, 2012.
Manzi, V., Gennari, R., Hilgen, F. J., Krijgsman, W., Lugli, S., Roveri, M.,
and Serro, F. J.: Age refinement of the Messinian salinity crisis onset in
the Mediterranean, Terra Nova, 25, 315–322, 2013.
Marco, S.: Temporal variation in the geometry of a strike-slip fault zone:
examples from the Dead Sea transform, Tectonophysics, 445, 186–199, 2007.
Matmon A., Wdowinski, S., and Hall, J. K.: Morphological and structural
relations in the Galilee extensional domain, northern Israel, Tectonophysics,
371, 223–241, 2003.
May, P.: Oil and gas potential of the Galilee, Israel, Oil Exploration
(Investments) Ltd Report, 87/12, 73 pp., 1987.
McClay, K. and Khalil, S. M: Extensional hard linkages, eastern Gulf of Suez,
Egypt, Geology, 26, 563–566, 1998.
McClay, K. and Bonora, M.: Analog models of restraining stepovers in
strike-slip fault systems, Am. Assoc. Petr. Geol. B., 85, 233–260, 2001.
McQuarrie, N., Stock, J. M., Verdel, C., and Wernicke, B. P.: Cenozoic
evolution of Neotethys and implications for the causes of plate motions,
Geophys. Res. Lett., 30, 2036, https://doi.org/10.1029/2003GL017992, 2003.
Meiler, M., Shulman, H., Flexer, A., Reshef, M., and Yellin-Dror, A.: A
seismic interpretation of the Bet She'an basin, Israel J. Earth Sci., 57,
1–19, 2008.
Melo, A., de Castro, D. L., Bezerra, F. H. R, and Bertotti, J.: Rift fault
geometry and evolution in the Cretaceous Potiguar Basin (NE Brazil) based on
fault growth models, J. S. Ame. Earth Sci., 71, 96–107, https://doi.org/10.1016/j.jsames.2016.07.006, 2016.
Mero, D.: Subsurface geology of western Galilee and Zevulun plain, TAHAL
consulting engineers LTD., Report 04/83/48, 36 pp., 1983.
Michelson, C. and Lipson-Benitah, S.: The litho and biostratigraphy of the
southern Golan Heights, Israel J. Earth Sci., 35, 221–240, 1986.
Molnar, N. E., Cruden, A. R., and Betts, P. G.: Interactions between propagating
rotational rifts and linear rheological heterogeneities: Insights from
three-dimensional laboratory experiments, Tectonics, 36, 420–443, https://doi.org/10.1002/2016TC004447, 2017.
Mor, D.: The volcanism of the Golan Heights. Ph.D. Thesis, the Hebrew
University, Jerusalem, Israel, and Israel Geological Survey Report, GSI/5/86,
159 pp., 1986 (in Hebrew with English abstract).
Morley, C. K., Nelson, R. A., Patton, T. L., and Munn, S. G.: Transfer zones in
the East African rift system and their relevance to hydrocarbon exploration
in rifts, Am. Assoc. Petr. Geol. B., 74, 1234–1253, 1990.
Morley, C. K., Haranya, C., Phoosongsee, W., Pongwapee, S., Kornsawanc, A., and
Wonganan, N.: Activation of rift oblique and rift parallel pre-existing
fabrics during extension and their effect on deformation style: examples from
the rifts of Thailand, J. Struct. Geol., 26, 1803–1829, 2004.
Müller, D. W. and Hsu, K. J.: Event stratigraphy and paleoceanography in
the Fortuna Basin (southeast Spain): A scenario for the Messinian salinity
crisis, Paleoceanography, 2, 679–696, 1987.
Nuriel, P., Weinberger, R., Kylander-Clark, A. R. C., Hacker, B. R., and Cradock,
J. P.: The onset of the Dead Sea transform based on calcite age-strain
analyses, Geology, 45, 587–590, https://doi.org/10.1130/G38903.1,
2017.
Oliveira, D. C. and Mohriak, W. U.: Jaibaras trough: an important element in
the early tectonic evolution of the Parnaíba interior sag basin,
Northern Brazil, Mar. Petrol. Geol., 20, 351–383, 2003.
Palano, M., Imprescia, P., and Gresta, S.: Current stress and strain-rate
fields across the Dead Sea Fault System: Constraints from seismological data
and GPS observations, Earth and Planet. Sc. Lett., 369–370, 305–316,
https://doi.org/10.1016/j.epsl.2013.03.043, 2013.
Picard, L.: Structure and evolution of Palestine, with comparative notes on
neighbouring countries, Hebrew University Jerusalem Geological Department
Bulletin, 4, 1–143, 1943.
Picard, L.: Geomorphology of Israel: Part I, The Negev, Israel Geological
Survey Bulletin, 1, 5–32, 1951.
Pik, R., Marty, B., Carignan, J., and Lave, J.: Stability of the Upper Nile
drainage network (Ethiopia) deduced from (U-Th)/He thermochronometry:
implications for uplift and erosion of the Afar plume dome, Earth Planet. Sc.
Lett., 215, 73–88, 2003.
Politi, M.: Seismic interpretation of central Emeq Yisrael, Oil Exploration
(Investments) Ltd Report 83/39, 24 pp., 1983.
Quennell, A. M.: The structural and geomorphic evolution of the Dead Sea Rift,
Geol. Soc. London Spec. Pub.,
114, 1–24, 1958.
Reilinger, R. and McClusky, S.: Nubia–Arabia–Eurasia plate motions and the
dynamics of Mediterranean and Middle East tectonics, Geophys. J. Int., 186,
971–979, 2011.
Ritesma, J., Van Heijst, H. J., and Woodhouse, J. H.: Complex shear wave
velocity structure imaged beneath Africa and Iceland, Science, 286,
1925–1928, https://doi.org/10.1126/science.286.5446.1925, 1999.
Robertson, A. H. F.: Mesozoic–Tertiary tectonic evolution of the easternmost
Mediterranean area: integration of marine and land evidence, in: Proceedings
Ocean Drilling Progress Scientific Results, edited by: Robertson, A. H. F., Eneis, K. C.,
Richter, C., and Camerlenghi, A., 160, 723–782, 1998.
Ron, H. and Eyal, Y.: Intraplate deformation by block rotation and
mesostructures along the Dead Sea Transform, Northern Israel, Tectonics, 4,
85–105, 1985.
Rosenbaum, G., Weinberg, R. F., and Regenauer-Lieb, K.: The geodynamics of
lithospheric extension, Tectonophysics, 458, 1–8, 2008.
Rosendahl, B. R.: Architecture of continental rifts with special reference to
east Africa, Annu. Rev. Earth Pl. Sc., 15, 445–503, 1987.
Rosenthal, E., Weinberger, G., Almogi, A., and Flexer, A.: Late
Cretaceous–Early Tertiary development of depositional basins in Samaria as a
reflection of Eastern Mediterranean tectonic evolution, Am. Assoc. Petr.
Geol. B., 84, 997–1014, 2000.
Rotstein, Y., Shaliv, G., and Rybakov, M.: Active tectonics of the Yizre'el
valley, Israel, using high resolution seismic reflection data,
Tectonophysics, 382, 31–50, 2004.
Rozenbaum, A. G., Sandler, A., Zilberman, E., Stein, M., Jicha, B. R., and
Singer, B. S.: 40Ar/39Ar chronostratigraphy of late Miocene–early Pliocene
continental aquatic basins in SE Galilee, Israel, Geol. Soc. Am. Bull.,
128, 1383–1402, https://doi.org/10.1130/B31239.1, 2016.
Sadeh, M., Hamiel, Y., Ziv, A., Bock, Y., Fang, P., and Wdowinski, S.:
Crustal deformation along the Dead Sea Transform and the Carmel Fault
inferred from 12 years of GPS measurements, J. Geophys. Res., 117, B08410,
https://doi.org/10.1029/2012JB009241, 2012.
Sagy, Y. and Gvirtzman, Z.: Subsurface mapping in The Zevulun Valley,
Geophysical Institute of Israel Report, Lod, 648/454/09, 21 pp.,
2009 (in Hebrew).
Sagy, Y., Gvirtzman, Z., and Reshef, M.: 80 m.y. of folding migration: New
perspective on the Syrian arc from Levant Basin analysis, Geology, 46,
175–178, 2017.
Salamon, E., Hofstteter, A., Garfunkel, Z., and Ron, H.: Seismicity of the
eastern Mediterranean region: perspective from the Sinai subplate,
Tectonophysics, 263, 293–305, 1996.
Sandler, A., Harlavan, Y., and Shaliv, G.: The stratigraphy of Neogene
conglomerates in the Yizre'el Valley, Israel J. Earth Sci., 53, 77–86, 2004.
Sandler A., Rozenbaum, A. G., Zilberman, E., Stein, M., Jicha, B. R., and
Singer, B. S.: Updated 40Ar-39Ar Chronology for Top Lower Basalt, Base Cover
Basalt, and Related Units, Northern Valleys, Israel, Israel Geological
Society Annual Meeting, Kinar, Israel, 2015.
Sass, E.: Geology and petrology of the Umm El Fahm area, Ph.D. Thesis, the
Hebrew University of Jerusalem, Jerusalem, Israel, 174 pp., 1966 (in Hebrew with English
abstract).
Schattner, U. and Lazar, M.: Flip convergence across the Phoenician basin
through nucleation of subduction, Gondwana Res., 25, 729–735, https://doi.org/10.1016/j.gr.2013.09.010, 2013.
Schattner, U. and Weinberger, R.: A mid-Pleistocene deformation transition in
the Hula basin, northern Israel: Implications for the tectonic evolution of
the Dead Sea Fault, Geochem. Geophy. Geosy., 9, Q07009,
https://doi.org/10.1029/2007GC001937, 2008.
Schattner, U., Ben-Avraham, Z., Reshef, M., Bar-Am, G., and Lazar, M.:
Oligocene–Miocene formation of the Haifa basin: Qishon–Sirhan rifting
coeval with the Red Sea–Suez rift system, Tectonophysics, 419, 1–12, 2006a.
Schattner, U., Ben-Avraham, Z., Reshef, M., Bar-Am, G., Lazar, M., and
Hüebscher, C.: Tectonic isolation of the Levant basin offshore
Galilee-Lebanon- effects of the Dead Sea fault plate boundary on the Levant
continental margin, eastern Mediterranean, J. Struct. Geol., 28, 2049–2066,
2006b.
Schulman, N.: The geology of the Central Jordan valley, PhD Thesis, the
Hebrew University of Jerusalem, Jerusalem, Israel, 103 pp., 1962 (in Hebrew
with
English summary).
Schulman, N. and Rosenthal, E.: Neogene and Quaternary of the Marma Feiyad
area south of Bet She'an, Israel J. Earth Sci., 17, 54–62, 1968.
Segev, A.: The principal Phanerozoic tectono-magmatic periods in the Levant
and their stratigraphic record, Israel Geological Survey Current Research,
12, 115–124, 2000.
Segev, A. and Eshet, Y: Significance of Rb/Sr ages of Early Permian volcanics
and late Precambrian schist, Helez Deep 1A borehole, central Israel, Africa
Geosci. Rev., 10, 333–345, 2003.
Segev, A. and Rybakov, M.: History of faulting and magmatism in the Galilee
(Israel) and across the Levant continental margin inferred from potential
field data, J. Geodyn., 51, 264–284, https://doi.org/10.1016/j.jog.2010.10.001, 2011.
Segev, A., Rybakov, M., Lyakhovsky, V., Hofstteter, A., Tibor, G.,
Goldshmidt, V., and Ben-Avraham, Z.: The structure, isostasy and gravity field
of the Levant continental margin and the southeast Mediterranean area,
Tectonophysics, 425, 137–157, 2006.
Segev, A., Schattner, U., and Lyakhovsky, V.: Middle–Late Eocene structure of
the southern Levant continental margin- Tectonic motion versus global
sea-level change, Tectonophysics, 499, 165–177, https://doi.org/10.1016/j.tecto.2011.01.006, 2011.
Segev, A., Lyakhovsky, V., and Weinberger, R.: Continental transform–rift
interaction adjacent to a continental margin: The Levant case study,
Earth-Sci. Rev., 139, 83–103, 2014.
Segev, A., Avni, Y., Shahar, J., and Wald, R.: Late Oligocene and Miocene
different seaways to the Red Sea–Gulf of Suez rift and the Gulf of
Aqaba–Dead Sea basins, Earth-Sci. Rev., 171, 196–219,
https://doi.org/10.1016/j.earscirev.2017.05.004, 2017.
Segev, A., Sass, E., and Schattner, U.: Age and structure of the Levant
basin, Eastern Mediterranean, Earth-Sci. Rev., 182, 233–250,
https://doi.org/10.1016/j.earscirev.2018.05.011, 2018.
Şengör, A. M. C.: Sedimentation and tectonics of fossil rifts, Tectonics of
sedimentary basins, 579, 53–118, 1995.
Shaliv, G.: Stages in the tectonic and volcanic history of the Neogene basin
in the Lower Galilee and the valleys, Israel Geological Survey Report
GSI/11/91, 101 pp., 1991.
Shaliv, G.: Analysis groundwater flow regime in the Bet-Shean Valley and at
the Mount Gilboa margins as a basis of conceptual model construction,
Ministry of Infrastructures Report 068/01, 2003 (in Hebrew).
Shaliv, G.: Preliminary hydrogeological feasibility study for water
production from the Gilboa Tunnel, Water Authority report, 2005 (in Hebrew).
Shaliv, G., Mimran, Y., and Hatzor, Y.: The sedimentary and structural history
in the Bet She'an area and its regional implications, Israel J. Earth Sci.,
40, 161–179, 1991.
Shamir, G.: Earthquake epicentre distribution and mechanisms in northern
Israel, Israel Geological Survey Report GSI/16/2007, Jerusalem, Israel, 40
pp., 2007 (in Hebrew with English abstract).
Sharma, R. S. (Ed.): Cratons and fold belts of India, Lect. Notes Earth Sci.,
127, 304 pp., Springer-Verlag, Berlin Heidelberg, Germany, https://doi.org/10.1007/978-3-642-01459-8, 2009.
Smit, J., Brun, J. P., Cloetingh, S., and Ben-avraham, Z.: The rift-like
structure and asymmetry of the Dead Sea Fault, Earth and Planet. Sc. Lett.,
290, 74–82, 2010.
Sneh, A.: Geological map, 1 : 50 000, Shefar'am Sheet, 3-II, Israel Geological
Survey, Jerusalem, 2008.
Sneh, A. and Buchbinder, B.: Miocene to Pleistocene surfaces and their
associated sediments in the Shfela region, Israel, Geological Survey of
Israel Current Research, 1983–1984, 60–64, 1984.
Sneh, A., Bartov, Y., Weissbrod, T., and Rosensaft, M.: Geological Map of
Israel, 1 : 200 000, Israel Geological Survey (4 sheets), 1998.
Sneh, A., Bartov, Y., and Weissbrod, T.: Stratigraphic chart of exposed rock
units in Israel, Geological Survey of Israel Current Research, 12, 257–262,
2000a.
Sneh, A., Bartov, Y., Weissbrod, T., Rosensaft, M., and Hall, J. K.:
Geological Shaded-Relief Map of Israel and Environs: Israel Geological
Survey, scale 1 : 500 000, Jerusalem, 2000b.
Stampfli, G. M. and Hochard, C.: Plate tectonics of the Alpine realm,
Geol. Soc. London Spec. Pub., 327, 89–111, 2009.
Stein, M. and Goldstein, S. L.: From plume head to continental lithosphere,
Nature, 382, 773–778, 1996.
Steinberg, J., Gvirtzman, Z., Folkman, Y., and Garfunkel, Z.: Origin and
nature of the rapid late Tertiary filling of the Levant Basin, Geology, 39,
355–358, 2011.
Steckler, M. S. and ten Brink, U. S.: Lithospheric strength variations as a
control on new plate boundaries: examples from the northern Red Sea region,
Earth Planet. Sc. Lett., 79, 120–132, 1986.
Stein, M. and Goldstein, S. L.: From plume head to continental lithosphere in
the Arabian–Nubian Shield, Nature, 382, 773–778, https://doi.org/10.1038/382773a0, 1996.
Stern, R. J.: The Najd Fault System, Saudi Arabia and Egypt: A Late
Precambrian rift-related transform system?, Tectonics, 4, 497–511, 1985.
Stern, R. J.: Arc Assembly and continental collision in the Neoproterozoic
East African Orogen: Implications for the assembly of Gondwanaland, Annu.
Rev. Earth Pl. Sc., 22, 319–351, 1994.
Stern, R. J. and Johnson, P.: Continental lithosphere of the Arabian plate; a
geologic, petrologic, and geophysical synthesis, Earth-Sci. Rev., 101,
29–67, 2010.
Van Wijk, J. W. and Blackman, D. K.: Dynamics of continental rift propagation:
the end-member modes, Earth Planet. Sc. Lett., 229, 247–258, 2005.
Wald, R.: Interpretation of the Lower (southern) Galilee tectonic evolution
from Oligocene truncation to Miocene-Pliocene deformation using geological
and geophysical subsurface data. Ph.D. Thesis, University of Haifa, Haifa,
Israel, 196 pp., 2016 (in Hebrew with English abstract).
Wald, R., Schattner, U., Segev, A., and Ben Avraham, Z.: Initiation of Arabian
Plate Exposure during the Oligocene, evidence from the Galilee, Israel, AAPG
International Conference Abstract, Istanbul, 2014.
Wald, R., Schattner, U., Segev, A., and Ben Avraham, Z.: Tethys Ocean
withdrawal and continental peneplanation – an example from the Galilee,
northwestern Arabia, J. Geodynam., under review, 2019.
Walley, C. D.: Some outstanding issues in the geology of Lebanon and their
importance in the tectonic evolution of the Levantine region, Tectonophysics,
298, 37–62, 1998.
Weiler, Y.: Geology of Nazareth Hills and Mount Tabor (southern Galilee,
Israel), Israel J. Earth Sci., 17, 63–82, 1968.
Weinberger, R., Schattner, U., Medvedev, B., Frieslander, U., Sneh, A.,
Harlavan, Y., and Gross, M. R.: Convergent strike–slip across the Dead Sea
Fault in northern Israel, imaged by high-resolution seismic reflection data,
Israel J. Earth Sci., 58, 143–156, https://doi.org/10.1560/IJES.58.3-4.203, 2010.
Weinstein, Y.: Spatial and temporal geochemical variability in basin-related
volcanism, northern Israel, J. Afr. Earth Sci., 30, 865–886, 2000.
White, R. S., Smith, L. K., Roberts, A. W., Christie, P. A. F., and Kusznir, N. J.:
Lower-crustal intrusion on the North Atlantic continental margin, Nature,
452, 460–464, https://doi.org/10.1038/nature06687, 2008.
Wishkin, Y.: Geology and geochemistry of the water as a basis for
understanding groundwater hydrological regime, MSc Thesis, the Hebrew
University, Jerusalem, Israel, 56 pp., 1973 (in Hebrew with English abstract).
Yair, A.: Geomorphological phenomena in Tavor and Yissaskhar watersheds, PhD
Thesis, the Hebrew University, Jerusalem,
1968 (in Hebrew with English abstract).
Younes, A. I. and McClay, K. R.: Development of accommodation zones in the Gulf
of Suez-Red Sea rift, Egypt, Am. Assoc. Petr. Geol. B., 86, 1003–1026, 2002.
Ziegler, P. A. and Cloetingh, S.: Dynamic processes controlling
evolution of rifted basins, Earth-Sci. Rev., 64, 1–50, https://doi.org/10.1016/S0012-8252(03)00041-2, 2004.
Zilberman, E.: Landscape evolution in the central, northern and northwestern
Negev during the Neogene and the Quaternary, Israel Geological Survey Report
GSI/45/90, 164 pp., 1989 (in Hebrew, English abstract).
Zilberman, E.: Remnants of Miocene landscape in the central and northern
Negev and their paleogeographic implications, Israel Geological Survey
Bulletin, 83, 54 pp., 1992.
Zilberman, E., Gvirtzman, Z., Nahmias, Y., and Porat, N.: Evidence for Late
Pleistocene and Holocene tectonic activity along the Bet Qeshet faults,
Israel Geological Survey Report GSI/06/2009, 23 pp., 2009 (in Hebrew).
Zilberman, E. and Calvo, R.: Remnants of Miocene fluvial sediments in the
Negev Desert, Israel, and the Jordanian Plateau: Evidence for an extensive
subsiding basin in the northwestern margins of the Arabian plate, J. Afr.
Earth Sci., 82, 33–53, 2013.
Zilberman, E. and Sandler, A.: Coastlines and morphological levels of the
Western Lower Galilee – Key of reconstruction of landscape evolution, as
response to uplift processes and stable periods, Israel Geological Society
Annual Meeting Field Trips Guide, Acco, 18–33, 2013 (in Hebrew).
Short summary
Plate-scale rifting is frequently expressed by the subsidence of structural basins along an axis, but postdating tectonic and magmatic activity mostly obscures them. A 3-D subsurface imaging and facies analysis down to 1 km reveals uniquely preserved Galilean basins subsiding along a failing rift front in two main stages. Rifting within a large releasing jog (20–9 Ma), followed by localized grabenization off the Dead Sea fault plate boundary (9–5 Ma), prevents them from dying out peacefully.
Plate-scale rifting is frequently expressed by the subsidence of structural basins along an...
Special issue