Articles | Volume 10, issue 1
https://doi.org/10.5194/se-10-27-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-27-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A semi-automated algorithm to quantify scarp morphology (SPARTA): application to normal faults in southern Malawi
School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
Centre for Observation and Modelling of Earthquakes, Volcanoes and
Tectonics (COMET), Leeds, UK
Juliet Biggs
School of Earth Sciences, University of Bristol, Bristol, UK
Centre for Observation and Modelling of Earthquakes, Volcanoes and
Tectonics (COMET), Leeds, UK
Åke Fagereng
School of Earth and Ocean Sciences, Cardiff University, Cardiff, UK
Centre for Observation and Modelling of Earthquakes, Volcanoes and
Tectonics (COMET), Leeds, UK
Austin Elliott
Department of Earth Sciences, University of Oxford, Oxford, UK
Centre for Observation and Modelling of Earthquakes, Volcanoes and
Tectonics (COMET), Leeds, UK
Hassan Mdala
Geological Survey Department, Mzuzu Regional Office, Mzuzu, Malawi
Felix Mphepo
Geological Survey Department, Mzuzu Regional Office, Mzuzu, Malawi
Related authors
No articles found.
Hugh Daigle, João C. Duarte, Ake Fagereng, Raphaël Paris, Patricia Persaud, Ángela María Gómez-García, and the Lisbon MagellanPlus Workshop Participants
Sci. Dril., 32, 101–111, https://doi.org/10.5194/sd-32-101-2023, https://doi.org/10.5194/sd-32-101-2023, 2023
Short summary
Short summary
Natural hazards associated with the ocean can have a direct impact on coastal populations and even affect populations located far away from the coast. These hazards may interact, and they include tsunamis that result in major damage and catastrophic loss of life and submarine landslides, which themselves can produce tsunamis and damage subsea infrastructure. We present ideas for investigating these hazards with scientific ocean drilling.
Jack N. Williams, Luke N. J. Wedmore, Åke Fagereng, Maximilian J. Werner, Hassan Mdala, Donna J. Shillington, Christopher A. Scholz, Folarin Kolawole, Lachlan J. M. Wright, Juliet Biggs, Zuze Dulanya, Felix Mphepo, and Patrick Chindandali
Nat. Hazards Earth Syst. Sci., 22, 3607–3639, https://doi.org/10.5194/nhess-22-3607-2022, https://doi.org/10.5194/nhess-22-3607-2022, 2022
Short summary
Short summary
We use geologic and GPS data to constrain the magnitude and frequency of earthquakes that occur along active faults in Malawi. These faults slip in earthquakes as the tectonic plates on either side of the East African Rift in Malawi diverge. Low divergence rates (0.5–1.5 mm yr) and long faults (5–200 km) imply that earthquakes along these faults are rare (once every 1000–10 000 years) but could have high magnitudes (M 7–8). These data can be used to assess seismic risk in Malawi.
Jack N. Williams, Hassan Mdala, Åke Fagereng, Luke N. J. Wedmore, Juliet Biggs, Zuze Dulanya, Patrick Chindandali, and Felix Mphepo
Solid Earth, 12, 187–217, https://doi.org/10.5194/se-12-187-2021, https://doi.org/10.5194/se-12-187-2021, 2021
Short summary
Short summary
Earthquake hazard is often specified using instrumental records. However, this record may not accurately forecast the location and magnitude of future earthquakes as it is short (100s of years) relative to their frequency along geologic faults (1000s of years). Here, we describe an approach to assess this hazard using fault maps and GPS data. By applying this to southern Malawi, we find that its faults may host rare (1 in 10 000 years) M 7 earthquakes that pose a risk to its growing population.
Joel C. Gill, Faith E. Taylor, Melanie J. Duncan, Solmaz Mohadjer, Mirianna Budimir, Hassan Mdala, and Vera Bukachi
Nat. Hazards Earth Syst. Sci., 21, 187–202, https://doi.org/10.5194/nhess-21-187-2021, https://doi.org/10.5194/nhess-21-187-2021, 2021
Short summary
Short summary
This paper draws on the experiences of seven early career scientists, in different sectors and contexts, to explore the improved integration of natural hazard science into broader efforts to reduce the likelihood and impacts of disasters. We include recommendations for natural hazard scientists, to improve education, training, and research design and to strengthen institutional, financial, and policy actions. We hope to provoke discussion and catalyse changes that will help reduce disaster risk.
Johann F. A. Diener, Åke Fagereng, and Sukey A. J. Thomas
Solid Earth, 7, 1331–1347, https://doi.org/10.5194/se-7-1331-2016, https://doi.org/10.5194/se-7-1331-2016, 2016
Cited articles
Abdrakhmatov, K. E., Walker, R. T., Campbell, G. E., Carr, A. S., Elliott, A.,
Hillemann, C., Hollingsworth, J., Landgraf, A., Mackenzie, D., Mukambayev,
A., Rizza, M., and Sloan, R. A.: Multisegment rupture in the 11 July 1889
Chilik earthquake (Mw 8.0–8.3), Kazakh Tien Shan, interpreted from remote
sensing, field survey, and paleoseismic trenching, J. Geophys.
Res.-Sol. Ea., 121, 4615–4640, https://doi.org/10.1002/2015JB012763, 2016. a
Aki, K.: Generation and propagation of G waves from the Niigata Earthquake of June 16, 1964. Part 2. Estimation of earthquake movement,
released energy, and stress-strain drop from the G wave spectrum, Bull. Earthq. Res. Inst. 44, 73–88,
1966. a
Ambraseys, N. N.: The Rukwa earthquake of 13 December 1910 in East Africa,
Terra Nova, 3, 202–211, https://doi.org/10.1111/j.1365-3121.1991.tb00873.x,
1991a. a, b
Anders, M. H. and Schlische, R. W.: Overlapping Faults, Intrabasin Highs, and
the Growth of Normal Faults, J. Geology, 102, 165–179,
https://doi.org/10.1086/629661,
1994. a, b
Anderson, J. G., Biasi, G. P., and Wesnousky, S. G.: Fault-Scaling
Relationships Depend on the Average Fault-Slip Rate, B.
Seismol. Soc. Am., 107, 2561–2577, https://doi.org/10.1785/0120160361,
2017. a
Arrowsmith, J. R., Pollard, D. D., and Rhodes, D. D.: Hillslope development in
areas of active tectonics, J. Geophys. Res., 101, 6255–6275,
https://doi.org/10.1029/95JB02583, 1996. a
Bellahsen, N., Leroy, S., Autin, J., Razin, P., D'Acremont, E., Sloan, H., Pik,
R., Ahmed, A., and Khanbari, K.: Pre-existing oblique transfer zones and
transfer/transform relationships in continental margins: New insights from
the southeastern Gulf of Aden, Socotra Island, Yemen, Tectonophysics, 607,
32–50, https://doi.org/10.1016/j.tecto.2013.07.036, 2013. a, b
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., T.
Thiele, S., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry:
A multi-scale, high-resolution mapping tool for structural geology and
paleoseismology, J. Struct. Geol., 69, 163–178,
https://doi.org/10.1016/j.jsg.2014.10.007, 2014. a
Biasi, G. P. and Wesnousky, S. G.: Steps and Gaps in Ground Ruptures:
Empirical Bounds on Rupture Propagation, B. Seismol.
Soc. Am., 106, 1110–1124, https://doi.org/10.1785/0120150175, 2016. a, b, c
Biggs, J., Amelung, F., Gourmelen, N., Dixon, T. H., and Kim, S.-W.: InSAR
observations of 2007 Tanzania rifting episode reveal mixed fault and dyke
extension in an immature continental rift, Geophys. J.
Int., 179, 549–558, https://doi.org/10.1111/j.1365-246X.2009.04262.x,
2009. a
Biggs, J., Nissen, E., Craig, T., Jackson, J., and Robinson, D. P.: Breaking
up the hanging wall of a rift-border fault: The 2009 Karonga earthquakes,
Malawi, Geophys. Res. Lett., 37, 1–5, https://doi.org/10.1029/2010GL043179, 2010. a
Bilham, R. and England, P.: Plateau 'pop-up' in the great 1897 Assam
earthquake, Nature, 410, 806–809, https://doi.org/10.1038/35071057, 2001. a
Boncio, P., Dichiarante, A. M., Auciello, E., Saroli, M., and Stoppa, F.:
Normal faulting along the western side of the Matese Mountains: Implications
for active tectonics in the Central Apennines (Italy), J. Struct.
Geol., 82, 16–36, https://doi.org/10.1016/j.jsg.2015.10.005, 2016. a
Bubeck, A., Wilkinson, M., Roberts, G. P., Cowie, P. A., McCaffrey, K. J.,
Phillips, R., and Sammonds, P.: The tectonic geomorphology of bedrock scarps
on active normal faults in the Italian Apennines mapped using combined ground
penetrating radar and terrestrial laser scanning, Geomorphology, 237,
38–51, https://doi.org/10.1016/j.geomorph.2014.03.011, 2015. a
Carretier, S., Ritz, J. F., Jackson, J., and Bayasgalan, A.: Morphological
dating of cumulative reverse fault scarps: Examples from the Gurvan Bogd
fault system, Mongolia, Geophys. J. Int., 148, 256–277,
https://doi.org/10.1046/j.1365-246X.2002.01599.x, 2002. a, b
Cartwright, J. A., Trudgill, B. D., and Mansfield, C. S.: Fault growth by
segment linkage: an explanation for scatter in maximum displacement and trace
length data from the Canyonlands Grabens of SE Utah, J. Struct.
Geol., 17, 1319–1326, https://doi.org/10.1016/0191-8141(95)00033-A, 1995. a, b, c, d
Childs, C., Nicol, A., Walsh, J. J., and Watterson, J.: Growth of vertically
segmented normal faults, J. Struct. Geol., 18, 1389–1397,
https://doi.org/10.1016/S0191-8141(96)00060-0, 1996. a
Childs, C., Holdsworth, R. E., Jackson, C. A.-L., Manzocchi, T., Walsh, J. J.,
and Yielding, G.: Introduction to the geometry and growth of normal faults,
Geological Society, London, Special Publications, SP439.23,
https://doi.org/10.1144/SP439.24,
2017. a
Cleveland, W. S.: LOWESS: A program for smoothing scatterplots by robust
locally weighted regression, The American Statistician, 35, 54,
1981. a
Copley, A., Avouac, J. P., Hollingsworth, J., and Leprince, S.: The 2001
Mw
7.6 Bhuj earthquake, low fault friction, and the crustal support of plate
driving forces in India, J. Geophys. Res.-Sol. Ea., 116,
1–11, https://doi.org/10.1029/2010JB008137, 2011. a
Copley, A., Hollingworth, J., and Bergman, E.: Constraints on fault and
lithosphere rheology from the coseismic slip and postseismic afterslip of the
2006 Mw 7.0 Mozambique earthquake, J. Geophys. Res., 117,
B03404, 2012. a
Cowie, P. A. and Scholz, C. H.: Growth of faults by accumulation of seismic
slip, J. Geophys. Res., 97, 11085, https://doi.org/10.1029/92JB00586,
1992. a, b, c, d
Crone, A. J. and Haller, K. M.: Segmentation and the coseismic behavior of
Basin and Range normal faults: examples from east-central Idaho and
southwestern Montana, U.S.A., J. Struct. Geol., 13, 151–164,
https://doi.org/10.1016/0191-8141(91)90063-O,
1991. a, b, c
Dawers, N. H., Anders, M. H., and Scholz, C. H.: Growth of normal faults:
Displacement-length scaling, Geology, 21, 1107–1110, 1993. a
Dawson, A. and Kirkpatrick, I.: The geology of the Cape Maclear peninsula and
Lower Bwanje valley, Bulletin of the Geological Survey, Malawi, 28,
1968. a
Delvaux, D. and Barth, A.: African stress pattern from formal inversion of
focal mechanism data, Tectonophysics, 482, 105–128,
https://doi.org/10.1016/j.tecto.2009.05.009,
2010. a
Delvaux, D., Kervyn, F., Macheyeki, A., and Temu, E.: Geodynamic significance
of the TRM segment in the East African Rift (W-Tanzania): Active tectonics
and paleostress in the Ufipa plateau and Rukwa basin, J. Struct.
Geol., 37, 161–180, https://doi.org/10.1016/j.jsg.2012.01.008,
2012. a
Deng, Q. and Liao, Y.: Paleoseismology along the range-front fault of Helan
Mountains, north central China, J. Geophys. Res.-Sol.
Ea., 101, 5873–5893, 1996. a
Elliot, J. R., Walters, R. J., England, P. C., Jackson, J. A., Li, Z., and
Parsons, B.: Extension on the Tibetan plateau: recent normal faulting
measured by InSAR and body wave seismology, Geophys. J.
Int., 183, 503–535, 2010. a
Gallant, J. C. and Hutchinson, M. F.: Scale dependence in terrain analysis,
Math. Comput. Simulat., 43, 313–321,
https://doi.org/10.1016/S0378-4754(97)00015-3,
1997. a
Ganas, A., Pavlides, S., and Karastathis, V.: DEM-based morphometry of
range-front escarpments in Attica, central Greece, and its relation to
fault slip rates, Geomorphology, 65, 301–319,
https://doi.org/10.1016/j.geomorph.2004.09.006, 2005. a, b, c
Giba, M., Walsh, J., and Nicol, A.: Segmentation and growth of an obliquely
reactivated normal fault, J. Struct. Geol., 39, 253–267,
https://doi.org/10.1016/j.jsg.2012.01.004,
2012. a, b, c
Gold, R. D., Reitman, N. G., Briggs, R. W., Barnhart, W. D., Hayes, G. P., and
Wilson, E.: On- and off-fault deformation associated with the September 2013
Mw 7.7 Balochistan earthquake: Implications for geologic slip rate
measurements, Tectonophysics, 660, 65–78,
https://doi.org/10.1016/j.tecto.2015.08.019,
2015. a
Gupta, A. and Scholz, C. H.: A model of normal fault interaction based on
observations and theory, J. Struct. Geol., 22, 865–879,
https://doi.org/10.1016/S0191-8141(00)00011-0,
2000. a
Hamling, I. J., Hreinsdóttir, S., Clark, K., Elliott, J., Liang, C.,
Fielding, E., Litchfield, N., Villamor, P., Wallace, L., Wright, T. J.,
D'Anastasio, E., Bannister, S., Burbidge, D., Denys, P., Gentle, P., Howarth,
J., Mueller, C., Palmer, N., Pearson, C., Power, W., Barnes, P., Barrell, D.
J. A., Van Dissen, R., Langridge, R., Little, T., Nicol, A., Pettinga, J.,
Rowland, J., and Stirling, M.: Complex multifault rupture during the 2016 M
w 7.8 Kaikoura earthquake, New Zealand, Science, 356, 1–10,
https://doi.org/10.1126/science.aam7194,
2017. a, b
Hanks, T. C., Bucknam, R. C., Lajoie, K. R., and Wallace, R. E.: Modification
of Wave-Cut and Faulting-Controlled Landforms, J. Geophys.
Res., 89, 5771–5790, https://doi.org/10.1029/JB089iB07p05771, 1984. a
Hetzel, R., Niedermann, S., Tao, M., Kubik, P. W., Ivy-Ochs, S., Gao, B., and
Strecker, M. R.: Low slip rates and long-term preservation of geomorphic
features in Central Asia, Nature, 417, 428–432, https://doi.org/10.1038/417428a, 2002. a
Hetzel, R., Tao, M., Niedermann, S., Strecker, M. R., Ivy-Ochs, S., Kubik,
P. W., and Gao, B.: Implications of the fault scaling law for the growth of
topography: Mountain ranges in the broken foreland of north-east Tibet,
Terra Nova, 16, 157–162, https://doi.org/10.1111/j.1365-3121.2004.00549.x, 2004. a
Hilbert-Wolf, H. L. and Roberts, E. M.: Giant seismites and megablock uplift
in the East African rift: Evidence for late pleistocene large magnitude
earthquakes, PLoS ONE, 10, 1–18, https://doi.org/10.1371/journal.pone.0129051, 2015. a, b
Hilley, G. E., Arrowsmith, J. R., and Amoroso, L.: Interaction between normal
faults and fractures and fault scarp morphology, Geophys. Res.
Lett., 28, 3777–3780, 2001. a
Hilley, G. E., Delong, S., Prentice, C., Blisniuk, K., and Arrowsmith, J. R.:
Morphologic dating of fault scarps using airborne laser swath mapping (ALSM)
data, Geophys. Res. Lett., 37, L04301, https://doi.org/10.1029/2009GL042044,
2010. a
Hodge, M.: mshodge/FaultScarpAlgorithm: First release of SPARTA, model code,
available at: https://doi.org/10.5281/zenodo.1236883, 2018.
Hodge, M., Biggs, J., Goda, K., and Aspinall, W.: Assessing infrequent large
earthquakes using geomorphology and geodesy: the Malawi Rift, Nat.
Hazards, 76, 1781–1806, https://doi.org/10.1007/s11069-014-1572-y, 2015. a, b, c
Jackson, C. A. and Rotevatn, A.: 3D seismic analysis of the structure and
evolution of a salt-influenced normal fault zone: A test of competing fault
growth models, J. Struct. Geol., 54, 215–234,
https://doi.org/10.1016/j.jsg.2013.06.012, 2013. a
Jackson, J., Gagnepain, J., Houseman, G., King, G., Papadimitriou, P.,
Soufleris, C., and Virieux, J.: Seismicity, normal faulting, and the
geomorphological development of the Gulf of Corinth (Greece): the Corinth
earthquakes of February and March 1981, Earth Planet. Sc. Lett.,
57, 377–397, 1982. a
Jackson, J., Norris, R., and Youngson, J.: The structural evolution of active
fault and fold systems in central Otago, New Zealand: evidence revealed by
drainage patterns, J. Struct. Geol., 18, 217–234,
https://doi.org/10.1016/S0191-8141(96)80046-0, 1996. a
Jestin, F., Huchon, P., and Gaulier, J. M.: The Somalia plate and the East
African Rift System: present-day kinematics, Geophys. J.
Int., 116, 637–654, https://doi.org/10.1111/j.1365-246X.1994.tb03286.x,
1994. a
Johri, M., Dunham, E., Zoback, M., and Fang, Z.: Predicting fault damage zones
by modeling dynamic rupture propagation and comparison with field
observations, J. Geophys. Res.-Sol. Ea., 119, 1251–1272,
https://doi.org/10.1002/2013JB010335, 2014. a
Keller, E. A., Zepeda, R. L., Rockwell, T. K., Ku, T. L., and Dinklage, W. S.:
Active tectonics at Wheeler ridge, southern San Joaquin valley, California,
GSA Bulletin, 110, 298–310, 1998. a
Kervyn, F., Ayub, S., Kajara, R., Kanza, E., and Temu, B.: Evidence of recent
faulting in the Rukwa rift (West Tanzania) based on radar interferometric
DEMs, J. Afr. Earth Sci., 44, 151–168,
https://doi.org/10.1016/j.jafrearsci.2005.10.008, 2006. a, b
King, G. C. P., Stein, R. S., and Rundle, J. B.: The Growth of Geological
Structures by Repeated Earthquakes 1. Conceptual Framework, J.
Geophys. Res., 93, 13319–13331, https://doi.org/10.1029/JB093iB11p13319, 1988. a
Kokkalas, S. and Koukouvelas, I. K.: Fault-scarp degradation modeling in
central Greece: The Kaparelli and Eliki faults (Gulf of Corinth) as a case
study, J. Geodynam., 40, 200–215,
https://doi.org/10.1016/j.jog.2005.07.006, 2005. a, b
Lee, Y. H., Hsieh, M. L., Lu, S. D., Shih, T. S., Wu, W. Y., Sugiyama, Y.,
Azuma, T., and Kariya, Y.: Slip vectors of the surface rupture of the 1999
Chi-Chi earthquake, western Taiwan, J. Struct. Geol., 25,
1917–1931, https://doi.org/10.1016/S0191-8141(03)00039-7, 2003. a
Lin, A.: Co-Seismic Strike-Slip and Rupture Length Produced by the 2001
Ms 8.1
Central Kunlun Earthquake, Science, 296, 2015–2017,
https://doi.org/10.1126/science.1070879,
2002. a
Macheyeki, A., Mdala, H., Chapola, L., Manhiça, V., Chisambi, J., Feitio,
P., Ayele, A., Barongo, J., Ferdinand, R., Ogubazghi, G., Goitom, B.,
Hlatywayo, J., Kianji, G., Marobhe, I., Mulowezi, A., Mutamina, D., Mwano,
J., Shumba, B., and Tumwikirize, I.: Active fault mapping in Karonga-Malawi
after the December 19, 2009 Ms 6.2 seismic event, J. Afr. Earth
Sci., 102, 233–246, https://doi.org/10.1016/j.jafrearsci.2014.10.010, 2015. a
Mackenzie, D. and Elliott, A.: Untangling tectonic slip from the potentially
misleading effects of landform geometry, Geosphere, 13, 1310–1328,
https://doi.org/10.1130/GES01386.1, 2017. a
Manighetti, I., Campillo, M., Sammis, C., Mai, P. M., and King, G.: Evidence
for self-similar, triangular slip distributions on earthquakes: Implications
for earthquake and fault mechanics, J. Geophys. Res.-Sol.
Ea., 110, 1–25, https://doi.org/10.1029/2004JB003174, 2005. a
Manighetti, I., Campillo, M., Bouley, S., and Cotton, F.: Earthquake scaling,
fault segmentation, and structural maturity, Earth Planet. Sc.
Lett., 253, 429–438, https://doi.org/10.1016/j.epsl.2006.11.004, 2007. a
Manighetti, I., Zigone, D., Campillo, M., and Cotton, F.: Self-similarity of
the largest-scale segmentation of the faults: Implications for earthquake
behavior, Earth Planet. Sc. Lett., 288, 370–381,
https://doi.org/10.1016/j.epsl.2009.09.040, 2009. a
Manighetti, I., Caulet, C., De Barros, D., Perrin, C., Cappa, F., and
Gaudemer, Y.: Generic along-strike segmentation of Afar normal faults, East
Africa: Implications on fault growth and stress heterogeneity on seismogenic
fault planes, Geochem. Geophys. Geosyst., 16, 443–467,
https://doi.org/10.1002/2014GC005691, 2015. a, b, c, d, e, f, g, h, i, j
Manyele, A. and Mwambela, A.: Simulated PGA Shaking Maps for the Magnitude 6.8
Lake Tanganyika earthquake of December 5, 2005 and the observed damages
across South Western Tanzania, IJSRP, 4, 1–5, 2014. a
Mechernich, S., Schneiderwind, S., Mason, J., Papanikolaou, I. D.,
Deligiannakis, G., Pallikarakis, A., Binnie, S. A., Dunai, T. J., and
Reicherter, K.: The Seismic History of the Pisia Fault (Eastern Corinth
Rift, Greece) From Fault Plane Weathering Features and Cosmogenic 36Cl
Dating, J. Geophys. Res., 123, 4266–4284,
https://doi.org/10.1029/2017JB014600,
2018. a
Middleton, T. A., Walker, R. T., Parsons, B., Lei, Q., Zhou, Y., and Ren, Z.:
A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in
northern China, J. Geophys. Res.-Sol. Ea., 121,
293–320, https://doi.org/10.1002/2015JB012355, 2016. a, b, c, d
Midzi, V., Hlatywago, D. J., Chapola, L. S., Kebede, F., Atakan, K., Lombe,
D. K., Turyomurugyendo, G., and Tugume, F. A.: Seismic hazard assessment in
Eastern and Southern Africa, Ann. Geofis., 42, 1067–1083, 1999. a
Milliner, C. W. D., Dolan, J. F., Hollingsworth, J., Leprince, S., and Ayoub,
F.: Comparison of coseismic near-field and off-fault surface deformation
patterns of the 1992 Mw 7.3 Landers and 1999 Mw 7.1 Hector Mine earthquakes:
Implications for controls on the distribution of surface strain, Geophys.
Res. Lett., 43, 10115–10124, https://doi.org/10.1002/2016GL069841,
2016. a, b
Morewood, N. C. and Roberts, G. P.: Comparison of surface slip and focal
mechanism slip data along normal faults: An example from the eastern Gulf of
Corinth, Greece, J. Struct. Geol., 23, 473–487,
https://doi.org/10.1016/S0191-8141(00)00126-7, 2001. a, b, c
Morley, C. K.: Marked along-strike variations in dip of normal faults-the
Lokichar fault, N. Kenya rift: A possible cause for metamorphic core
complexes, J. Struct. Geol., 21, 479–492,
https://doi.org/10.1016/S0191-8141(99)00043-7, 1999. a, b
Moussa, H. H. M.: Spectral P-wave magnitudes, magnitude spectra and other
source parameters for the 1990 southern Sudan and the 2005 Lake Tanganyika
earthquakes, J. Afr. Earth Sci., 52, 89–96,
https://doi.org/10.1016/j.jafrearsci.2008.05.004, 2008. a
Nash, D. B.: Morphologic dating of fluvial terrace scarps and fault scarps
near West Yellowstone, Montana, Geol. Soc. Am. B., 95,
1413–1424, https://doi.org/10.1130/0016-7606(1984)95<1413:MDOFTS>2.0.CO;2, 1984. a, b, c, d
Nicol, A., Walsh, J., Berryman, K., and Nodder, S.: Growth of a normal fault
by the accumulation of slip over millions of years, J. Struct.
Geol., 27, 327–342, https://doi.org/10.1016/j.jsg.2004.09.002, 2005. a
Nicol, A., Walsh, J., Villamor, P., Seebeck, H., and Berryman, K.: Normal
fault interactions, paleoearthquakes and growth in an active rift, J.
Struct. Geol., 32, 1101–1113, https://doi.org/10.1016/j.jsg.2010.06.018,
2010. a, b, c
Nissen, E., Elliott, J. R., Sloan, R. A., Craig, T. J., Funning, G. J., Hutko,
A., Parsons, B. E., and Wright, T. J.: Limitations of rupture forecasting
exposed by instantaneously triggered earthquake doublet, Nat. Geosci., 9,
330–336, https://doi.org/10.1038/ngeo2653,
2016. a
Nivière, B. and Marquis, G.: Evolution of terrace risers along the upper
Rhine graben inferred from morphologic dating methods: Evidence of climatic
and tectonic forcing, Geophys. J. Int., 141, 577–594,
https://doi.org/10.1046/j.1365-246X.2000.00123.x, 2000. a
Peacock, D.: Propagation, interaction and linkage in normal fault systems,
Earth-Sci. Rev., 58, 121–142, https://doi.org/10.1016/S0012-8252(01)00085-X,
2002. a
Peacock, D. C. P. and Sanderson, D. J.: Geometry and development of relay
ramps in normal fault systems, AAPG Bulletin, 78, 147–165, 1994. a
Ren, Z., Zhang, Z., Chen, T., Yan, S., Yin, J., Zhang, P., Zheng, W., Zhang,
H., and Li, C.: Clustering of offsets on the Haiyuan fault and their
relationship to paleoearthquakes, GSA Bulletin, 128, 3–18, 2016. a
Ring, U., Betzler, C., Delvaux, D., Geowissenschaften, I., Mainz, U., and
Mainz, D.: Normal vs. strike-slip faulting during rift development in East
Africa: The Malawi rift, Geology, 20, 1015–1018, https://doi.org/10.1130/0091-7613(1992)020<1015:NVSSFD>2.3.CO;2,
1992. a
Rodgers, D. W. and Little, T. A.: World's largest coseismic strike-slip
offset: The 1855 rupture of the Wairarapa Fault, New Zealand, and
implications for displacement/length scaling of continental earthquakes,
J. Geophys. Res.-Sol. Ea., 111, 1–19,
https://doi.org/10.1029/2005JB004065, 2006. a
Rosendahl, B. R., Reynolds, D. J., Lorber, P. M., Burgess, C. F., McGill, J.,
Scott, D., Lambiase, J. J., and Derksen, S. J.: Structural expressions of
rifting: lessons from Lake Tanganyika, Africa, Geological Society, London,
Special Publications, 25, 29–43, 1986. a
Roux-mallouf, R. L., Ferry, M., Ritz, J.-f., Berthet, T., Cattin, R., and
Drukpa, D.: First paleoseismic evidence for great surface-rupturing
earthquakes in the Bhutan Himalayas, J. Geophys. Res.-Sol.
Ea., 121, 7271–7283, https://doi.org/10.1002/2015JB012733, 2016. a, b
Saria, E., Calais, E., Stamps, D. S., Delvaux, D., and Hartnady, C. J. H.:
Present-day kinematics of the
East African Rift, J. Geophys. Res.-Sol. Ea., 119,
3584–3600, https://doi.org/10.1002/2013JB010901, 2014. a, b, c
Savitzky, A. and Golay, M. J.: Smoothing and Differentiation of Data by
Simplified Least Squares Procedures, Anal. Chem., 36, 1627–1639,
https://doi.org/10.1021/ac60214a047, 1964. a
Schwartz, D. P. and Coppersmith, K. J.: Fault behavior and characteristic
earthquakes: Examples from the Wasatch and San Andreas Fault Zones, J.
Geophys. Res., 89, 5681–5698, https://doi.org/10.1029/JB089iB07p05681, 1984. a
Shaw, P. R. and Lin, J.: Causes and consequences of variations in faulting
style at the Mid-Atlantic Ridge, J. Geophys. Res.-Sol.
Ea., 98, 21839–21851, https://doi.org/10.1029/93JB01565, 1993. a
Sieh, K. E.: Slip along the San Andreas fault associated with the great 1857
earthquake, B. Seismol. Soc. Am., 68,
1421–1448, 1978. a
Soliva, R. and Benedicto, A.: A linkage criterion for segmented normal
faults, J. Struct. Geol., 26, 2251–2267,
https://doi.org/10.1016/j.jsg.2004.06.008, 2004. a, b, c
Specht, T. D. and Rosendahl, B. R.: Architecture of the Lake Malawi Rift, East
Africa, J. Afr. Earth Sci., 8, 355–382, 1989. a
Stamps, D. S., Calais, E., Saria, E., Hartnady, C., Nocquet, J.-M., Ebinger,
C. J., and Fernandes, R. M.: A kinematic model for the East African Rift,
Geophys. Res. Lett., 35, 1–6, https://doi.org/10.1029/2007GL032781, 2008. a, b
Stewart, I. S. and Hancock, P. L.: What is a fault scarp, Episodes, 13,
256–263, 1990. a
Stewart, N., Gaudemer, Y., Manighetti, I., Serreau, L., Vincendeau, A.,
Dominguez, S., Mattéo, L., and Malavieille, J.:
“3D_Fault_Offsets”, a Matlab code to automatically measure lateral
and vertical fault offsets in topographic data; application to San Andreas,
Owens Valley and Hope faults, J. Geophys. Res.-Sol. Ea.,
123, 1–21, https://doi.org/10.1002/2017JB014863, 2017. a
Talebian, M., Copley, A. C., Fattahi, M., Ghorashi, M., Jackson, J. A., Nazari,
H., Sloan, R. A., and Walker, R. T.: Active faulting within a megacity: The
geometry and slip rate of the Pardisan thrust in central Tehran, Iran,
Geophys. J. Int., 207, 1688–1699, https://doi.org/10.1093/gji/ggw347,
2016. a, b
Tucker, G. E., McCoy, S. W., Whittaker, A. C., Roberts, G. P., Lancaster,
S. T., and Phillips, R.: Geomorphic significance of postglacial bedrock
scarps on normal-fault footwalls, J. Geophys. Res.-Earth, 116, 1–14, https://doi.org/10.1029/2010JF001861, 2011. a, b, c
Villamor, P. and Berryman, K.: A late quaternary extension rate in the Taupo
Volcanic Zone, New Zealand, derived from fault slip data, New Zeal. J. Geol. Geop., 44, 243–269,
https://doi.org/10.1080/00288306.2001.9514937, 2001. a, b
Vittori, E., Delvaux, D., and Kervyn, F.: Kanda fault: A major seismogenic
element west of the Rukwa Rift (Tanzania, East Africa), J.
Geodynam., 24, 139–153, https://doi.org/10.1016/S0264-3707(96)00038-5,
1997. a, b, c, d
Walker, R. T., Wegmann, K. W., Bayasgalan, A., Carson, R. J., Elliott, J., Fox,
M., Nissen, E., Sloan, R. A., Williams, J. M., and Wright, E.: The Egiin
Davaa prehistoric rupture, central Mongolia: a large magnitude normal
faulting earthquake on a reactivated fault with little cumulative slip
located in a slowly deforming intraplate setting, Geological Society, London, Special Publications, 432, 187–212,
https://doi.org/10.1144/SP432.4,
2015. a, b, c
Wallace, R.: Fault plane segmentation in brittle crust and anisotropy in
loading system, in: Fault Segmentation and Controls of Rupture Initiation and
Termination, edited by: Schwartz, D. P. and Sibson, R. H., US Geol. Survey,
400–408, 1989. a
Wallace, R. E.: Notes on stream channels offset by the San Andreas fault,
southern Coast Ranges, California, in: Conference on Geologic Problems of
the San Andreas Fault System, Stanford University Publication in Geological
Sciences, 11, 6–21, 1968. a
Walsh, J. J. and Watterson, J.: Distributions of cumulative displacement and
seismic slip on a single normal fault surface, J. Struct.
Geol., 9, 1039–1046, https://doi.org/10.1016/0191-8141(87)90012-5, 1987. a
Walsh, J. J. and Watterson, J.: Analysis of the relationship between
displacements and dimensions of faults, J. Struct. Geol., 10,
239–247, https://doi.org/10.1016/0191-8141(88)90057-0,
1988. a
Walsh, J. J. and Watterson, J.: New methods of fault projection for coalmine
planning, P. Yorks. Geol. Soc., 42, 209–219,
https://doi.org/10.1144/pygs.48.2.209, 1990.
a, b
Walsh, J. J. and Watterson, J.: Geometric and kinematic coherence and scale
effects in normal fault systems, Geological Society, London, Special
Publications, 56, 193–203, https://doi.org/10.1144/GSL.SP.1991.056.01.13,
1991. a, b, c
Walshaw, R. D.: The geology of the Ncheu-Balaka area, Bulletin of the
Geological Survey, Malawi, 19, 1965. a
Wang, Y., Lin, Y. N., Simons, M., and Tun, S. T.: Shallow Rupture of the 2011
Tarlay Earthquake (Mw 6.8), Eastern Myanmar, B. Seismol.
Soc. Am., 104, 2904, https://doi.org/10.1785/0120120364, 2014. a, b
Ward, S. N. and Barrientos, S. E.: An Inversion for Slip Distribution and
Fault Shape from Geodetic Observations of the 1983, Borah Peak, Idaho,
Earthquake, J. Geophys. Res., 91, 4909–4919, 1986. a
Wesnousky, S. G.: Earthquakes, Quaternary faults, and seismic hazard in
California, J. Geophys. Res., 91, 12587–12631, 1986. a
Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., and Reynolds,
J. M.: 'Structure-from-Motion' photogrammetry: A low-cost, effective tool
for geoscience applications, Geomorphology, 179, 300–314,
https://doi.org/10.1016/j.geomorph.2012.08.021, 2012. a
Willemse, E. J. M., Pollard, D. D., and Aydin, A.: Three-dimensional analyses
of slip distributions on normal fault arrays with consequences for fault
scaling, J. Struct. Geol., 18, 295–309, 1996. a
Wu, D. and Bruhn, R. L.: Geometry and kinematics of active normal faults,
South Oquirrh Mountains, Utah: implication for fault growth, J.
Struct. Geol., 16, 1061–1075, https://doi.org/10.1016/0191-8141(94)90052-3, 1994. a
Young, M. J., Gawthorpe, R. L., and Hardy, S.: Growth and linkage of a
segmented normal fault zone; the Late Jurassic Murchison-Statfjord North
Fault, Northern North Sea, J. Struct. Geol., 23, 1933–1952,
2001. a
Yuan, T. H., Feng, X. J., and Deng, B. Z.: The 1556 Huaxian Earthquake,
Earthquake Press, China, 1991 (in Chinese). a
Zhang, H. and Thurber, C. H.: Double-difference tomography: The method and its
application to the Hayward fault, California, B. Seismol.
Soc. Am., 93, 1875–1889, 2003. a
Zhou, Y., Parsons, B., Elliott, J. R., Barisin, I., and Walker, R. T.:
Assessing the ability of Pleiades stereo imagery to determine height changes
in earthquakes: A case study for the El Mayor-Cucapah epicentral area,
J. Geophys. Res.-Sol. Ea., 120, 8793–8808,
https://doi.org/10.1002/2015JB012358, 2015.
a, b, c
Zielke, O., Arrowsmith, J. R., Ludwig, L. G., and Akciz, S. O.:
High-resolution topography-derived offsets along the 1857 Fort Tejon
earthquake rupture trace, San Andreas fault, B. Seismol.
Soc. Am., 102, 1135–1154, https://doi.org/10.1785/0120110230, 2012.
a, b
Zielke, O., Klinger, Y., and Arrowsmith, J. R.: Fault slip and earthquake
recurrence along strike-slip faults – Contributions of high-resolution
geomorphic data, Tectonophysics, 638, 43–62,
https://doi.org/10.1016/j.tecto.2014.11.004, 2015. a, b, c
Short summary
This work attempts to create a semi-automated algorithm (called SPARTA) to calculate height, width and slope of surface breaks produced by earthquakes on faults. We developed the Python algorithm using synthetic catalogues, which can include noise features such as vegetation, hills and ditches, which mimic natural environments. We then apply the algorithm to four fault scarps in southern Malawi, at the southern end of the East African Rift system, to understand their earthquake potential.
This work attempts to create a semi-automated algorithm (called SPARTA) to calculate height,...