Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1163-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-1163-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diagenetic evolution of fault zones in Urgonian microporous carbonates, impact on reservoir properties (Provence – southeast France)
Aix-Marseille Université, CNRS, IRD, Cerege, Um 34, 3 Place
Victor Hugo (Case 67), 13331 Marseille Cedex 03, France
Philippe Léonide
Aix-Marseille Université, CNRS, IRD, Cerege, Um 34, 3 Place
Victor Hugo (Case 67), 13331 Marseille Cedex 03, France
Juliette Lamarche
Aix-Marseille Université, CNRS, IRD, Cerege, Um 34, 3 Place
Victor Hugo (Case 67), 13331 Marseille Cedex 03, France
Roland Salardon
Aix-Marseille Université, CNRS, IRD, Cerege, Um 34, 3 Place
Victor Hugo (Case 67), 13331 Marseille Cedex 03, France
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Structural geology
Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy
Fault-controlled fluid circulation and diagenesis along basin-bounding fault systems in rifts – insights from the East Greenland rift system
Towards the application of Stokes flow equations to structural restoration simulations
Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks
Stress field orientation controls on fault leakage at a natural CO2 reservoir
Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects
The role of mechanical stratigraphy on the refraction of strike-slip faults
Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar Massif)
David J. Anastasio, Frank J. Pazzaglia, Josep M. Parés, Kenneth P. Kodama, Claudio Berti, James A. Fisher, Alessandro Montanari, and Lorraine K. Carnes
Solid Earth, 12, 1125–1142, https://doi.org/10.5194/se-12-1125-2021, https://doi.org/10.5194/se-12-1125-2021, 2021
Short summary
Short summary
The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to interpret deforming mountain belts. In both the Betics, Spain, and Apennines, Italy, weak but well-organized AMS fabrics were recovered from young unconsolidated and unburied rocks that could not be analyzed with more traditional methods. Collectively, these studies demonstrate the novel ways that AMS can be combined with other data to resolve earthquake hazards in space and time.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon
Solid Earth, 11, 1909–1930, https://doi.org/10.5194/se-11-1909-2020, https://doi.org/10.5194/se-11-1909-2020, 2020
Short summary
Short summary
This paper presents a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method relies on the assumption that rock layers can be modeled as highly viscous fluids. It shows promising results on simple setups, including models with faults and non-flat topography. While issues still remain, this could open a way to add more physics to reverse time structural modeling.
Romesh Palamakumbura, Maarten Krabbendam, Katie Whitbread, and Christian Arnhardt
Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020, https://doi.org/10.5194/se-11-1731-2020, 2020
Short summary
Short summary
The aim of this paper is to describe, evaluate and develop a simple but robust low-cost method for capturing 2-D fracture network data in GIS and make them more accessible to a broader range of users in both academia and industry. We present a breakdown of the key steps in the methodology, which provides an understanding of how to avoid error and improve the accuracy of the final dataset. The 2-D digital method can be used to interpret traces of 2-D linear features on a wide variety of scales.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Johannes M. Miocic, Gareth Johnson, and Stuart M. V. Gilfillan
Solid Earth, 11, 1361–1374, https://doi.org/10.5194/se-11-1361-2020, https://doi.org/10.5194/se-11-1361-2020, 2020
Short summary
Short summary
At the St. Johns Dome, Arizona, CO2 naturally occurs in the subsurface, but there are travertine rocks on the surface which are an expression of CO2 leakage to the surface. These travertine deposits occur along faults, zones where the rock layers are fractured and displaced. In our research, we use geomechanical analysis to show that the CO2 leakage occurs at points where the faults are likely to be permeable due to the orientation of the geological stress field in the subsurface.
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, https://doi.org/10.5194/se-10-951-2019, 2019
Short summary
Short summary
When carbon dioxide is introduced into the subsurface it will migrate upwards and can encounter faults, which, depending on their hydrogeological properties and composition, can form barriers or pathways for the migrating fluid. We analyse uncertainties associated with these properties in order to better understand the implications for the retention of CO2 in the subsurface. We show that faults that form seals for other fluids may not be seals for CO2, which has implications for storage sites.
Mirko Carlini, Giulio Viola, Jussi Mattila, and Luca Castellucci
Solid Earth, 10, 343–356, https://doi.org/10.5194/se-10-343-2019, https://doi.org/10.5194/se-10-343-2019, 2019
Short summary
Short summary
Physical properties of layered sedimentary rocks affect nucleation and propagation of discontinuities therein. Fractures developing through sedimentary sequences characterized by the alternation of strong and weak layers are strongly deviated along their track at layers’ boundaries, and depending on the layer they cross-cut, they show very thick (strong layers) or very thin (weak layers) infills of precipitated minerals, potentially representing pathways for ore deposits and oil/water resources.
Paul Perron, Michel Guiraud, Emmanuelle Vennin, Isabelle Moretti, Éric Portier, Laetitia Le Pourhiet, and Moussa Konaté
Solid Earth, 9, 1239–1275, https://doi.org/10.5194/se-9-1239-2018, https://doi.org/10.5194/se-9-1239-2018, 2018
Short summary
Short summary
In this paper we present an original multidisciplinary workflow involving various tools (e.g., seismic profiles, satellite images, well logs) and techniques (e.g., photogeology, seismic interpretation, well correlation, geophysics, geochronology, backstripping) as a basis for discussing the potential factors controlling the tectono-stratigraphic architecture within the Palaeozoic intracratonic basins of the Saharan Platform using the Reggane, Ahnet, Mouydir and Illizi basins as examples.
Cited articles
Agosta, F., Prasad, M., and Aydin, A.: Physical properties of carbonate fault
rocks, Fucino Basin (Central Italy): implications for fault seal in platform
carbonates, Geofluids, 7, 19–32, https://doi.org/10.1111/j.1468-8123.2006.00158.x,
2007.
Agosta, F., Mulch, A., Chamberlain, P., and Aydin, A.: Geochemical traces of
CO2-rich fluid flow along normal faults in central Italy, Geophys. J. Int.,
174, 1074–1096, https://doi.org/10.1111/j.1365-246X.2008.03792.x, 2008.
Agosta, F., Alessandroni, M., Antonellini, M., Tondi, E., and Giorgioni, M.:
From fractures to flow: A field-based quantitative analysis of an
outcropping carbonate reservoir, Tectonophysics, 490, 197–213,
https://doi.org/10.1016/j.tecto.2010.05.005, 2010.
Agosta, F., Ruano, P., Rustichelli, A., Tondi, E., Galindo-Zaldívar, J.,
and Sanz de Galdeano, C.: Inner structure and deformation mechanisms of
normal faults in conglomerates and carbonate grainstones (Granada Basin,
Betic Cordillera, Spain): Inferences on fault permeability, J. Struct.
Geol., 45, 4–20, https://doi.org/10.1016/j.jsg.2012.04.003, 2012.
Alikarami, R. and Torabi, A.: Geomechanics for Energy and the Environment
Micro-texture and petrophysical properties of dilation and compaction shear
bands in sand, Geomech. Energy Envir., 3, 1–10,
https://doi.org/10.1016/j.gete.2015.06.001, 2015.
Allan, J. R. and Matthews, R. K.: Isotope signatures associated with early
meteoric diagenesis, Sedimentology, 29, 797–817,
https://doi.org/10.1111/j.1365-3091.1982.tb00085.x, 1982.
Allmendinger, R. W., Cardozo, N., and Fisher, D. M.: Structural geology
algorithms: Vectors and tensors, Cambridge Univ. Press, 1–289,
9781107012, https://doi.org/10.1017/CBO9780511920202, 2013.
Anglada, R., Arlhac, P., Catzigras, F., Colomb, E., Damiani, L., Durand, J.
P., Durozoy, G., Guieu, G., Masse, J. P., Nury, D., Philip, J., Rouire, J.,
Rousset, C., Roux, R. M., and Blanc, J. J.: Notice explicative, Carte
géologique de la France a 1/50 000, Martigues – Marseille, 51 pp., 1977.
Aubert, I., Lamarche, J., and Léonide, P.: Deciphering background
fractures from damage fractures in fault zones and their effect on reservoir
properties in microporous carbonates (Urgonian limestones, SE France), Pet.
Geosci., 25, 443, https://doi.org/10.1144/petgeo2019-010, 2019a.
Aubert, I., Lamarche, J., Richard, P., and Léonide, P.: Imbricated Structure
and Hydraulic Path Induced by Strike Slip Reactivation of a Normal Fault in
Carbonates, in Fifth International Conference on Fault and Top Seals, p. 4.,
2019b.
Aubert, I., Léonide, P., Lamarche, J., and Salardon, R.:
Carbon and oxygen isotope values of bulk carbonates for Castellas Fault zone and D19 fault zones, La Fare anticline (SE France), https://doi.org/10.5281/zenodo.3903298, 2020.
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault
zone hydrogeology, Earth-Sci. Rev., 127, 171–192,
https://doi.org/10.1016/j.earscirev.2013.09.008, 2013.
Bernard, X. D., Eichhubl, P., and Aydin, A.: Dilation bands?: A new form of
localized failure in granular media, 29, 1–4, https://doi.org/10.1029/2002GL015966,
2002.
Besson, D.: Architecture du bassin rhodano-provençal miocène (Alpes, SE France): relations entre déformation, physiographie et
sédimentation dans un bassin molassique d'avant-pays, Ecole des Mines,
Paris, 450 pp., 2005.
Bestani, L.: Géométrie et cinématique de l'avant-pays
provençal: Modélisation par coupes équilibrées dans une
zone à tectonique polyphasée, Aix-Marseille University, 246 pp., 2015.
Bestani, L., Espurt, N., Lamarche, J., Bellier, O., and Hollender, F.:
Reconstruction of the Provence Chain evolution, Southeastern France,
Tectonics, 35, 1506–1525, https://doi.org/10.1002/2016TC004115, 2016.
Billi, A., Salvini, F., and Storti, F.: The damage zone-fault core transition
in carbonate rocks: Implications for fault growth, structure and
permeability, J. Struct. Geol., 25, 1779–1794,
https://doi.org/10.1016/S0191-8141(03)00037-3, 2003.
Billi, A., Primavera, P., Soligo, M., and Tuccimei, P.: Minimal mass transfer
across dolomitic granular fault cores, Geochem. Geophys., 9, ISSN 1525-2027, https://doi.org/10.1029/2007GC001752, 2008.
Borgomano, J., Masse, J., Maskiry, S. A., Borgomano, J., and International,
S.: The lower Aptian Shuaiba carbonate outcrops in Jebel Akhdar, northern
Oman: Impact on static modeling for Shuaiba petroleum reservoirs, Bull. Am.
Assoc. Pet. Geol., 9, 1513–1529,
https://doi.org/10.1306/61EEDCE2-173E-11D7-8645000102C1865D, 2002.
Borgomano, J., Masse, J. P., Fenerci-Masse, M., and Fournier, F.:
Petrophysics of lower cretaceous platform carbonate outcrops in provence (SE
France): Implications for carbonate reservoir characterisation, J. Pet.
Geol., 36, 5–41, https://doi.org/10.1111/jpg.12540, 2013.
Bruna, P., Guglielmi, Y., Viseur, S., Lamarche, J., and Bildstein, O.:
Coupling fracture facies with in-situ permeability measurements to generate
stochastic simulations of tight carbonate aquifer properties: Example from
the Lower Cretaceous aquifer, Northern Provence, SE France, J. Hydrol.,
529, 737–753, https://doi.org/10.1016/j.jhydrol.2015.08.054, 2015.
Buschkuehle, B. E. and Machel, H. G.: Diagenesis and paleo fluid flow in the
Devonian Southesk-Cairn carbonate complex in Alberta, Canada, Mar. Pet.
Geol., 19, 219–227, https://doi.org/10.1016/S0264-8172(02)00014-4, 2002.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architechture and
permeability structure, Geology, 24, 1025–1028,
https://doi.org/10.1130/0091-7613(1996)024<1025, 1996.
Cardozo, N. and Allmendinger, N. W.: Sperical projections with
OSXStereonets, Comput. Geosci., 51, 193–205,
https://doi.org/10.1016/j.cageo.2012.07.021, 2013.
Celico, F., Petrella, E., and Celico, P.: Hydrogeological behaviour of some
fault zones in a carbonate aquifer of Southern Italy: An experimentally
based model, Terra Nov., 18, 308–313,
https://doi.org/10.1111/j.1365-3121.2006.00694.x, 2006.
Champion, C., Choukroune, P., and Clauzon, G.: La déformation
post-miocène en provence occidentale, Geodin. Acta, 13, 67–85,
https://doi.org/10.1080/09853111.2000.11105365, 2000.
Chester, F. M. and Logan, J. M.: Implications for Mechanical Properties of
Brittle Faults from Observations of the Punchbowl Fault Zone, California,
Pure Appl. Geohys., 124, 79, https://doi.org/10.1007/BF00875720, 1986.
Chester, F. M. and Logan, J. M.: Composite planar fabric of gouge from the
Punchbowl Fault, California, J. Struct. Geol., 9,
https://doi.org/10.1016/0191-8141(87)90147-7, 1987.
Delle Piane, C., Giwelli, A., Clennell, M. Ben, Esteban, L., Nogueira
Kiewiet, M. C. D., Kiewiet, L., Kager, S., and Raimon, J.: Frictional and
hydraulic behaviour of carbonate fault gouge during fault reactivation –
An experimental study, Tectonophysics, 690, 21–34,
https://doi.org/10.1016/j.tecto.2016.07.011, 2016.
Deming, D., Nunn, A., and Evans, D. G.: Thermal Effects of Compaction-Driven
Groundwater Flow, J. Geophys. Res.-Sol. Ea, 95, 6669–6683, https://doi.org/10.1029/JB095iB05p06669, 1990.
Demory, F. R., Conesa, G. I., Oudet, J. U., Mansouri, H. A., and Münch,
P. H.: Magnetostratigraphy and paleoenvironments in shallow-water
carbonates: The Oligocene-Miocene sediments of the northern margin of the
Liguro- Provençal basin (West Marseille, southeastern France), Bull.
Soc. Géol. Fr., 1, 37–55, https://doi.org/10.2113/gssgfbull.182.1.37, 2011.
Deville de Periere, M., Durlet, C., Vennin, E., Lambert, L., Bourillot, R.,
Caline, B., and Poli, E.: Morphometry of micrite particles in cretaceous
microporous limestones of the middle east: Influence on reservoir
properties, Mar. Pet. Geol., 28, 1727–1750,
https://doi.org/10.1016/j.marpetgeo.2011.05.002, 2011.
Deville de Periere, M., Durlet, C., Vennin, E., Caline, B., Boichard, R., and
Meyer, A.: Influence of a major exposure surface on the development of
microporous micritic limestones – Example of the Upper Mishrif Formation
(Cenomanian) of the Middle East, Sediment. Geol., 353, 96–113,
https://doi.org/10.1016/j.sedgeo.2017.03.005, 2017.
Dorobek, S.: migration of erogenic fluids through the Siluro-Devonian
Helderberg Group during late Paleozoic deformation: constraints on fluid
sources and implications for thermal histories of sedimentary basins
presence, Tectonophysics, 159, 25–45, https://doi.org/10.1016/0040-1951(89)90168-6, 1989.
Eltom, H. A., Gonzalez, L. A., Hasiotis, S. T., Rankey, E. C., and Cantrell,
D. L.: Paleogeographic and paleo-oceanographic influences on carbon isotope
signatures: Implications for global and regional correlation, Middle-Upper
Jurassic of Saudi Arabia, Sediment. Geol., 364, 89–102,
https://doi.org/10.1016/j.sedgeo.2017.12.011, 2018.
Espurt, N., Hippolyte, J. C., Saillard, M., and Bellier, O.: Geometry and
kinematic evolution of a long-living foreland structure inferred from field
data and cross section balancing, the Sainte-Victoire System, Provence,
France, Tectonics, 31, TC4021, https://doi.org/10.1029/2011TC002988, 2012.
Evans, J. P., Forster, C. B., and Goddard, J. V.: Permeability of
fault-related rocks, and implications for hydraulic structure of fault
zones, J. Struct. Geol., 19, 1393–1404,
https://doi.org/10.1016/S0191-8141(97)00057-6, 1997.
Ferraro, F., Agosta, F., Ukar, E., Grieco, D. S., Cavalcante, F., Belviso,
C., and Prosser, G.: Structural diagenesis of carbonate fault rocks exhumed
from shallow crustal depths: An example from the central-southern Apennines,
Italy, J. Struct. Geol., 122, 58–80,
https://doi.org/10.1016/j.jsg.2019.02.008, 2019.
Florida, S., Maliva, R. G., Missimer, T. M., Clayton, E. A., and Dickson, J.,
A. D.: Diagenesis and porosity preservation in Eocene microporous limestones, Sediment. Geol., 217, 85–94, https://doi.org/10.1016/j.sedgeo.2009.03.011,
2009.
Ford, M., Duchene, S., Gasquet, D., and Vanderhaeghe, O.: Two-phase orogenic
convergence in the external and internal SW Alps, J. Geol. Soc. Lond.,
163, 815–826, https://doi.org/10.1144/0016-76492005-034, 2006.
Fossen, H. and Bale, A.: Deformation bands and their influence on fluid
flow, 12, 1685–1700, https://doi.org/10.1306/07300706146, 2007.
Fossen, H. and Rotevatn, A.: Fault linkage and relay structures in extensional
settings – A review, Earth Sci. Rev., 154, 14–28,
https://doi.org/10.1016/j.earscirev.2015.11.014, 2016.
Fouke, B. W., Everts, A. W., Zwart, E. W., and Schlager, W.: Subaerial
exposure unconformities on the Vercors carbonate platform (SE France) and
their sequence stratigraphic significance, Geol. Soc. Lond.,
104, 295–319, 1996.
Fournier, F. and Borgomano, J.: Critical porosity and elastic properties of
microporous mixed carbonate-siliciclastic rocks, Geophysics, 74,
93–109, https://doi.org/10.1190/1.3043727, 2009.
Fournier, F., Léonide, P., Biscarrat, K., Gallois, A., Borgomano, J., and
Foubert, A.: Elastic properties of microporous cemented grainstones,
Geophysics, 76, 211–226, https://doi.org/10.1190/geo2011-0047.1, 2011.
Gattacceca, J., Deino, A., Rizzo, R., Jones, D. S., Henry, B., Beaudoin, B.,
and Vadeboin, F.: Miocene rotation of Sardinia: New paleomagnetic and
geochronological constraints and geodynamic implications, Earth Planet. Sc.
Lett., 258, 359–377, https://doi.org/10.1016/j.epsl.2007.02.003, 2007.
Gaviglio, P., Bekri, S., Vandycke, S., Adler, P. M., Schroeder, C.,
Bergerat, F., Darquennes, A., and Coulon, M.: Faulting and deformation in
chalk, J. Struct. Geol., 31, 194–207, https://doi.org/10.1016/j.jsg.2008.11.011,
2009.
Gisquet, F., Lamarche, J., Floquet, M., Borgomano, J., Masse, J. P., and
Caline, B.: Three-dimensional structural model of composite dolomite bodies
in folded area (upper Jurassic of the Etoile massif, southeastern France),
Am. Assoc. Pet. Geol. Bull., 97, 1477–1501, https://doi.org/10.1306/04021312016,
2013.
Godet, A., Bodin, S., Föllmi, K. B., Vermeulen, J., Gardin, S., Fiet,
N., Adatte, T., Berner, Z., Stüben, D., and van de Schootbrugge, B.:
Evolution of the marine stable carbon-isotope record during the early
Cretaceous: A focus on the late Hauterivian and Barremian in the Tethyan
realm, Earth Planet. Sc. Lett., 242, 254–271,
https://doi.org/10.1016/j.epsl.2005.12.011, 2006.
Guendon, J.-L. and Parron, C.: Les phenomenes karstiques dans les processus
de la bauxitisation sur substrat carbonate. Exemple de gisement du sud est
de la France, Ann. la Société Géologique Belgique, 108, 85–92,
1985.
Guieu, G.: Un exemple de tectonique tangentielle: l'évolution du cadre
montagneux de Marseille, Bull. la Société Géologique Fr., 7, 610–630, 1967.
Guyonnet-Benaize, C., Lamarche, J., Masse, J. P., Villeneuve, M., and Viseur,
S.: 3D structural modelling of small-deformations in poly-phase faults
pattern. Application to the Mid-Cretaceous Durance uplift, Provence (SE
France), J. Geodyn., 50, 81–93, https://doi.org/10.1016/j.jog.2010.03.003, 2010.
Hammond, K. J. and Evans, J. P.: Geochemistry, mineralization, structure,
and permeability of a normal- fault zone, Casino mine, Alligator Ridge
district, north central Nevada, J. Struct. Geol., 25, 717–736,
https://doi.org/10.1016/S0191-8141(02)00060-3, 2003.
Heiland, J., Raab, S., and Potsdam, G.: Experimental Investigation of the
Influence of Differential Stress on Permeability of a Lower Permian (Rotliegend) Sandstone Deformed in the Brittle Deformation, Phys. Chem.
Earth, 26, 33–38, https://doi.org/10.1016/S1464-1895(01)00019-9, 2001.
Hodson, K. R., Crider, J. G., and Huntington, K. W.: Temperature and
composition of carbonate cements record early structural control on
cementation in a nascent deformation band fault zone: Moab Fault, Utah, USA,
Tectonophysics, 690, 240–252, https://doi.org/10.1016/j.tecto.2016.04.032, 2016.
Hollis, C., Vahrenkamp, V., Tull, S., Mookerjee, A., and Taberner, C.: Pore
system characterisation in heterogeneous carbonates: An alternative approach
to widely-used rock-typing methodologies, Mar. Pet. Geol., 27, 772–793,
https://doi.org/10.1016/j.marpetgeo.2009.12.002, 2010.
Kaminskaite, I., Fisher, Q. J., and Michie, E. A. H.: Microstructure and
petrophysical properties of deformation bands in high porosity carbonates,
J. Struct. Geol., 119, 61–80, https://doi.org/10.1016/j.jsg.2018.12.001,
2019.
Kim, Y. S., Peacock, D. C. P., and Sanderson, D. J.: Fault damage zones, J.
Struct. Geol., 26, 503–517, https://doi.org/10.1016/j.jsg.2003.08.002, 2004.
Knipe, R. J.: The influence of fault zone processes and diagenesis on fluid
flow, Diagenes, available
at:
http://archives.datapages.com/data/specpubs/resmi1/data/a067/a067/0001/0100/0135.htm, basin Dev. AAPG Stud. Geol., Vol. 36, edited by: Horbury, A. D. and Robinson, A. G., 135–148, 1993.
Knipe, R. J., Jones, G., and Fisher, Q. J.: Faulting, fault sealing and fluid
flow in hydrocarbon reservoirs: an introduction, Geol. Soc. Lond, 147, NP LP-NP, https://doi.org/10.1144/GSL.SP.1998.147.01.21, 1998.
Lamarche, J., Lavenu, A. P. C., Gauthier, B. D. M., Guglielmi, Y., and Jayet,
O.: Relationships between fracture patterns, geodynamics and mechanical
stratigraphy in Carbonates (South-East Basin, France), Tectonophysics, 581,
231–245, https://doi.org/10.1016/j.tecto.2012.06.042, 2012.
Lambert, L., Durlet, C., Loreau, J. P., and Marnier, G.: Burial dissolution
of micrite in Middle East carbonate reservoirs (Jurassic-Cretaceous): Keys
for recognition and timing, Mar. Pet. Geol., 23, 79–92,
https://doi.org/10.1016/j.marpetgeo.2005.04.003, 2006.
Laubach, S. E., Eichhubl, P., Hilgers, C., and Lander, R. H.: Structural
diagenesis, J. Struct. Geol., 32, 1866–1872,
https://doi.org/10.1016/j.jsg.2010.10.001, 2010.
Lavenu, A. P. C., Lamarche, J., Gallois, A., and Gauthier, B. D. M.: Tectonic
versus diagenetic origin of fractures in a naturally fractured carbonate
reservoir analog Nerthe anticline, Southeastern France, Am. Assoc. Pet.
Geol. Bull., 97, 2207–2232, https://doi.org/10.1306/04041312225, 2013.
Le Pichon, X., Bergerat, F., and Roulet, M.-J.: Plate kinematics and
tectonics leading to the Alpine belt formation; A new analysis, Geol. Soc.
Am., 218, 111–131, https://doi.org/10.1130/SPE218-p111, 1988.
Léonide, P., Borgomano, J., Masse, J., and Doublet, S.: Relation between
stratigraphic architecture and multi-scale heterogeneities in carbonate
platforms: The Barremian – lower Aptian of the Monts de Vaucluse, SE
France, Sediment. Geol., 265, 87–109,
https://doi.org/10.1016/j.sedgeo.2012.03.019, 2012.
Léonide, P., Fournier, F., Reijmer, J. J. G., Vonhof, H., Borgomano, J.,
Dijk, J., Rosenthal, M., Van Goethem, M., Cochard, J., and Meulenaars, K.:
Diagenetic patterns and pore space distribution along a platform to
outer-shelf transect (Urgonian limestone, Barremian-Aptian, SE France),
Sediment. Geol., 306, 1–23, https://doi.org/10.1016/j.sedgeo.2014.03.001, 2014.
Long, J. J. and Imber, J.: Geological controls on fault relay zone scaling,
J. Struct. Geol., 33, 1790–1800, https://doi.org/10.1016/j.jsg.2011.09.011, 2011.
Lothe, A. E., Gabrielsen, R. H., Hagen, N. B., and Larsen, B. T.: An
experimental study of the texture of deformation bands: effects on the
porosity and permeability of sandstones (1990), Petrol. Geosci., 8, 195, https://doi.org/10.1144/petgeo.8.3.195,
2002.
Lucia, F. J.: Origin and petrophysics of dolostone pore space, Geom. Petrog.
Dolomite Hydrocarb. Reserv. Geol. Soc. Lond., 235, 141–155,
https://doi.org/10.1144/GSL.SP.2004.235.01.06, 2004.
Machel, H. G.: Concepts and models of dolomitization: a critical
reappraisal, Geol. Soc. Lond., 235, 7–63,
https://doi.org/10.1144/GSL.SP.2004.235.01.02, 2004.
Machel, H. G., Cavell, P. A., Buschkuehle, B. E., and Michael, K.:
Tectonically induced fluid flow in Devonian carbonate aquifers of the
Western Canada Sedimentary Basin, J. Geochem. Explor., 70, 213–217,
https://doi.org/10.1016/S0375-6742(00)00093-5, 2000.
Main, I. G., Kwon, O., Ngwenya, B. T., and Elphick, S. G.: Fault sealing
during deformation-band growth in porous sandstone, Geology, 28,
1131–1134, https://doi.org/10.1130/0091-7613(2000)28<1131:FSDDGI>2.0.CO;2, 2000.
Masse, J.-P. and Philip, J.: Paléogéographie et tectonique du
Crétacé moyen en Provence: révision du concept d'isthme
durancien, Rev. Géographie Phys. Géologie Dyn., 18, 49–46,
1976.
Masse, J. P.: Les calcaires urgoniens de Provence (Valanginien-Aptien
Inférieur) – Stratigraphie, paléontologie, paléoenvironnements
et leur évolution, Marseille, Thèse de la Faculté des Sciences
de Luminy (U2), 445 pp., 1976.
Masse, J. P. and Fenerci-Masse, M.: Carbonate production by rudist bivalves.
The record of Late Barremian requieniid communities from Provence (SE
France), Palaeogeogr. Palaeocl., 234, 239–257,
https://doi.org/10.1016/j.palaeo.2005.10.010, 2006.
Masse, J. P. and Fenerci Masse, M.: Drowning discontinuities and
stratigraphic correlation in platform carbonates, The late Barremian-early
Aptian record of southeast France, Cretac. Res., 32, 659–684,
https://doi.org/10.1016/j.cretres.2011.04.003, 2011.
Matonti, C., Lamarche, J., Guglielmi, Y., and Marié, L.: Structural and
petrophysical characterization of mixed conduit/seal fault zones in
carbonates: Example from the Castellas fault (SE France), J. Struct. Geol.,
39, 103–121, https://doi.org/10.1016/j.jsg.2012.03.003, 2012.
Micarelli, L., Benedicto, A., and Wibberley, C. A. J.: Structural evolution
and permeability of normal fault zones in highly porous carbonate rocks, J.
Struct. Geol., 28, 1214–1227, https://doi.org/10.1016/j.jsg.2006.03.036, 2006.
Molli, G., Cortecci, G., Vaselli, L., Ottria, G., Cortopassi, A., Dinelli,
E., Mussi, M., and Barbieri, M.: Fault zone structure and fluid–rock
interaction of a high angle normal fault in Carrara marble (NW Tuscany,
Italy), J. Struct. Geol., 32, 1334–1348, https://doi.org/10.1016/j.jsg.2009.04.021,
2010.
Molliex, S., Bellier, O., Terrier, M., Lamarche, J., Martelet, G., and
Espurt, N.: Tectonic and sedimentary inheritance on the structural framework
of Provence (SE France): Importance of the Salon-Cavaillon fault,
Tectonophysics, 501, 1–16, https://doi.org/10.1016/j.tecto.2010.09.008, 2011.
Moss, S. and Tucker, M. E.: Diagenesis of Barremian-Aptian platform
carbonates (the Urgonian Limestone Formation of SE France): near-surface and
shallow-burial diagenesis, Sedimentology, 42, 853–874,
https://doi.org/10.1111/j.1365-3091.1995.tb00414.x, 1995.
Mozley, P. S. and Goodwin, L. B.: Patterns of cementation along a Cenozoic
normal fault: a record of paleoflow orientations, Geology, 23, 539–542,
https://doi.org/10.1130/0091-7613(1995)02<0539:POCAAC>2.3.CO;2,
1995.
Nelson, R.: Geologic Analysis of Naturally Fractured Reservoirs, second ed., Gulf Professional Publishing, Boston, 2001.
Ostwald, W.: Lehrbuch der allgemeinen Chemie, Verlag von Wilhelm Engelmann,
Leipzig, 2, 909, 1886.
Philip, J.: Les formations calcaires à rudistes du Crétacé
supérieur provençal et rhodanien, Thèse de Doctorat,
Université de Provence (Marseille), 438 pp., 1970.
Pichon, X. Le, Rangin, C., Hamon, Y., Loget, N., Lin, J. Y., Andreani, L.,
and Flotte, N.: Geodynamics of the france southeast basin, Bull. la Soc.
Geol. Fr., 181, 477–501, https://doi.org/10.2113/gssgfbull.181.6.477, 2010.
Purser, B. H.: Sédimentation et diagenèse des carbonates
néritiques récents, Les éléments de la sédimentation et
de la diagenèse, Ed. Tech., 1, 366, 1980.
Reches, Z. and Dewers, T. A.: Gouge formation by dynamic pulverization
during earthquake rupture, Earth Planet. Sc. Lett., 235, 361–374,
https://doi.org/10.1016/j.epsl.2005.04.009, 2005.
Reid, R. P. and Macintyre, I. G.: Microboring Versus Recrystallization:
Further Insight into the Micritization Process, J. Sediment. Res., 70,
24–28, https://doi.org/10.1306/2DC408FA-0E47-11D7-8643000102C1865D, 2000.
Roche, V.: Analyse structurale et géo-mécanique de réseau de
failles du chaînon de La Fare les Oliviers (Provence), Univ.
Montpellier 2, 45, 2008.
Rossetti, F., Aldega, L., Tecce, F., Balsamo, F., Billi, A., and Brilli, M.:
Fluid flow within the damage zone of the Boccheggiano extensional fault
(Larderello-Travale geothermal field, central Italy): Structures, alteration
and implications for hydrothermal mineralization in extensional settings,
Geol. Manage., 148, 558–579, https://doi.org/10.1017/S001675681000097X, 2011.
Saller, A. H. and Henderson, N.: Distribution of Porosity and Permeability
in Platform Dolomites: Insight from the Permian of West Texas: reply, Am.
Assoc. Pet. Geol. Bull., 85, 530–532, https://doi.org/10.1306/090800850530, 2001.
Sallier, B.: Carbonates microporeux: influence de l'architecture du milieu
poreux et de la mouillabilité sur les écoulements diphasiques dans
les réservoirs pétroliers, Univ. Genève, 230 pp., 2005.
Samankassou, E., Tresch, J., and Strasser, A.: Origin of peloids in Early
Cretaceous deposits, Dorset, South England, Facies, 51, 264–273,
https://doi.org/10.1007/s10347-005-0002-8, 2005.
Séranne, M.: The Gulf of Lion continental margin (NW Mediterranean)
revisited by IBS: an overview, Geol. Soc. Lond., 156,
15–36, https://doi.org/10.1144/GSL.SP.1999.156.01.03, 1999.
Sibley, D. F. and Gregg, J. A. Y. M.: Classification of Dolomite Rock
Texture, J. Sediment. Petrol., 57, 967–975,
https://doi.org/10.1306/212F8CBA-2B24-11D7-8648000102C1865D, 1987.
Sibson, R. H.: Crustal stress, faulting and fluid flow, Geol. Soc. Lond., 78, 69–84, https://doi.org/10.1144/GSL.SP.1994.078.01.07, 1994.
Sibson, R. H.: Structural permeability of fluid-driven fault-fracture
meshes, J. Struct. Geol., 18, 1031–1042,
https://doi.org/10.1016/0191-8141(96)00032-6, 1996.
Sinisi, R., Petrullo, A. V., Agosta, F., Paternoster, M., Belviso, C., and
Grassa, F.: Contrasting fault fluids along high-angle faults: a case study
from Southern Apennines (Italy), Tectonophysics, 690, 206–218,
https://doi.org/10.1016/j.tecto.2016.07.023, 2016.
Solum, J. G. and Huisman, B. A. H.: Toward the creation of models to predict
static and dynamic fault-seal potential in carbonates, Pet. Geosci., 23,
70–91, https://doi.org/10.1144/petgeo2016-044, 2016.
Solum, J. G., Davatzes, N. C., and Lockner, D. A.: Fault-related clay
authigenesis along the Moab Fault: Implications for calculations of fault
rock composition and mechanical and hydrologic fault zone properties, J.
Struct. Geol., 32, 1899–1911, https://doi.org/10.1016/j.jsg.2010.07.009, 2010.
Storti, F., Billi, A., and Salvini, F.: Particle size distributions in
natural carbonate fault rocks: Insights for non-self-similar cataclasis,
Earth Planet. Sc. Lett., 206, 173–186,
https://doi.org/10.1016/S0012-821X(02)01077-4, 2003.
Swart, P. K.: The geochemistry of carbonate diagenesis: The past, present
and future, Sedimentology, 62, 1233–1304, https://doi.org/10.1111/sed.12205, 2015.
Tempier, C.: Modèle nouveau de mise en place des structures
provençales, Bull. la Soc. Geol. Fr., 3, 533–540,
https://doi.org/10.2113/gssgfbull.III.3.533, 1987.
Tondi, E.: Nucleation, development and petrophysical properties of faults in
carbonate grainstones: Evidence from the San Vito Lo Capo peninsula (Sicily,
Italy), J. Struct. Geol., 29, 614–628, https://doi.org/10.1016/j.jsg.2006.11.006,
2007.
Triat, J.: Paléoaltérations dans le crétacé supérieur de
Provence rhodanienne, Strasbourg: Institut de Géologie – Université
Louis-Pasteur., 223 pp., 1982.
Vincent, B., Emmanuel, L., Houel, P., and Loreau, J. P.: Geodynamic control
on carbonate diagenesis: Petrographic and isotopic investigation of the
Upper Jurassic formations of the Paris Basin (France), Sediment. Geol.,
197, 267–289, https://doi.org/10.1016/j.sedgeo.2006.10.008, 2007.
Volery, C., Davaud, E., Foubert, A., and Caline, B.: Shallow-marine
microporous carbonatereservoir rocks in the Middle East: relationship with
seawater Mg/Ca ration and eustatic sea level, J. Pet. Geol., 32,
313–325, https://doi.org/10.1111/j.1747-5457.2009.00452.x, 2009.
Volery, C., Davaud, E., Foubert, A., and Caline, B.: Lacustrine microporous
micrites of the Madrid Basin (Late Miocene, Spain) as analogues for
shallow-marine carbonates of the Mishrif reservoir formation (Cenomanian to
Early Turonian, Middle East), Facies, 56, 385–397,
https://doi.org/10.1007/s10347-009-0210-8, 2010.
Walsh, J. J., Watterson, J., Bailey, W. R., and Childs, C.: Fault relays,
bends and branch-lines, 21, 1019–1026,
https://doi.org/10.1016/S0191-8141(99)00026-7, 1999.
Walsh, J. J., Bailey, W. R., Childs, C., Nicol, A., and Bonson, C. G.:
Formation of segmented normal faults: a 3-D perspective, 25, 1251–1262,
https://doi.org/10.1016/S0191-8141(02)00161-X, 2003.
Wilkins, S. J., Naruk, S. J., Wilkins, S. J., International, S., Naruk, S.
J., and International, S.: Quantitative analysis of slip-induced dilation
with application to fault seal, AAPG Bulletin, 1, 97–113, https://doi.org/10.1306/08010605177,
2007.
Woodcock, N. H., Dickson, J. A. D., and Tarasewicz, J. P. T.: Transient
permeability and reseal hardening in fault zones: evidence from dilation
breccia textures, Geol. Soc. Lond., 270, 43–53, 2007.
Wu, G., Gao, L., Zhang, Y., Ning, C., and Xie, E.: Fracture attributes in
reservoir-scale carbonate fault damage zones and implications for damage
zone width and growth in the deep subsurface, J. Struct. Geol., 118, 181–193, https://doi.org/10.1016/j.jsg.2018.10.008, 2019.
Zhang, Y., Schaubs, P. M., Zhao, C., Ord, A., Hobbs, B. E., and Barnicoat, A.
C.: Fault-related dilation, permeability enhancement, fluid flow and mineral
precipitation patterns: numerical models, Geol. Soc. Lond., 299, 239–255, https://doi.org/10.1144/SP299.15, 2008.
Zhu, W. and Wong, T.-F.: The transition from brittle faulting to cataclastic
flow: Permeability evolution, J. Geophys. Res., 102, 3027–3041,
https://doi.org/10.1029/96JB03282, 1997.
Short summary
In carbonate rocks, fault zones influence the fluid flows and lead to important diagenetic processes modifying reservoir properties. The aim of this study is to identify the impact of two polyphase fault zones on fluid flows and reservoir properties during basin history. We determined petro-physic and diagenetic properties on 92 samples. This study highlights that fault zones acted as drains at their onset and induced fault zone cementation, which has strongly altered local reservoir properties.
In carbonate rocks, fault zones influence the fluid flows and lead to important diagenetic...
Special issue