Articles | Volume 11, issue 1
https://doi.org/10.5194/se-11-125-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-125-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Anatomy of the magmatic plumbing system of Los Humeros Caldera (Mexico): implications for geothermal systems
Federico Lucci
CORRESPONDING AUTHOR
Dipartimento di Scienze, Sez. Scienze Geologiche, Università Roma
Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy
Gerardo Carrasco-Núñez
Centro de Geociencias, Universidad Nacional Autónoma de
México, Campus UNAM Juriquilla, 76100, Querétaro, Mexico
Federico Rossetti
Dipartimento di Scienze, Sez. Scienze Geologiche, Università Roma
Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy
Thomas Theye
Institut für Anorganische Chemie, Universität Stuttgart,
Stuttgart, Germany
John Charles White
Department of Geosciences, Eastern Kentucky University, Richmond, KY
40475, USA
Stefano Urbani
Dipartimento di Scienze, Sez. Scienze Geologiche, Università Roma
Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy
Hossein Azizi
Mining Department, Faculty of Engineering, University of Kurdistan,
Sanandaj, Iran
Yoshihiro Asahara
Department of Earth and Environmental Sciences, Graduate School of
Environmental Studies, Nagoya University, Nagoya 464-8601, Japan
Guido Giordano
Dipartimento di Scienze, Sez. Scienze Geologiche, Università Roma
Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy
CNR – IDPA, Via Luigi Mangiagalli 34, 20133 Milan, Italy
Related authors
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, Valerio Acocella, and Gerardo Carrasco-Núñez
Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020, https://doi.org/10.5194/se-11-527-2020, 2020
Short summary
Short summary
In Los Humeros, through field structural–geological mapping and analogue experiments, we show a discontinuous and small-scale (areal size
~ 1 km2) uplift of the caldera floor due to the emplacement of multiple shallow (< 1 km) magmatic bodies. These results allow for a better assessment of the subsurface structure of Los Humeros, with crucial implications for planning future geothermal exploration, which should account for the local geothermal gradient affected by such a shallow heat source.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, and Gerardo Carrasco-Núñez
Solid Earth, 12, 1111–1124, https://doi.org/10.5194/se-12-1111-2021, https://doi.org/10.5194/se-12-1111-2021, 2021
Short summary
Short summary
Structural studies in active calderas have a key role in the exploration of geothermal systems. We reply in detail to the points raised by the comment of Norini and Groppelli (2020), strengthening the relevance of our structural fieldwork for geothermal exploration and exploitation in active caldera geothermal systems including the Los Humeros caldera.
Stefano Urbani, Guido Giordano, Federico Lucci, Federico Rossetti, Valerio Acocella, and Gerardo Carrasco-Núñez
Solid Earth, 11, 527–545, https://doi.org/10.5194/se-11-527-2020, https://doi.org/10.5194/se-11-527-2020, 2020
Short summary
Short summary
In Los Humeros, through field structural–geological mapping and analogue experiments, we show a discontinuous and small-scale (areal size
~ 1 km2) uplift of the caldera floor due to the emplacement of multiple shallow (< 1 km) magmatic bodies. These results allow for a better assessment of the subsurface structure of Los Humeros, with crucial implications for planning future geothermal exploration, which should account for the local geothermal gradient affected by such a shallow heat source.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Petrology
Contribution of carbonatite and recycled oceanic crust to petit-spot lavas on the western Pacific Plate
Yttrium speciation in subduction-zone fluids from ab initio molecular dynamics simulations
Tracing fluid transfers in subduction zones: an integrated thermodynamic and δ18O fractionation modelling approach
Post-entrapment modification of residual inclusion pressure and its implications for Raman elastic thermobarometry
Alkali basalt from the Seifu Seamount in the Sea of Japan: post-spreading magmatism in a back-arc setting
Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks
Kazuto Mikuni, Naoto Hirano, Shiki Machida, Hirochika Sumino, Norikatsu Akizawa, Akihiro Tamura, Tomoaki Morishita, and Yasuhiro Kato
Solid Earth, 15, 167–196, https://doi.org/10.5194/se-15-167-2024, https://doi.org/10.5194/se-15-167-2024, 2024
Short summary
Short summary
Plate tectonics theory is the motion of rocky plates (lithosphere) over ductile zones (asthenosphere). The causes of the lithosphere–asthenosphere boundary (LAB) are controversial; however, petit-spot volcanism supports the presence of melt at the LAB. We conducted geochemistry, geochronology, and geochemical modeling of petit-spot volcanoes on the western Pacific Plate, and the results suggested that carbonatite melt and recycled oceanic crust induced the partial melting at the LAB.
Johannes Stefanski and Sandro Jahn
Solid Earth, 11, 767–789, https://doi.org/10.5194/se-11-767-2020, https://doi.org/10.5194/se-11-767-2020, 2020
Short summary
Short summary
The capacity of aqueous fluids to mobilize rare Earth elements is closely related to their molecular structure. In this study, first-principle molecular dynamics simulations are used to investigate the complex formation of yttrium with chloride and fluoride under subduction-zone conditions. The simulations predict that yttrium–fluoride complexes are more stable than their yttrium–chloride counterparts but likely less abundant due to the very low fluoride ion concentration in natural systems.
Alice Vho, Pierre Lanari, Daniela Rubatto, and Jörg Hermann
Solid Earth, 11, 307–328, https://doi.org/10.5194/se-11-307-2020, https://doi.org/10.5194/se-11-307-2020, 2020
Short summary
Short summary
This study presents an approach that combines equilibrium thermodynamic modelling with oxygen isotope fractionation modelling for investigating fluid–rock interaction in metamorphic systems. An application to subduction zones shows that chemical and isotopic zoning in minerals can be used to determine feasible fluid sources and the conditions of interaction. Slab-derived fluids can cause oxygen isotope variations in the mantle wedge that may result in anomalous isotopic signatures of arc lavas.
Xin Zhong, Evangelos Moulas, and Lucie Tajčmanová
Solid Earth, 11, 223–240, https://doi.org/10.5194/se-11-223-2020, https://doi.org/10.5194/se-11-223-2020, 2020
Short summary
Short summary
In this study, we present a 1-D visco-elasto-plastic model in a spherical coordinate system to study the residual pressure preserved in mineral inclusions. This allows one to study how much residual pressure can be preserved after viscous relaxation. An example of quartz inclusion in garnet host is studied and it is found that above 600–700 °C, substantial viscous relaxation will occur. If one uses the relaxed residual quartz pressure for barometry, erroneous results will be obtained.
Tomoaki Morishita, Naoto Hirano, Hirochika Sumino, Hiroshi Sato, Tomoyuki Shibata, Masako Yoshikawa, Shoji Arai, Rie Nauchi, and Akihiro Tamura
Solid Earth, 11, 23–36, https://doi.org/10.5194/se-11-23-2020, https://doi.org/10.5194/se-11-23-2020, 2020
Short summary
Short summary
We report a peridotite xenolith-bearing basalt dredged from the Seifu Seamount (SSM basalt) in the northeast Tsushima Basin, southwest Sea of Japan, which is one of the western Pacific back-arc basin swarms. An 40Ar / 39Ar plateau age of 8.33 ± 0.15 Ma (2 σ) was obtained for the SSM basalt, indicating that it erupted shortly after the termination of back-arc spreading. The SSM basalt was formed in a post-back-arc extension setting by the low-degree partial melting of an upwelling asthenosphere.
Ariadni A. Georgatou and Massimo Chiaradia
Solid Earth, 11, 1–21, https://doi.org/10.5194/se-11-1-2020, https://doi.org/10.5194/se-11-1-2020, 2020
Short summary
Short summary
We study the petrographical and geochemical occurrence of magmatic sulfide minerals in volcanic rocks for areas characterised by different geodynamic settings, some of which are associated with porphyry (Cu and/or Au) and Au epithermal mineralisation. The aim is to investigate the role of magmatic sulfide saturation processes in depth for ore generation in the surface.
Cited articles
Aldanmaz, E.: Mineral-chemical constraints on the Miocene calc-alkaline and
shoshonitic volcanic rocks of western Turkey: disequilibrium phenocryst
assemblages as indicators of magma storage and mixing conditions, Turkish J.
Earth Sci., 15, 47–73, 2006.
Allan, A. S., Morgan, D. J., Wilson, C. J., and Millet, M. A.: From mush to
eruption in centuries: assembly of the super-sized Oruanui magma body,
Contrib. Mineral. Petr., 166, 143–164, 2013.
Annen, C.: From plutons to magma chambers: Thermal constraints on the
accumulation of eruptible silicic magma in the upper crust, Earth Planet.
Sc. Lett., 284, 409–416, 2009.
Armienti, P., Innocenti, F., Petrini, R., Pompilio, M., and Villari, L.:
Petrology and Sr-Nd isotope geochemistry of recent lavas from Mt. Etna:
bearing on the volcano feeding system, J. Volcanol. Geoth. Res., 39,
315–327, 1989.
Arndt, N. T. and Jenner, G. A.: Crustally contaminated komatiites and
basalts from Kambalda, Western Australia, Chem. Geol., 56, 229–255, 1986.
Aulinas, M., Gimeno, D., Fernandez-Turiel, J. L., Perez-Torrado, F. J.,
Rodriguez-Gonzalez, A., and Gasperini, D.: The Plio-Quaternary magmatic
feeding system beneath Gran Canaria (Canary Islands, Spain): constraints
from thermobarometric studies, J. Geol. Soc. London, 167, 785–801, 2010.
Azizi, H., Najari, M., Asahara, Y., Catlos, E. J., Shimizu, M., and
Yamamoto, K.: U–Pb zircon ages and geochemistry of Kangareh and Taghiabad
mafic bodies in northern Sanandaj–Sirjan Zone, Iran: Evidence for
intra-oceanic arc and back-arc tectonic regime in Late Jurassic,
Tectonophysics, 660, 47–64, 2015.
Azizi, H., Lucci, F., Stern, R. J., Hasannejad, S., and Asahara, Y.: The
Late Jurassic Panjeh submarine volcano in the northern Sanandaj-Sirjan Zone,
northwest Iran: Mantle plume or active margin?, Lithos, 308, 364–380, 2018a.
Azizi, H., Nouri, F., Stern, R. J., Azizi, M., Lucci, F., Asahara, Y.,
Zarinkoub, M. H., and Chung, S. L.: New evidence for Jurassic continental
rifting in the northern Sanandaj Sirjan Zone, western Iran: the Ghalaylan
seamount, southwest Ghorveh, Int. Geol. Rev., 1–23, https://doi.org/10.1080/00206814.2018.1535913, 2018b.
Bachmann, O. and Bergantz, G. W.: On the origin of crystal-poor rhyolites:
extracted from batholithic crystal mushes, J. Petrol., 45, 1565–1582, 2004.
Bachmann, O. and Bergantz, G. W.: Rhyolites and their source mushes across
tectonic settings, J. Petrol., 49, 2277–2285, 2008.
Barberi, F., Ferrara, G., Santacroce, R., Treuil, M., and Varet, J.: A
transitional basalt-pantellerite sequence of fractional crystallization, the
Boina Centre (Afar Rift, Ethiopia), J. Petrol., 16, 22–56, 1975.
Barclay, J., Rutherford, M. J., Carroll, M. R., Murphy, M. D., Devine, J.
D., Gardner, J., and Sparks, R. S. J.: Experimental phase equilibria
constraints on pre-eruptive storage conditions of the Soufrière Hills
magma, Geophys. Res. Lett., 25, 3437–3440, 1998.
Barker, A. K., Troll, V. R., Carracedo, J. C., and Nicholls, P. A.: The
magma plumbing system for the 1971 Teneguía eruption on La Palma,
Canary Islands, Contrib. Mineral. Petr., 170, 54, https://doi.org/10.1007/s00410-015-1207-7, 2015.
Bartels, K. S., Kinzler, R. J., and Grove, T. L.: High pressure phase
relations of primitive high-alumina basalts from Medicine Lake volcano,
northern California, Contrib. Mineral. Petr., 108, 253–270, 1991.
Beattie, P.: Olivine-melt and orthopyroxene-melt equilibria, Contrib.
Mineral. Petr., 115, 103–111, 1993.
Bégué, F., Deering, C. D., Gravley, D. M., Kennedy, B. M.,
Chambefort, I., Gualda, G. A. R., and Bachmann, O.: Extraction, storage and
eruption of multiple isolated magma batches in the paired Mamaku and Ohakuri
eruption, Taupo Volcanic Zone, New Zealand, J. Petrol., 55, 1653–1684, 2014.
Bellieni, G., Justin Visentin, E., Le Maitre, R. W., Piccirillo, E., and
Mand Zanettin, B.: Proposal for a division of the basaltic (B) field of the
TAS diagram, IUGS subcommission on the Systematics of Igneous Rocks,
Circular no.38, Contribution no.102, 1983.
Bindeman, I. N. and Bailey, J. C.: Trace elements in anorthite megacrysts
from the Kurile Island Arc: a window to across-arc geochemical variations in
magma compositions, Earth Planet. Sc. Lett., 169, 209–226, 1999.
Brandelik, A.: CALCMIN – an EXCEL™ Visual Basic application for
calculating mineral structural formulae from electron microprobe analyses,
Comput. Geosci.-UK, 35, 1540–1551, 2009.
Brown, W. L. and Parsons, I.: Feldspars in igneous rocks, in: Feldspars and their reactions, edited by: Parsons, I., 449–499, Springer, Dordrecht,
1994.
Bryan, W. B., Finger, L. T., and Chayes, F.: Estimating proportions in
petrographic mixing equations by least-squares approximation, Science,
163, 926–927, 1969.
Campos-Enríquez, J. O. and Garduño-Monroy, V. H.: The shallow
structure of Los Humeros and Las Derrumbadas geothermal fields, Mexico,
Geothermics, 16, 539–554, 1987.
Campos-Enríquez, J. O. and Sánchez-Zamora, O.: Crustal structure
across southern Mexico inferred from gravity data, J. S. Am. Earth Sci., 13,
479–489, 2000.
Carmichael, I. S. E., Nicholls, J., Spera, F. J., Wood, B. J., and Nelson,
S. A.: High-temperature properties of silicate liquids: applications to the
equilibration and ascent of basic magma, Philos. T. R. Soc. S.-A, 286,
373–431, 1977.
Carrasco-Núñez, G. and Branney, M.: Progressive assembly of a
massive layer of ignimbrite with normal-to-reverse compositional zoning: the
Zaragoza ignimbrite of central Mexico, B. Volcanol., 68, 3–20, 2005.
Carrasco-Núñez, G., Gómez-Tuena, A., and Lozano, L.: Geologic Map of Cerro Grande volcano and surrounding area, Central México, Map and Chart Series MCH081, The Geological Society of America, Boulder, Colorado, USA, 10 pp., 1997.
Carrasco-Núñez, G., Siebert, L., Díaz-Castellón, R.,
Vázquez-Selem, L., and Capra, L.: Evolution and hazards of a long-quiescent
compound shield-like volcano: Cofre de Perote, Eastern Trans-Mexican
Volcanic Belt, J. Volcanol. Geoth. Res., 197, 209–224,
https://doi.org/10.1016/j.jvolgeores.2009.08.010, 2010.
Carrasco-Núñez, G., Dávila-Harris, P., Riggs, N. R., Ort, M. H., Zimmer, B. W., Willcox, C. P., and Branney, M. J.: Recent explosive volcanism at the Eastern Trans-Mexican Volcanic Belt, in: The Southern Cordillera and Beyond, edited by: Aranda-Gómez, J. J., Tolson, G., and Molina-Garza, R. S., GSA Field Guide, The Geological Society of America, Boulder, Colorado, USA, 25, 83–113, https://doi.org/10.1130/2012.0025(05), 2012a.
Carrasco-Núñez, G., McCurry, M., Branney, M. J., Norry, M., and
Willcox, C.: Complex magma mixing, mingling, and withdrawal associated with
an intra-Plinian ignimbrite eruption at a large silicic caldera volcano: Los
Humeros of central Mexico, Geol. Soc. Am. Bull., 124, 1793–1809,
2012b.
Carrasco-Núñez, G., López-Martínez, M., Hernández, J.,
and Vargas, V.: Subsurface stratigraphy and its correlation with the
surficial geology at Los Humeros geothermal field, eastern Trans-Mexican
Volcanic Belt, Geothermics, 67, 1–17, 2017a.
Carrasco-Núñez, G., Hernández, J., De León, L., Dávila,
P., Norini, G., Bernal, J. P., Jicha, B., Navarro, M., and López-Quiroz,
P.: Geologic Map of Los Humeros volcanic complex and geothermal field,
eastern Trans-Mexican Volcanic Belt/Mapa geológico del complejo
volcánico Los Humeros y campo geotérmico, sector oriental del
Cinturón Volcánico Trans-Mexicano, Terradigitalis, 1, 1–11, https://doi.org/10.22201/igg.terradigitalis.2017.2.24.78, 2017b.
Carrasco-Núñez, G., Bernal, J. P., Davila, P., Jicha, B., Giordano,
G., and Hernández, J.: Reappraisal of Los Humeros volcanic complex by
new U∕Th zircon and 40Ar∕39Ar dating: Implications for greater
geothermal potential, Geochem. Geophy. Geosy., 19, 132–149, 2018.
Carvalho, B. B. and de Assis Janasi, V.: Crystallization conditions and
controls on trace element residence in the main minerals from the Pedra
Branca Syenite, Brazil: an electron microprobe and LA-ICPMS study, Lithos,
153, 208–223, 2012.
Casalini, M., Avanzinelli, R., Heumann, A., de Vita, S., Sansivero, F.,
Conticelli, S., and Tommasini, S.: Geochemical and radiogenic isotope probes
of Ischia volcano, Southern Italy: Constraints on magma chamber dynamics and
residence time, Am. Mineral., 102, 262–274, 2017.
Cashman, K. V.: Groundmass crystallization of Mount St. Helens dacite,
1980–1986: a tool for interpreting shallow magmatic processes, Contrib.
Mineral. Petr., 109, 431–449, 1992.
Cashman, K. and Blundy, J.: Degassing and crystallization of ascending
andesite and dacite, Philos. T. R. Soc. A, 358, 1487–1513, 2000.
Cashman, K. V. and Giordano, G.: Calderas and magma reservoirs, J.
Volcanol. Geoth. Res., 288, 28–45, 2014.
Cashman, K. V., Sparks, R. S. J., and Blundy, J. D.: Vertically extensive
and unstable magmatic systems: a unified view of igneous processes, Science,
355, eaag3055, https://doi.org/10.1126/science.aag3055, 2017.
Cathles, L. M., Erendi, A. H. J., and Barrie, T.: How long can a
hydrothermal system be sustained by a single intrusive event?, Econ. Geol.,
92, 766–771, 1997.
Chadwick, J. P., Troll, V. R., Waight, T. E., van der Zwan, F. M., and
Schwarzkopf, L. M.: Petrology and geochemistry of igneous inclusions in
recent Merapi deposits: a window into the sub-volcanic plumbing system,
Contrib. Mineral. Petr., 165, 259–282, 2013.
Charlier, B. L. A., Bachmann, O., Davidson, J. P., Dungan, M. A., and
Morgan, D. J.: The upper crustal evolution of a large silicic magma body:
evidence from crystal-scale Rb–Sr isotopic heterogeneities in the Fish
Canyon magmatic system, Colorado, J. Petrol., 48, 1875–1894, 2007.
Clague, D. A., Moore, J. G., Dixon, J. E., and Friesen, W. B.: Petrology of
submarine lavas from Kilauea's Puna Ridge, Hawaii, Oceanogr. Lit. Rev., 10,
857–858, 1995.
Clarke, A. B., Stephens, S., Teasdale, R., Sparks, R. S. J., and Diller, K.:
Petrologic constraints on the decompression history of magma prior to
Vulcanian explosions at the Soufrière Hills volcano, Montserrat, J.
Volcanol. Geoth. Res., 161, 261–274, 2007.
Coombs, M. L. and Gardner, J. E.: Shallow-storage conditions for the
rhyolite of the 1912 eruption at Novarupta, Alaska, Geology, 29, 775–778,
2001.
Coombs, M. L. and Gardner, J. E.: Reaction rim growth on olivine in silicic
melts: Implications for magma mixing, Am. Mineral., 89, 748–758, 2004.
Costa, F., Andreastuti, S., de Maisonneuve, C. B., and Pallister, J. S.:
Petrological insights into the storage conditions, and magmatic processes
that yielded the centennial 2010 Merapi explosive eruption, J. Volcanol.
Geoth. Res., 261, 209–235, 2013.
Crawford, A. J., Falloon, T. J., and Eggins, S.: The origin of island arc
high-alumina basalts, Contrib. Mineral. Petr., 97, 417–430, 1987.
Créon, L., Levresse, G., Carrasco-Nuñez, G., and Remusat, L.:
Evidence of a shallow magma reservoir below Los Humeros volcanic complex:
Insights from the geochemistry of silicate melt inclusions, J. S. Am. Earth
Sci., 88, 446–458, 2018.
Dahren, B., Troll, V. R., Andersson, U. B., Chadwick, J. P., Gardner, M. F.,
Jaxybulatov, K., and Koulakov, I.: Magma plumbing beneath Anak Krakatau
volcano, Indonesia: evidence for multiple magma storage regions, Contrib.
Mineral. Petr., 163, 631–651, 2012.
Davies, J. H.: Global map of solid Earth surface heat flow, Geochem. Geophy.
Geosy., 14, 4608–4622, 2013.
Dávila-Harris, P. and Carrasco-Núñez, G.: An unusual
syn-eruptive bimodal eruption: the Holocene Cuicuiltic Member at Los Humeros
caldera, Mexico, J. Volcanol. Geoth. Res., 271, 24–42, 2014.
Dawson, J. B. and Hill, P. G.: Mineral chemistry of a peralkaline
combeitelamprophyllite nephelinite from Oldoinyo Lengai, Tanzania, Mineral.
Mag., 62, 179–196, 1998.
Demant, A.: Características del Eje Neovolcánico Transmexicano y
sus problemas de interpretación, Rev. Mex. Cienc. Geol., 2, 172–187,
1978.
DePaolo, D. J.: Trace element and isotopic effects of combined wallrock
assimilation and fractional crystallization, Earth Planet. Sc. Lett., 53,
189–202, 1981.
Di Renzo, V., Wohletz, K., Civetta, L., Moretti, R., Orsi, G., and
Gasparini, P.: The thermal regime of the Campi Flegrei magmatic system
reconstructed through 3D numerical simulations, J. Volcanol. Geoth.
Res., 328, 210–221, 2016.
Donaldson, C. H.: Olivine crystal types in harrisitic rocks of the Rhum
pluton and in Archean spinifex rocks, Geol. Soc. Am. Bull., 85, 1721–1726,
1974.
Duda, A. and Schmincke, H. U.: Polybaric differentiation of alkali basaltic
magmas: evidence from green-core clinopyroxenes (Eifel, FRG), Contrib.
Mineral. Petr., 91, 340–353, 1985.
Duffield, W. A. and Sass, J. H.: Geothermal energy: Clean power from the
earth's heat (Vol. 1249, p. 34), U.S. Geothermal Development, US
Geological Survey, Reston, VA, 2003.
Dungan, M. A., Long, P. E., and Rhodes, J. M.: Magma mixing at mid-ocean
ridges: Evidence from legs 45 and 46-DSDP, Geophys. Res. Lett., 5, 423–425,
1978.
Dziewonski, A. M. and Anderson, D. L.: Preliminary reference Earth model,
Phys. Earth Planet. In., 25, 297–356, 1981.
Elardo, S. M. and Shearer, C. K.: Magma chamber dynamics recorded by
oscillatory zoning in pyroxene and olivine phenocrysts in basaltic lunar
meteorite Northwest Africa 032, Am. Mineral., 99, 355–368, 2014.
Ellis, B. S., Szymanowski, D., Wotzlaw, J. F., Schmitt, A. K., Bindeman, I.
N., Troch, J., Harris, C., Bachmann, O., and Guillong, M.: Post-caldera
volcanism at the Heise volcanic field: implications for petrogenetic models,
J. Petrol., 58, 115–136, 2017.
Eskandari, A., Amini, S., De Rosa, R., and Donato, P.: Nature of the magma
storage system beneath the Damavand volcano (N. Iran): An integrated study,
Lithos, 300, 154–176, 2018.
Falloon, T. J. and Green, D. H.: Anhydrous partial melting of MORB pyrolite
and other peridotite compositions at 10 kbar: implications for the origin of
primitive MORB glasses, Miner. Petrol., 37, 181–219, 1987.
Faure, F., Trolliard, G., Nicollet, C., and Montel, J. M.: A developmental
model of olivine morphology as a function of the cooling rate and the degree
of undercooling, Contrib. Mineral. Petr., 145, 251–263, 2003.
Feng, W. and Zhu, Y.: Decoding magma storage and pre-eruptive processes in
the plumbing system beneath early Carboniferous arc volcanoes of
southwestern Tianshan, Northwest China, Lithos, 322, 362–375, 2018.
Ferrari, L., López-Martínez, M., Aguirre-Díaz, G., and
Carrasco-Núñez, G.: Space-time patterns of Cenozoic arc volcanism in
Central Mexico: from the Sierra Madre Occidental to the Mexican Volcanic
Belt, Geology, 27, 303–306, 1999.
Ferrari, L., Orozco-Esquivel, T., Manea, V., and Manea, M.: The dynamic history
of the Trans-Mexican Volcanic Belt and the Mexico subduction zone,
Tectonophysics, 522, 122–149, 2012.
Ferriz, H. and Mahood, G. A.: Eruption rates and compositional trends at
Los Humeros volcanic center, Puebla, Mexico, J. Geophys. Res.-Sol. Ea.,
89, 8511–8524, 1984.
Ferriz, H. and Mahood, G. A.: Strong compositional zonation in a silicic
magmatic system: Los Humeros, Mexican Neovolcanic Belt, J. Petrol., 28,
171–209, 1987.
Fitz-Díaz, E., Lawton, T. F., Juárez-Arriaga, E., and
Chávez-Cabello, G.: The Cretaceous-Paleogene Mexican orogen: Structure,
basin development, magmatism and tectonics, Earth-Sci. Rev., 183, 56–84,
2018.
Fowler, A. D., Berger, B., Shore, M., Jones, M. I., and Ropchan, J.:
Supercooled rocks: development and significance of varioles, spherulites,
dendrites and spinifex in Archaean volcanic rocks, Abitibi Greenstone belt,
Canada, Precambrian Res., 115, 311–328, 2002.
Freundt, A. and Schmincke, H. U.: Petrogenesis of rhyolite-trachyte-basalt
composite ignimbrite P1, Gran Canada, Canary Islands, J. Geophys. Res.-Sol.
Ea., 100, 455–474, 1995.
Fujii, T. and Scarfe, C. M.: Composition of liquids coexisting with spinel
lherzolite at 10 kbar and the genesis of MORBs, Contrib. Mineral. Petr., 90,
18–28, 1985.
Galipp, K., Klügel, A., and Hansteen, T. H.: Changing depths of magma
fractionation and stagnation during the evolution of an oceanic island
volcano: La Palma (Canary Islands), J. Volcanol. Geoth. Res., 155, 285–306,
2006.
Gao, J. F. and Zhou, M. F.: Generation and evolution of siliceous high
magnesium basaltic magmas in the formation of the Permian Huangshandong
intrusion (Xinjiang, NW China), Lithos, 162, 128–139, 2013.
Gardner, M. F., Troll, V. R., Gamble, J. A., Gertisser, R., Hart, G. L.,
Ellam, R. M., Harris, C., and Wolf, J. A.: Shallow level differentiation
processes at Krakatau: evidence for late-stage crustal contamination, J.
Petrol., 54, 149–182, 2013.
Gernon, T. M., Upton, B. G. J., Ugra, R., Yücel, C., Taylor, R. N., and
Elliott, H.: Complex subvolcanic magma plumbing system of an alkali basaltic
maar-diatreme volcano (Elie Ness, Fife, Scotland), Lithos, 264, 70–85, 2016.
Geshi, N. and Oikawa, T.: The spectrum of basaltic feeder systems from
effusive lava eruption to explosive eruption at Miyakejima volcano, Japan,
B. Volcanol., 76, 797, https://doi.org/10.1007/s00445-014-0797-7, 2014.
Ginibre, C., Kronz, A., and Wörner, G.: High-resolution
quantitative imaging of plagioclase composition using accumulated
backscattered electron images: new constraints on oscillatory zoning,
Contrib. Mineral. Petr., 142, 436–448, 2002.
Ginibre, C., Wörner, G., and Kronz, A.: Crystal zoning as
an archive for magma evolution, Elements, 3, 261–266, 2007.
Giordano, G., Lucci, F., Phillips, D., Cozzupoli, D., and Runci, V.:
Stratigraphy, geochronology and evolution of the Mt. Melbourne volcanic
field (North Victoria Land, Antarctica), B. Volcanol., 74, 1985–2005, 2012.
Giuffrida, M. and Viccaro, M.: Three years (2011–2013) of eruptive
activity at Mt. Etna: working modes and timescales of the modern volcano
plumbing system from micro-analytical studies of crystals, Earth-Sci. Rev.,
171, 289–322, 2017.
Glazner, A. F., Bartley, J. M., Coleman, D. S., Gray, W., and Taylor, R. Z.:
Are plutons assembled over millions of years by amalgamation from small
magma chambers?, GSA Today, 14, 4–12, 2004.
Gómez-Tuena, A. and Carrasco-Núñez, G.: Cerro Grande volcano:
the evolution of a Miocene stratocone in the early Trans-Mexican Volcanic
Belt, Tectonophysics, 318, 249–280, 2000.
Gómez-Tuena, A., LaGatta, A. B., Langmuir, C. H., Goldstein, S. L.,
Ortega-Gutiérrez, F., and Carrasco-Núñez, G.: Temporal control of
subduction magmatism in the eastern Trans-Mexican Volcanic Belt: mantle
sources, slab contributions, and crustal contamination, Geochem. Geophy.
Geosy., 4, 8912, https://doi.org/10.1029/2003GC000524, 2003.
Gómez-Tuena, A., Langmuir, C. H., Goldstein, S. L., Straub, S., and
Ortega-Gutiérrez, F.: Geochemical evidence for slab melting in the
Trans-Mexican Volcanic Belt, J. Petrol., 48, 537–562, 2007a.
Gómez-Tuena, A., Orozco-Esquivel, M. T., and Ferrari, L.: Igneous
petrogenesis of the Transmexican Volcanic Belt, Geol. Soc. Am. Spec. Pap., 422,
129–181, https://doi.org/10.1130/2007.2422(05), 2007b.
Gómez-Tuena, A., Mori, L., and Straub, S.: Geochemical and petrological
insights into the tectonic origin of the Transmexican Volcanic Belt,
Earth-Sci. Rev., 183, 153–181, https://doi.org/10.1016/j.earscirev.2016.12.006, 2018.
Gregg, P. M., De Silva, S. L., Grosfils, E. B., and Parmigiani, J. P.:
Catastrophic caldera-forming eruptions: Thermomechanics and implications for
eruption triggering and maximum caldera dimensions on Earth, J. Volcanol. Geoth. Res., 241, 1–12, 2012.
Grove, T. L.: Origin of Magmas, Encyclopedia of Volcanoes, Academic Press, London, UK, 133–148, 2000.
Grove, T. L., Gerlach, D. C., and Sando, T. W.: Origin of calc-alkaline
series lavas at Medicine Lake volcano by fractionation, assimilation and
mixing, Contrib. Mineral. Petr., 80, 160–182, 1982.
Grove, T. L., Donnelly-Nolan, J. M., and Housh, T.: Magmatic processes that
generated the rhyolite of Glass Mountain, Medicine Lake volcano, N.
California, Contrib. Mineral. Petr., 127, 205–223, 1997.
Gualda, G. A. and Ghiorso, M. S.: The Bishop Tuff giant magma body: an
alternative to the Standard Model, Contrib. Mineral. Petr., 166, 755–775,
2013.
Gunnarsson, G. and Aradóttir, E. S.: The deep roots of geothermal
systems in volcanic areas: boundary conditions and heat sources in reservoir
modeling, Transport Porous Med., 108, 43–59, 2015.
Herzberg, C. and O'Hara, M. J.: Plume-associated ultramafic magmas of
Phanerozoic age, J. Petrol., 43, 1857–1883, 2002.
Hildreth, W.: The Bishop Tuff: Evidence for the origin of compositional
zonation in silicic magma chambers, Geol. Soc. Am. Spec. Pap., 180, 43–75, https://doi.org/10.1130/SPE180-p43, 1979.
Hildreth, W.: Gradients in silicic magma chambers: implications for
lithospheric magmatism, J. Geophys. Res.-Sol. Ea., 86, 10153–10192,
1981.
Hildreth, W. and Wilson, C. J.: Compositional zoning of the Bishop Tuff, J.
Petrol., 48, 951–999, 2007.
Hirano, N., Yamamoto, J., Kagi, H., and Ishii, T.: Young, olivine
xenocryst-bearing alkali-basalt from the oceanward slope of the Japan
Trench, Contrib. Mineral. Petrol., 148, 47–54, 2004.
Hofmann, A. W.: Magma chambers on a slow burner, Nature, 49, 677–678, 2012.
Holland, T. and Powell, R.: Plagioclase feldspars: activity-composition
relations based upon Darken's quadratic formalism and Landau theory, Am.
Mineral., 77, 53–61, 1992.
Hu, J. H., Song, X. Y., He, H. L., Zheng, W. Q., Yu, S. Y., Chen, L. M., and
Lai, C. K.: Constraints of texture and composition of clinopyroxene
phenocrysts of Holocene volcanic rocks on a magmatic plumbing system beneath
Tengchong, SW China, J. Asian Earth Sci., 154, 342–353, 2018.
Humphreys, M. C., Blundy, J. D., and Sparks, R. S. J.: Magma evolution and
open-system processes at Shiveluch Volcano: Insights from phenocryst zoning,
J. Petrol., 47, 2303–2334, 2006.
Humphreys, M. C., Christopher, T., and Hards, V.: Microlite transfer by
disaggregation of mafic inclusions following magma mixing at Soufrière
Hills volcano, Montserrat, Contrib. Mineral. Petr., 157, 609–624, 2009.
Huraiová, M., Konečný, P., Holický, I., Milovská, S.,
Nemec, O., and Hurai, V.: Mineralogy and origin of peralkaline
granite-syenite nodules ejected in Pleistocene basalt from Bulhary, southern
Slovakia, Period. Mineral., 86, 1–17, 2017.
Innocenti, S., del Marmol, M. A., Voight, B., Andreastuti, S., and Furman,
T.: Textural and mineral chemistry constraints on evolution of Merapi
Volcano, Indonesia, J. Volcanol. Geoth. Res., 261, 20–37, 2013.
Jackson, M. D., Blundy, J., and Sparks, R. S. J.: Chemical differentiation, cold storage and remobilization of magma in the Earth's crust, Nature, 564, 405–409, https://doi.org/10.1038/s41586-018-0746-2, 2018.
Jarosewich, E., Nelen, J. A., and Norberg, J. A.: Reference samples for
electron microprobe analysis, Geostandard. Newslett., 4, 43–47, 1980 (with
corrections in: Geostandard. Newslett., 4, 257–258).
Jeffery, A. J., Gertisser, R., Troll, V. R., Jolis, E. M., Dahren, B.,
Harris, C., Tindle, A. G., Preece, K., O'Driscoll, B., Humaida, H., and
Chadwick, J. P.: The pre-eruptive magma plumbing system of the 2007–2008
dome-forming eruption of Kelut volcano, East Java, Indonesia, Contrib.
Mineral. Petr., 166, 275–308, 2013.
Jellinek, A. M. and DePaolo, D. J.: A model for the origin of large silicic
magma chambers: precursors of caldera-forming eruptions, B. Volcanol., 65,
363–381, 2003.
Keiding, J. K. and Sigmarsson, O.: Geothermobarometry of the 2010
Eyjafjallajökull eruption: New constraints on Icelandic magma plumbing
systems, J. Geophys. Res.-Sol. Ea., 117, B00C09, https://doi.org/10.1029/2011JB008829, 2012.
Keil, K., Fodor, R. V., and Bunch, T. E.: Contributions to the mineral
chemistry of Hawaiian rocks, Contrib. Mineral. Petr., 37, 253–276, 1972.
Kelley, D. F. and Barton, M.: Pressures of crystallization of Icelandic
magmas, J. Petrol., 49, 465–492, 2008.
Kinman, W. S. and Neal, C. R.: Magma evolution revealed by anorthite-rich
plagioclase cumulate xenoliths from the Ontong Java Plateau: insights into
LIP magma dynamics and melt evolution, J. Volcanol. Geoth. Res., 154,
131–157, 2006.
Kinzler, R. J., Donnelly-Nolan, J. M., and Grove, T. L.: Late Holocene
hydrous mafic magmatism at the Paint Pot Crater and Callahan flows, Medicine
Lake Volcano, N. California and the influence of H2O in the generation of
silicic magmas, Contrib. Mineral. Petr., 138, 1–16, 2000.
Klügel, A., Hoernle, K. A., Schmincke, H. U., and White, J. D.: The
chemically zoned 1949 eruption on La Palma (Canary Islands): Petrologic
evolution and magma supply dynamics of a rift zone eruption, J. Geophys.
Res.-Sol. Ea., 105, 5997–6016, 2000.
Klügel, A., Hansteen, T. H., and Galipp, K.: Magma storage and
underplating beneath Cumbre Vieja volcano, la Palma (Canary Islands), Earth
Planet. Sc. Lett., 236, 211–226, 2005.
Kontonikas-Charos, A., Ciobanu, C. L., Cook, N. J., Ehrig, K., Krneta, S.,
and Kamenetsky, V. S.: Feldspar evolution in the Roxby Downs Granite, host
to Fe-oxide Cu-Au-(U) mineralisation at Olympic Dam, South Australia, Ore
Geol. Rev., 80, 838–859, 2017.
Kratzmann, D. J., Carey, S., Scasso, R., and Naranjo, J. A.: Compositional
variations and magma mixing in the 1991 eruptions of Hudson volcano, Chile,
B. Volcanol., 71, 419–439, https://doi.org/10.1007/s00445-008-0234-x, 2009.
Kushiro, I.: The system forsterite-diopside-silica with and without water at
high pressures, Am. J. Sci., 267, 269–294, 1969.
Kushiro, I. and Yoder Jr., H. S.: Melting of forsterite and enstatite at
high pressures and hydrous conditions, Carnegie Inst. Wash. Yrbk., 67,
153–158, 1969.
Lange, R. A., Frey, H. M., and Hector, J.: A thermodynamic model for the
plagioclase-liquid hygrometer/thermometer, Am. Mineral., 94, 494–506, 2009.
Langmuir, C. H. and Hanson, G. N.: An evaluation of major element
heterogeneity in the mantle sources of basalts, Philos. T. R. Soc. S.-A,
297, 383–407, 1980.
Latutrie, B., Harris, A., Médard, E., and Gurioli, L.: Eruption and emplacement dynamics of a thick trachytic lava flow of the Sancy volcano (France), B. Volcanol.,79, 4, https://doi.org/10.1007/s00445-016-1084-6, 2017.
Laumonier, M., Scaillet, B., Arbaret, L., and Champallier, R.: Experimental
simulation of magma mixing at high pressure, Lithos, 196, 281–300, 2014.
Le Maitre, R. W., Streckeisen, A., Zanettin, B., Le Bas, M. J., Bonin, B.,
Bateman, P., Bellieni, G., Dudek, A., Efremova, S., Keller, J., Lameyre, J.,
Sabine, P. A., Schmid, R., Sqrensen, H., and Woolley, A. R.: Igneous Rocks. A
Classification and Glossary of terms. Recommendations of the IUGS
Subcommission on the Systematics of Igneous Rocks, Cambridge University
Press, 236 pp., 2002.
Lee, C. T. A., Lee, T. C., and Wu, C. T.: Modeling the compositional
evolution of recharging, evacuating, and fractionating (REFC) magma
chambers: Implications for differentiation of arc magmas, Geochim.
Cosmochim. Ac., 143, 8–22, 2014.
Lindsley, D. H.: Pyroxene thermometry, Am. Mineral., 68, 477–493, 1983.
Lucci, F., Rossetti, F., White, J. C., Moghadam, H. S., Shirzadi, A., and Nasrabady, M.: Tschermak fractionation in calc-alkaline magmas: the Eocene Sabzevar volcanism (NE Iran), Arab. J. Geosci., 9, 573, https://doi.org/10.1007/s12517-016-2598-0, 2016.
Lucci, F., Rossetti, F., Becchio, R., Theye, T., Gerdes, A., Opitz, J.,
Baez, W., Bardelli, L., De Astis, G., Viramonte, J., and Giordano, G.:
Magmatic Mn-rich garnets in volcanic settings: Age and longevity of the
magmatic plumbing system of the Miocene Ramadas volcanism (NW Argentina),
Lithos, 322, 238–249, 2018.
Maclennan, J., McKenzie, D., Gronvöld, K., and Slater, L.: Crustal
accretion under northern Iceland, Earth Planet. Sc. Lett., 191, 295–310,
2001.
Martinez, M., Fernindez, R., Visquez, R., Vega, R., and Reyes, S. A.: Asimilacion del metodo magnetotelurico para la exploracion geotermica, Quinto informe tecnico CICESE-IIE, CICESE, Mexico, 1983.
Masotta, M., Mollo, S., Freda, C., Gaeta, M., and Moore, G.:
Clinopyroxene–liquid thermometers and barometers specific to alkaline
differentiated magmas, Contrib. Mineral. Petr., 166, 1545–1561, 2013.
Matthews, N. E., Vazquez, J. A., and Calvert, A. T.: Age of the Lava Creek
supereruption and magma chamber assembly at Yellowstone based on
40Ar∕39Ar and U-Pb dating of sanidine and zircon crystals,
Geochem. Geophy. Geosy., 16, 2508–2528, 2015.
Melluso, L., Conticelli, S., and De'Gennaro, R.: Kirschsteinite in the Capo
di Bove melilite leucitite lava (cecilite), Alban Hills, Italy, Mineral.
Mag., 74, 887–902, 2010.
Melluso, L., Morra, V., Guarino, V., De'Gennaro, R., Franciosi, L., and
Grifa, C.: The crystallization of shoshonitic to peralkaline
trachyphonolitic magmas in a H2O–Cl–F-rich environment at Ischia
(Italy), with implications for the feeder system of the Campania Plain
volcanoes, Lithos, 210, 242–259, 2014.
Moghadam, H. S., Rossetti, F., Lucci, F., Chiaradia, M., Gerdes, A.,
Martinez, M. L., Ghorbani, G., and Nasrabady, M.: The calc-alkaline and
adakitic volcanism of the Sabzevar structural zone (NE Iran): implications
for the Eocene magmatic flare-up in Central Iran, Lithos, 248, 517–535,
2016.
Mollo, S., Del Gaudio, P., Ventura, G., Iezzi, G., and Scarlato, P.:
Dependence of clinopyroxene composition on cooling rate in basaltic magmas:
implications for thermobarometry, Lithos, 118, 302–312, 2010.
Mordick, B. E. and Glazner, A. F.: Clinopyroxene thermobarometry of basalts
from the Coso and Big Pine volcanic fields, California, Contrib. Mineral.
Petr., 152, 111–124, 2006.
Morimoto, N.: Nomenclature of pyroxenes, Am. Mineral., 73, 1123–1133, 1988.
Morimoto, N.: Nomenclature of pyroxenes, Mineral. J., 14, 198–221, 1989.
Mutch, E. J. F., Blundy, J. D., Tattitch, B. C., Cooper, F. J., and Brooker,
R. A.: An experimental study of amphibole stability in low-pressure granitic
magmas and a revised Al-in-hornblende geobarometer, Contrib. Mineral. Petr.,
171, 1–27, https://doi.org/10.1007/s00410-016-1298-9, 2016.
Nabelek, P. I., Hofmeister, A. M., and Whittington, A. G.: The influence of
temperature-dependent thermal diffusivity on the conductive cooling rates of
plutons and temperature-time paths in contact aureoles, Earth Planet. Sc.
Lett., 317, 157–164, 2012.
Nairn, I. A., Kobayashi, T., and Nakagawa, M.: The ∼10 ka multiple
vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo
Volcanic Zone, New Zealand: Part 1. Eruptive processes during regional
extension, J. Volcanol. Geoth. Res., 86, 19–44, 1998.
Nakagawa, M., Nairn, I. A., and Kobayashi, T.: The similar to 10 ka multiple
vent pyroclastic eruption sequence at Tongariro Volcanic Centre, Taupo
Volcanic Zone, New Zealand: Part 2. Petrological insights into magma storage
and transport during regional extension, J. Volcanol. Geoth. Res., 86,
45–65, 1998.
Namur, O., Charlier, B., Toplis, M. J., and Vander Auwera, J.: Prediction of
plagioclase-melt equilibria in anhydrous silicate melts at 1-atm, Contrib.
Mineral. Petr., 163, 133–150, 2012.
Neave, D. A., Maclennan, J., Hartley, M. E., Edmonds, M., and Thordarson,
T.: Crystal storage and transfer in basaltic systems: the Skuggafjöll
eruption, Iceland, J. Petrol., 55, 2311–2346, 2014.
Negendak, J. F. W., Emmermann, R., Krawczyk, R., Mooser, F., Tobschall, H.,
and Werle, D.: Geological and geochemical investigations on the eastern
trans mexican volcanic belt, Geofis. Int., 24, 477–575, 1985.
Nekvasil, H.: Feldspar crystallisation in felsic magmas: a review, Earth
Env. Sci. T. R. So., 83, 399–407, 1992.
Njonfang, E., Tchoneng, G. T., Cozzupoli, D., and Lucci, F.: Petrogenesis of
the Sabongari alkaline complex, cameroon line (central Africa): Preliminary
petrological and geochemical constraints, J. Afr. Earth Sci., 83, 25–54,
2013.
Norini, G., Groppelli, G., Sulpizio, R., Carrasco-Núñez, G.,
Dávila-Harris, P., Pellicioli, C., Zucca, F., and De Franco, R.:
Structural analysis and thermal remote sensing of the Los Humeros Volcanic
Complex: Implications for volcano structure and geothermal exploration, J. Volcanol. Geoth. Res., 301, 221–237, 2015.
O'Neill, H. S. C. and Jenner, F.: The global pattern of trace element
distributions in ocean floor basalts, Nature, 491, 698–705, 2012.
Pamukcu, A. S., Gualda, G. A., Bégué, F., and Gravley, D. M.: Melt
inclusion shapes: Timekeepers of short-lived giant magma bodies, Geology,
43, 947–950, 2015.
Papike, J. J., Spilde, M. N., Fowler, G. W., Layne, G. D., and Shearer, C.
K.: The Lodran primitive achondrite: Petrogenetic insights from electron and
ion microprobe analysis of olivine and orthopyroxene, Geochim. Cosmochim.
Ac., 59, 3061–3070, 1995.
Patanè, D., De Gori, P., Chiarabba, C., and Bonaccorso, A.: Magma ascent
and the pressurization of Mount Etna's volcanic system, Science, 299,
2061–2063, 2003.
Petrone, C. M., Bugatti, G., Braschi, E., and Tommasini, S.: Pre-eruptive
magmatic processes re-timed using a non-isothermal approach to magma chamber
dynamics, Nat. Commun., 7, 12946, https://doi.org/10.1038/ncomms12946, 2016.
Pietruszka, A. J. and Garcia, M. O.: The size and shape of Kilauea
Volcano's summit magma storage reservoir: a geochemical probe, Earth Planet.
Sc. Lett., 167, 311–320, 1999.
Piilonen, P. C., McDonald, A. M., and Lalonde, A. E.: The crystal chemistry
of aegirine from Mont Saint-Hilaire, Quebec, Can. Mineral., 36, 779–791,
1998.
Plümper, O. and Putnis, A.: The complex hydrothermal history of
granitic rocks: multiple feldspar replacement reactions under subsolidus
conditions, J. Petrol., 50, 967–987, 2009.
Preece, K., Barclay, J., Gertisser, R., and Herd, R. A.: Textural and
micro-petrological variations in the eruptive products of the 2006
dome-forming eruption of Merapi volcano, Indonesia: implications for
sub-surface processes, J. Volcanol. Geoth. Res., 261, 98–120, 2013.
Presnall, D. C., Dixon, S. A., Dixon, J. R., O'Donnell, T. H., Brenner, N.
L., Schrock, R. L., and Dycus, D. W.: Liquidus phase relations on the join
diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the
generation and crystallization of basaltic magma, Contrib. Mineral. Petr.,
66, 203–220, 1978.
Putirka, K.: Magma transport at Hawaii: Inferences based on igneous
thermobarometry, Geology, 25, 69–72, 1997.
Putirka, K.: Clinopyroxene + liquid equilibria to 100 kbar and 2450 K,
Contrib. Mineral. Petr., 135, 151–163, 1999.
Putirka, K. D.: Mantle potential temperatures at Hawaii, Iceland, and the
mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for
thermally driven mantle plumes, Geochem. Geophy. Geosy., 6, Q05L08,
https://doi.org/10.1029/2005GC000915, 2005a.
Putirka, K. D.: Igneous thermometers and barometers based on plagioclase+
liquid equilibria: Tests of some existing models and new calibrations, Am.
Mineral., 90, 336–346, 2005b.
Putirka, K. D.: Thermometers and barometers for volcanic systems, Rev.
Mineral. Geochem., 69, 61–120, 2008.
Putirka, K., Johnson, M., Kinzler, R., Longhi, J., and Walker, D.:
Thermobarometry of mafic igneous rocks based on clinopyroxene-liquid
equilibria, 0–30 kbar, Contrib. Mineral. Petr., 123, 92–108, 1996.
Putirka, K., Ryerson, F. J., and Mikaelian, H.: New igneous thermobarometers
for mafic and evolved lava compositions, based on clinopyroxene + liquid
equilibria, Am. Mineral., 88, 1542–1554, 2003.
Putirka, K. D., Perfit, M., Ryerson, F. J., and Jackson, M. G.: Ambient and
excess mantle temperatures, olivine thermometry, and active vs. passive
upwelling, Chem. Geol., 241, 177–206, 2007.
Redman, B. A. and Keays, R. R.: Archaean basic volcanism in the eastern
Goldfields province, Yilgarn Block, western Australia, Precambrian Res., 30,
113–152, 1985.
Renjith, M. L.: Micro-textures in plagioclase from 1994–1995 eruption,
Barren Island Volcano: evidence of dynamic magma plumbing system in the
Andaman subduction zone, Geosci. Front., 5, 113–126, 2014.
Reubi, O. and Nicholls, I. A.: Magmatic evolution at Batur volcanic field,
Bali, Indonesia: petrological evidence for polybaric fractional
crystallization and implications for caldera-forming eruptions, J. Volcanol. Geoth. Res., 138, 345–369, 2004.
Rhodes, J. M., Dungan, M. A., Blanchard, D. P., and Long, P. E.: Magma
mixing at mid-ocean ridges: evidence from basalts drilled near 22 N on the
Mid-Atlantic Ridge, Tectonophysics, 55, 35–61, 1979.
Rivera, T. A., Schmitz, M. D., Crowley, J. L., and Storey, M.: Rapid magma
evolution constrained by zircon petrochronology and 40Ar∕39Ar
sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA, Geology, 42,
643–646, 2014.
Roeder, P. L. and Emslie, R.: Olivine-liquid equilibrium, Contrib. Mineral.
Petr., 29, 275–289, 1970.
Rojas-Ortega, E.: Litoestratigrafìa, petrografìa y geoquìmica
de la toba Llano, y su relacìon con el crater el Xalapazco, Caldera de
LosHumeros, Puebla, MS thesis, IPICYT, San Luis Potosí, México,
129 pp., 2016.
Romo-Jones, J. M., Gutiérrez-Negrín, L. C. A., Flores-Armenta, M.,
Del Valle, J. L., and García, A.: Mexico, in: 2017 Annual Report, IEA
Geothermal, 66–72, available at:
https://drive.google.com/file/d/1ztLlE5MFdLwSndR7iLmAkMXnQth4c86T/view (last access: 16 January 2020),
2017.
Rutherford, M. J.: Magma ascent rates, Rev. Mineral. Geochem., 69,
241–271, 2008.
Rutherford, M. J. and Gardner, J. E.: Rates of magma ascent, Encyclopedia
of Volcanoes, Academic Press, London, UK, 207–217, 2000.
Rutherford, M. J., Sigurdsson, H., Carey, S., and Davis, A.: The May 18,
1980, eruption of Mount St. Helens: 1. Melt composition and experimental
phase equilibria, J. Geophys. Res.-Sol. Ea., 90, 2929–2947, 1985.
Sano, T. and Yamashita, S.: Experimental petrology of basement lavas from
Ocean Drilling Program Leg 192: implications for differentiation processes
in Ontong Java Plateau magmas, Geol. Soc. Spec. Publ., 229, 185–218,
2004.
Scott, J. A., Mather, T. A., Pyle, D. M., Rose, W. I., and Chigna, G.: The
magmatic plumbing system beneath Santiaguito Volcano, Guatemala, J. Volcanol. Geoth. Res., 237, 54–68, 2012.
Shane, P. and Coote, A.: Thermobarometry of Whangarei volcanic field lavas,
New Zealand: Constraints on plumbing systems of small monogenetic basalt
volcanoes, J. Volcanol. Geoth. Res., 354, 130–139, 2018.
Sigmarsson, O., Vlastelic, I., Andreasen, R., Bindeman, I., Devidal, J.-L., Moune, S., Keiding, J. K., Larsen, G., Höskuldsson, A., and Thordarson, Th.: Remobilization of silicic intrusion by mafic magmas during the 2010 Eyjafjallajökull eruption, Solid Earth, 2, 271–281, https://doi.org/10.5194/se-2-271-2011, 2011.
Sisson, T. W. and Grove, T. L.: Temperatures and H2O contents of
low-MgO high-alumina basalts, Contrib. Mineral. Petr., 113, 167–184, 1993.
Sisson, T. W. and Layne, G. D.: H2O in basalt and basaltic andesite
glass inclusions from four subduction-related volcanoes, Earth Planet. Sc.
Lett., 117, 619–635, 1993.
Smith, R. L. and Shaw, H. R.: Igneous-related geothermal systems, US
Geological Survey Circular, 726, 58–83, 1975.
Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., and Blundy, J.:
Evolution of major and trace element composition during melt migration
through crystalline mush: implications for chemical differentiation in the
crust, Am. J. Sci., 314, 895–939, 2014.
Sparks, R. S. J.: The dynamics of bubble formation and growth in magmas: a
review and analysis, J. Volcanol. Geoth. Res., 3, 1–37, 1978.
Sparks, R. S. J., Young, S. R., Barclay, J., Calder, E. S., Cole, P.,
Darroux, B., Davies, M. A., Druitt, T. H., Harford, C., Herd, R., James, M.,
Lejeune, A. M., Loughliun, S., Norton, G., Skerrit, G., Stasiuk, M. V.,
Stevens, N. S., Toothill, J., Wadge, G., and Watts, R.: Magma production and
growth of the lava dome of the Soufriere Hills Volcano, Montserrat, West
Indies: November 1995 to December 1997, Geophys. Res. Lett., 25,
3421–3424, 1998.
Streck, M. J.: Mineral textures and zoning as evidence for open system
processes, Rev. Mineral. Geochem., 69, 595–622, 2008.
Stroncik, N. A., Klügel, A., and Hansteen, T. H.: The magmatic plumbing
system beneath El Hierro (Canary Islands): constraints from phenocrysts and
naturally quenched basaltic glasses in submarine rocks, Contrib. Mineral.
Petr., 157, 593–607, https://doi.org/10.1007/s00410-008-0354-5, 2009.
Suter, M.: Structural traverse across the Sierra Madre Oriental fold-thrust
belt in east-central Mexico, Geol. Soc. Am. Bull., 98, 249–264, 1987.
Takahashi, E.: Melting of a dry peridotite KLB-1 up to 14 GPa: Implications
on the origin of peridotitic upper mantle, J. Geophys. Res.-Sol. Ea., 91,
9367–9382, 1986.
Thompson, R. N.: Primary basalts and magma genesis, Contrib. Mineral. Petr.,
45, 317–341, 1974.
Troll, V. R., Deegan, F. M., Jolis, E. M., Harris, C., Chadwick, J. P.,
Gertisser, R., Schwarzkopf, L. M., Borisova, A., Bindeman, I. N., Sumarti,
S., and Preece, K.: Magmatic differentiation processes at Merapi Volcano:
inclusion petrology and oxygen isotopes, J. Volcanol. Geoth. Res., 261,
38–49, 2013.
Ubide, T., Gale, C., Arranz, E., Lago, M., and Larrea, P.: Clinopyroxene and
amphibole crystal populations in a lamprophyre sill from the Catalonian
Coastal Ranges (NE Spain): a record of magma history and a window to
mineral-melt partitioning, Lithos, 184, 225–242, 2014.
Urbani, S., Giordano, G., Lucci, F., Rossetti, F., Acocella, V., and Carrasco-Núñez, G.: Estimating the depth and evolution of intrusions at resurgent calderas: Los Humeros (Mexico), Solid Earth Discuss., https://doi.org/10.5194/se-2019-100, in review, 2019.
Ushioda, M., Takahashi, E., Hamada, M., and Suzuki, T.: Water content in arc basaltic magma in the Northeast Japan and Izu arcs: an estimate from Ca=Na partitioning between plagioclase and melt, Earth Planets Space, 66, 127, https://doi.org/10.1186/1880-5981-66-127, 2014.
Verma M. P., Verma, S. P., and Sanvincente, H.: Temperature field simulation
with stratification model of magma chamber under Los Humeros caldera,
Puebla, Mexico, Geothermics, 19, 187–197, 1990.
Verma, S. P.: Magma genesis and chamber processes at Los
Humeros caldera, Mexico – Nd and Sr isotope data, Nature, 302,
52–55, https://doi.org/10.1038/302052a0, 1983.
Verma, S. P.: Alkali and alkaline earth element geochemistry of Los Humeros
caldera, Puebla, Mexico, J. Volcanol. Geoth. Res., 20, 21–40, 1984.
Verma, S. P.: Heat source in Los Humeros geothermal area, Puebla, Mexico,
Geoth. Res. T., 9, 521–525, 1985a.
Verma, S. P.: On the magma chamber characteristics as inferred from surface
geology and geochemistry: examples from Mexican geothermal areas, Phys.
Earth Planet. In., 41, 207–214, 1985b.
Verma, S. P.: Geochemical evidence for a lithospheric source for magmas from
Los Humeros caldera, Puebla, Mexico, Chem. Geol., 164, 35–60, 2000.
Verma, S. P. and Andaverde, J.: Temperature field distribution from cooling of a magma chamber, Proceeding World Geothermal Congress 1995: Florence, ITaly, 18–31 May 1995, International Geothermal Association, Auckland, N.Z., 1119–1121, 1995.
Verma, S. P. and Gomez-Arias, E.: Three-dimensional temperature field
simulation of magma chamber in the Los Humeros geothermal field, Puebla,
Mexico, Appl. Therm. Eng., 52, 512–515, 2013.
Verma, S. P. and López, M.: Geochemistry of Los Humeros caldera,
Puebla, Mexico, B. Volcanol., 45, 63–79, 1982.
Verma, S. P., Gomez-Arias, E., and Andaverde, J.: Thermal sensitivity analysis
of emplacement of the magma chamber in Los Humeros caldera, Puebla, Mexico,
Int. Geol. Rev., 53, 905–925, 2011.
Viccaro, M., Calcagno, R., Garozzo, I., Giuffrida, M., and Nicotra, E.:
Continuous magma recharge at Mt. Etna during the 2011–2013 period controls
the style of volcanic activity and compositions of erupted lavas, Miner.
Petrol., 109, 67–83, 2015.
Viccaro, M., Barca, D., Bohrson, W. A., D'Oriano, C., Giuffrida, M.,
Nicotra, E., and Pitcher, B. W.: Crystal residence times from trace element
zoning in plagioclase reveal changes in magma transfer dynamics at Mt. Etna
during the last 400 years, Lithos, 248, 309–323, 2016.
Viniegra-Osorio, F.: Geología del Macizo de Teziutlán y la Cuenca
Cenozoica de Veracruz, Asoc. Mex. Geológos Petroleros Bol., 17, 101–163,
1965.
Wagner, T. P., Donnelly-Nolan, J. M., and Grove, T. L.: Evidence of hydrous
differentiation and crystal accumulation in the low-MgO,
high-Al2O3 lake basalt from Medicine Lake volcano, California,
Contrib. Mineral. Petr., 121, 201–216, 1995.
Wallace, P. and Anderson Jr., A. T.: Volatiles in Magmas, Encyclopedia of
Volcanoes, Academic Press, London, UK, 149–170, 2000.
Waters, L. E. and Lange, R. A.: An updated calibration of the
plagioclase-liquid hygrometer-thermometer applicable to basalts through
rhyolites, Am. Mineral., 100, 2172–2184, 2015.
Webster, J. D., Kinzler, R. J., and Mathez, E. A.: Chloride and water
solubility in basalt and andesite melts and implications for magmatic
degassing, Geochim. Cosmochim. Ac., 63, 729–738, 1999.
Welsch, B., Faure, F., Famin, V., Baronnet, A., and Bachèlery, P.:
Dendritic crystallization: A single process for all the textures of olivine
in basalts?, J. Petrol., 54, 539–574, 2013.
White, J. C., Parker, D. F., and Ren, M.: The origin of trachyte and
pantellerite from Pantelleria, Italy: insights from major element, trace
element, and thermodynamic modelling, J. Volcanol. Geoth. Res., 179, 33–55,
2009.
Whitney, D. L. and Evans, B. W.: Abbreviations for names of rock-forming
minerals, Am. Mineral., 95, 185–187, 2010.
Willcox, C.: Eruptive, Magmatic and Structural Evolution of a Large Explosive
Caldera Volcano: Los Humeros México, PhD Thesis, University of
Leicester, UK, 485 pp., 2011.
Wohletz, K., Civetta, L., and Orsi, G.: Thermal evolution of the Phlegraean
magmatic system, J. Volcanol. Geoth. Res., 91, 381–414, 1999.
Wood, B. J.: The solubility of alumina in orthopyroxene coexisting with
garnet, Contrib. Mineral. Petr., 46, 1–15, 1974.
Wotzlaw, J. R.-F., Bindeman, I. N., Watts, K. E., Schmitt, A. K., Caricchi,
L., and Schaltegger, U.: Linking rapid magma reservoir assembly and eruption
trigger mechanisms at evolved Yellowstone type supervolcanoes, Geology, 42,
807–810, 2014.
Wright, T. L. and Fiske, R. S.: Origin of the differentiated and hybrid
lavas of Kilauea volcano, Hawaii, J. Petrol., 12, 1–65, 1971.
Yáñez, C. and García, S.: Exploración de la región geotérmica Los Humeros-Las Derrumbadas, Estados de Puebla y Veracruz, Comisión Federal de Electricidad (C.F.E.) México, Internal Report, 1–96, 1982.
Yang, H. J., Kinzler, R. J., and Grove, T. L.: Experiments and models of
anhydrous, basaltic olivine-plagioclase-augite saturated melts from 0.001 to
10 kbar, Contrib. Mineral. Petr., 124, 1–18, 1996.
Yang, H. J., Frey, F. A., Clague, D. A., and Garcia, M. O.: Mineral
chemistry of submarine lavas from Hilo Ridge, Hawaii: implications for
magmatic processes within Hawaiian rift zones, Contrib. Mineral. Petr., 135,
355–372, 1999.
Zhang, J., Davidson, J. P., Humphreys, M. C. S., Macpherson, C. G., and
Neill, I.: Magmatic enclaves and andesitic lavas from Mt. Lamington, Papua
New Guinea: implications for recycling of earlier-fractionated minerals
through magma recharge, J. Petrol., 56, 2223–2256, 2015.
Zheng, J., Mao, J., Chai, F., and Yang, F.: Petrogenesis of Permian A-type
granitoids in the Cihai iron ore district, Eastern Tianshan, NW China:
Constraints on the timing of iron mineralization and implications for a
non-plume tectonic setting, Lithos, 260, 371–383, 2016.
Zhu, Y. and Ogasawara, Y.: Clinopyroxene phenocrysts (with green salite
cores) in trachybasalts: implications for two magma chambers under the
Kokchetav UHP massif, North Kazakhstan, J. Asian Earth Sci., 22, 517–527,
2004.
Short summary
Understanding the anatomy of active magmatic plumbing systems is essential to define the heat source(s) feeding geothermal fields. Mineral-melt thermobarometry and fractional crystallization (FC) models were applied to Quaternary volcanic products of the Los Humeros Caldera (Mexico). Results point to a magmatic system controlled by FC processes and made of magma transport and storage layers within the crust, with significant implications on structure and longevity of the geothermal reservoir.
Understanding the anatomy of active magmatic plumbing systems is essential to define the heat...