Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1457-2020
https://doi.org/10.5194/se-11-1457-2020
Method article
 | 
05 Aug 2020
Method article |  | 05 Aug 2020

Uncertainty assessment for 3D geologic modeling of fault zones based on geologic inputs and prior knowledge

Ashton Krajnovich, Wendy Zhou, and Marte Gutierrez

Data sets

Data for reproduction Ashton Krajnovich, Wendy Zhou, and Marte Gutierrez https://doi.org/10.5281/zenodo.3930592

Model code and software

Code for reproduction Ashton Krajnovich, Wendy Zhou, and Marte Gutierrez https://doi.org/10.5281/zenodo.3930592

Download
Short summary
In this paper, a novel methodology of 3D geologic model uncertainty assessment that considers both input data and prior knowledge is developed and applied to characterize fault zones – areas of damaged rock surrounding a fault surface that are important to subsurface engineering projects. The results of the study demonstrate how existing frameworks can be expanded to incorporate new types of information to arrive at a realistic and straightforward model of fault zone geometry in the subsurface.