Baker, E. T., Chen, Y. J., and Morgan, J. P.: The relationship
between near-axis hydrothermal cooling and the spreading rate of mid-ocean ridges, Earth
Planet. Sci. Lett., 142, 137–145,
https://doi.org/10.1016/0012-821X(96)00097-0, 1996.
a
Barrett, T. J. and Friedrichsen, H.: Strontium
and oxygen isotopic composition of some basalts from Hole 504B, Costa Rica Rift, DSDP Legs 69 and
70, Earth Planet. Sci. Lett., 60, 27–38,
https://doi.org/10.1016/0012-821X(82)90017-6, 1982.
a
Bickle, M. J. and Teagle, D. A. H.: Strontium alteration
in the Troodos ophiolite: implications for fluid fluxes and geochemical transport in mid-ocean
ridge hydrothermal systems, Earth Planet. Sci. Lett., 113, 219–237,
https://doi.org/10.1016/0012-821X(92)90221-G, 1992.
a
Bindeman, I. N., Bekker, A., and Zakharov, D. O.: Oxygen
isotope perspective on crustal evolution on early Earth: A record of Precambrian shales with
emphasis on Paleoproterozoic glaciations and Great Oxygenation Event, Earth Planet. Sci. Lett.,
437, 101–113,
https://doi.org/10.1016/j.epsl.2015.12.029, 2016.
a
Bindeman, I. N., Bayon, G., and Palandri, J.: Triple
oxygen isotope investigation of fine-grained sediments from major world's rivers: Insights into
weathering processes and global fluxes into the hydrosphere Earth Planet. Sci. Lett., 528, 115851,
https://doi.org/10.1016/j.epsl.2019.115851, 2019.
a
Blake, R. E., Chang, S. J., and Lepland, A.: Phosphate oxygen
isotopic evidence for a temperate and biologically active Archaean ocean, Nature, 464, 1029–1033,
https://doi.org/10.1038/nature08952, 2010.
a
Cathles, L. M.: An analysis of the hydrothermal system
responsible for massive sulfide deposition in the Hokuroku basin of Japan, in: The Kuroko and
Related Volcanogenic Massive Sulfide Deposits, edited by: Ohmoto, H., Skinner, B. J., Society of
Economic Geologists, 439–487,
https://doi.org/10.5382/Mono.05.27, 1983.
a,
b,
c
Cherkaoui, A. S. M., Wilcock, W. S. D., Dunn, R. A.,
and Toomey, D. R.: A numerical model of hydrothermal cooling and crustal accretion at a fast
spreading mid-ocean ridge, Geochem. Geophys. Geosyst., 4, 8616,
https://doi.org/10.1029/2001GC000215, 2003.
a,
b,
c,
d,
e,
f,
g,
h
Cocker, J. D., Griffin, B. J., and Muehlenbachs, K.: Oxygen
and carbon isotope evidence for seawater-hydrothermal alteration of the Macquarie Island
ophiolite, Earth Planet. Sci. Lett., 61, 112–122,
https://doi.org/10.1016/0012-821X(82)90043-7, 1982.
a
Cole, D. R. and Ohmoto, H.: Kinetics of isotopic exchange at
elevated temperatures and pressures, Rev. Mineral., 16, 41–90, 1986. a
Cole, D. R., Ohmoto, H., and Lasaga, A. C.: Isotopic exchange in
mineral-fluid systems. I. Theoretical evaluation of oxygen isotopic exchange accompanying surface
reactions and diffusion, Geochim. Cosmochim. Acta, 47, 1681–1693,
https://doi.org/10.1016/0016-7037(83)90018-2, 1983.
a,
b
Cole, D. R., Mottl, M. J., and Ohmoto, H.: Isotopic exchange in
mineral-fluid systems. II. Oxygen and hydrogen isotopic investigation of the experimental
basalt-seawater system, Geochim. Cosmochim. Acta, 51, 1523–1538,
https://doi.org/10.1016/0016-7037(87)90334-6, 1987.
a,
b,
c,
d,
e
Criss, R. E., Gregory, R. T., and Taylor, Jr., H. P.: Kinetic
theory of oxygen isotopic exchange between minerals and water, Geochim. Cosmochim. Acta, 51,
1099–1108,
https://doi.org/10.1016/0016-7037(87)90203-1, 1987.
a
Elthon, D., Lawrence, J. R., Hanson, R. E., and Stern, C.:
Modelling of oxygen-isotope data from the Sarmiento ophiolite complex, Chile,
Geol. Soc. Spec. Publ., 13, 185–197,
https://doi.org/10.1144/GSL.SP.1984.013.01.16, 1984.
a
Gelhar, L. W., Welty, C., and Rehfeldt, K. R.: A critical
review of data on field-scale dispersion in aquifers, Water Resour. Res., 28, 1955–1974,
https://doi.org/10.1029/92WR00607, 1992.
a
Fehn, U., Green, K. E., Von Herzen, R. P., and Cathles, L. M.:
Numerical models for the hydrothermal field at the Galapagos spreading center, J. Geophys. Res.,
88, 1033–1048,
https://doi.org/10.1029/JB088iB02p01033, 1983.
a
Furnes, H., de Wit, M., Staudigel, H., Rosing, M., and
Muehlenbachs, K.: A vestige of Earth's oldest ophiolite, Science, 315, 1704–1707,
https://doi.org/10.1126/science.1139170, 2007.
a
Galili, N., Shemesh, A., Yam, R., Brailovsky, I.,
Sela-Adler, M., Schuster, E. M., Collom, C., Bekker, A., Planavsky, N., Macdonald, F. A.,
Préat, A., Rudmin, M., Trela, W., Sturesson, U., Heikoop, J. M., Aurell, M., Ramajo, J., and
Halevy, I.: The geologic history of seawater oxygen isotopes from marine iron oxides, Science,
365, 469–473,
https://doi.org/10.1126/science.aaw9247, 2019.
a,
b
Gao, Y., Vils, F., Cooper, K. M., Banerjee, N., Harris, M., Hoefs,
J., Teagle, D. A. H., Casey, J. F., Elliott, T., Laverne, C., Alt, J. C., and Muehlenbachs, K.:
Downhole variation of lithium and oxygen isotopic compositions of oceanic crust at East Pacific
Rise, ODP Site 1256, Geochem. Geophy. Geosy., 13, Q10001,
https://doi.org/10.1029/2012GC004207, 2012.
a
Godderis, Y. and Veizer, J.: Tectonic control of
chemical and isotopic composition of ancient oceans: the impact of continental growth,
Am. J. Sci., 300, 434–461,
https://doi.org/10.2475/ajs.300.5.434, 2000.
a,
b,
c
Goddéris, Y., François, L. M., and Veizer,
J.: The early Paleozoic carbon cycle, Earth Planet. Sci. Lett., 190, 181–196,
https://doi.org/10.1016/S0012-821X(01)00377-6, 2001.
a,
b
Gregory, R. T. and Taylor, Jr., H. P.: An oxygen
isotope profile in a section of Cretaceous oceanic crust, Samail ophiolite, Oman: evidence for
δ18O buffering of the oceans by deep (
>5 km) seawater-hydrothermal
circulation at mid-ocean-ridges, J. Geophys. Res., 86, 2737–2755,
https://doi.org/10.1029/JB086iB04p02737,
1981.
a,
b,
c,
d,
e,
f,
g,
h,
i
Gregory, R. T., Criss, R. E., and Taylor, Jr., H. P.:
Oxygen isotope exchange kinetics of mineral pairs in closed and open systems: applications to
problems of hydrothermal alteration of igneous rocks and Precambrian iron formations, Chem. Geol.,
75, 1–42,
https://doi.org/10.1016/0009-2541(89)90019-3, 1989.
a,
b
Haar, L., Gallagher, J., and Kell, G.: NBS/NRC Steam Tables:
Thermodynamic and Transport Properties and Computer Programs for Vapor and Liquid States of Water
in SI Units, Hemisphere Publishing Corporation, Washington, 1984. a
Harris, K. R. and Woolf, L. A.: Pressure and temperature
dependence of the self diffusion coefficient of water and oxygen-18 water, J. Chem. Soc., Faraday
Trans. 1, 76, 377–385,
https://doi.org/10.1039/F19807600377, 1980.
a
Holland, H. D.: The Chemical Evolution of the Atmosphere and
Oceans, Princeton University Press, Princeton, NJ, 1984.
a,
b,
c,
d,
e,
f,
g,
h
Iyer, K., Rüpke, L. H., and Morgan, J. P.: Feedbacks between
mantle hydration and hydrothermal convection at ocean spreading centers, Earth Planet. Sci. Lett.,
296, 34–44,
https://doi.org/10.1016/j.epsl.2010.04.037, 2010.
a,
b,
c,
d,
e,
f
Jaffrés, J. B. D., Shields, G. A., and Wallmann,
K.: The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and
an improved geological water cycle model for the past 3.4 billion years, Earth-Sci. Rev., 83,
83–122,
https://doi.org/10.1016/j.earscirev.2007.04.002, 2007.
a,
b,
c,
d,
e,
f
James, R. H., Green, D. R. H., Stock, M. J., Alker, B. J.,
Banerjee, N. R., Cole, C., German, C. R., Huvenne, V. A. I., Powell, A. M., and Connelly, D. P.:
Composition of hydrothermal fluids and mineralogy of associated chimney material on the East
Scotia Ridge back-arc spreading centre, Geochim. Cosmochim. Acta, 139, 47–71,
https://doi.org/10.1016/j.gca.2014.04.024, 2014.
a
Jean-Baptiste, P., Charlou, J. L., and Stievenard, M.:
Oxygen isotope study of mid-ocean ridge hydrothermal fluids: Implication for the oxygen-18 budget
of the oceans, Geochim. Cosmochim. Acta, 61, 2669–2677,
https://doi.org/10.1016/S0016-7037(97)00090-2,
1997.
a
Kasting, J. F., Howard, M. T., Wallmann, K., Veizer, J.,
Shields, G., and Jaffrés, J.: Paleoclimates, ocean depth, and the oxygen isotopic composition
of seawater, Earth Planet. Sci. Lett., 252, 82–93,
https://doi.org/10.1016/j.epsl.2006.09.029, 2006.
a,
b,
c,
d,
e,
f,
g,
h
Knauth, L. P.: Temperature and salinity history of the Precambrian
ocean: implications for the course of microbial evolution, in: Geobiology: Objectives, Concepts,
Perspectives, edited by: Noffke, N., 53–69,
https://doi.org/10.1016/B978-0-444-52019-7.50007-3, 2005.
a
Korenaga, J.: Global water cycle and the coevolution of the
Earth's interior and surface environment, in: Archean Geodynamics and Environments, edited by: Benn, K.,
Mareschal, J.-C., Condie, K. C.,
7–32,
https://doi.org/10.1029/164GM03, 2006.
a
Korenaga, J., Planavsky, N. J., and Evans, D. A. D.:
Archean geodynamics and the thermal evolution of Earth, Phil. Trans. R. Soc. A, 375, 20150393,
https://doi.org/10.1098/rsta.2015.0393, 2017.
a,
b
Krynicki, K., Green, C. D., and Sawyer, D. W.: Pressure
and temperature dependence of self-diffusion in water, Faraday Discuss. Chem. Soc., 66, 199–208,
https://doi.org/10.1039/DC9786600199, 1978.
a
Lawrence, J. R. and Gieskes, J. M.: Constraints on
water transport and alteration in the oceanic crust from the isotopic composition of porewater,
J. Geophys. Res., 86, 7924–7934,
https://doi.org/10.1029/JB086iB09p07924, 1981.
a,
b
Lécuyer, C. and Allemand, P.: Modelling of
the oxygen isotope evolution of seawater: Implication for the climate interpretation of the
δ18O of marine sediments, Geochim. Cosmochim. Acta, 63, 351–361,
https://doi.org/10.1016/S0016-7037(98)00277-4, 1999.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k
Lécuyer, C. and Fourcade, S.: Oxygen isotope
evidence for multi-stage hydrothermal alteration at a fossil slow-spreading center: the Silurian
Trinity ophiolite (California, U.S.A.), Chem. Geol., 87, 231–246,
https://doi.org/10.1016/0168-9622(91)90023-P, 1991.
a
Meyer, C. A., McClintock, R. B., Silvestri, G. J., and
Spencer, R. C.: AME Steam Tables: Thermodynamic and Transport Properties of Steam, 5th Edition,
American Society of Mechanical Engineers, 1983. a
Muehlenbachs, K.: The alteration and aging of the
basaltic layer of the seafloor: Oxygen isotope evidence from DSDP/IPOD Legs 51, 52, and 53,
Int. Repts. DSDP, 51, 1159–1167, 1979. a
Muehlenbachs, K.: The oxygen isotopic composition of
the oceans, sediments and the seafloor, Chem. Geol., 145, 263–273,
https://doi.org/10.1016/S0009-2541(97)00147-2, 1998.
a,
b,
c,
d,
e,
f,
g,
h
Muehlenbachs, K., Furnes, H., Fonneland, H. C.,
and Hellevang, B.: Ophiolites as faithful records of the oxygen isotope ratio of ancient seawater:
the Solund–Stavfjord Ophiolite Complex as a Late Ordovician example, Geol. Soc. Spec. Publ., 218,
401–414,
https://doi.org/10.1144/GSL.SP.2003.218.01.20, 2003.
a
Nielsen, M. E. and Fisk, M. R.: Surface area
measurements of marine basalts: Implications for the subseafloor microbial biomass,
Geophys. Res. Lett., 37, LI5604,
https://doi.org/10.1029/2010GL044074, 2010.
a
Norton, D. and Taylor, Jr., H. P.: Quantitative
simulation of the hydrothermal systems of crystallizing magmas on the basis of transport theory
and oxygen isotope data: An analysis of the Skaergaard intrusion, J. Petrol., 20, 421–486,
https://doi.org/10.1093/petrology/20.3.421, 1979.
a,
b,
c
Perry, Jr., E. C., Ahmad, S. N., and Swulius, T. M.: The
oxygen isotope composition of 3,800 m.y. old metamorphosed chert and iron formation from Isukasia,
West Greenland, J. Geol., 86, 223–239,
https://doi.org/10.1086/649676, 1978.
a
Schiffman, P. and Smith, B. M.: Petrology and
oxygen isotope geochemistry of a fossil seawater hydrothermal system within the Solea graben,
northern Troodos ophiolite, Cyprus, J. Geophys. Res., 93, 4612–4624,
https://doi.org/10.1029/JB093iB05p04612, 1988.
a
Shemesh, A., Kolodny, Y., and Luz, B.: Oxygen isotope
variations in phosphate of biogenic apatites, II. Phosphorite rocks, Earth Planet. Sci. Lett., 64,
405–416,
https://doi.org/10.1016/0012-821X(83)90101-2, 1983.
a
Stakes, D. S.: Oxygen and hydrogen isotope compositions of oceanic
plutonic rocks: High-temperature deformation and metamorphism of oceanic layer 3, in: Stable
Isotope Geochemistry: A Tribute to Samuel Epstein, edited by: Taylor, H. P., O'Neil, J. R.,
Kaplan, I. R., The Geochemical Society,
77–90, 1991. a
Steefel, C. I. and Lasaga, A. C.: A coupled model for
transport of multiple chemical species and kinetic precipitation/dissolution reactions with
application to reactive flow in single phase hydrothermal systems, Am. J. Sci., 294, 529–592,
https://doi.org/10.2475/ajs.294.5.529, 1994.
a,
b,
c,
d
Stein, C. A. and Stein, S.: Constraints on hydrothermal
heat flux through the oceanic lithosphere from global heat flow, J. Geophys. Res., 99, 3081–3095,
https://doi.org/10.1029/93JB02222, 1994.
a
Vibetti, N. J., Kerrich, R., and Fyfe, W. S.: Oxygen and
carbon isotope studies of hydrothermal alteration in the Troodos ophiolite complex, Cyprus,
Geol. Surv. Canada Spec. Pap., 88-9, 221–228, 1989. a
Walker, J. C. G. and Lohmann, K. C.: Why the oxygen
isotopic composition of sea water changes with time, Geophys. Res. Lett., 16, 323–326,
https://doi.org/10.1029/GL016i004p00323, 1989.
a,
b,
c,
d
Wallmann, K.: The geological water cycle and the evolution of
marine
δ18O values, Geochim. Cosmochim. Acta, 65, 2469–2485,
https://doi.org/10.1016/S0016-7037(01)00603-2, 2001.
a,
b,
c,
d,
e,
f,
g,
h,
i,
j,
k,
l,
m
Wallmann, K., Aloisi, G., Haeckel, M., Tishchenko, P.,
Pavlova, G., Greinert, J., Kutterolf, S., and Eisenhauer, A.: Silicate weathering in anoxic marine
sediments, Geochim. Cosmochim. Acta, 72, 3067–3090,
https://doi.org/10.1016/j.gca.2008.03.026, 2008.
a
Wolery, T. J. and Sleep, N. H.: Hydrothermal circulation
and geochemical flux at mid-ocean ridges, J. Geol., 84, 249–275,
https://doi.org/10.1086/628195, 1976.
a,
b