Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1551-2020
https://doi.org/10.5194/se-11-1551-2020
Research article
 | 
26 Aug 2020
Research article |  | 26 Aug 2020

Increased density of large low-velocity provinces recovered by seismologically constrained gravity inversion

Wolfgang Szwillus, Jörg Ebbing, and Bernhard Steinberger

Related authors

Statistical appraisal of geothermal heat flow observations in the Arctic
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024,https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Benchmark forward gravity schemes: the gravity field of a realistic lithosphere model WINTERC-G
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022,https://doi.org/10.5194/se-13-849-2022, 2022
Short summary

Related subject area

Subject area: Core and mantle structure and dynamics | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
Benchmark forward gravity schemes: the gravity field of a realistic lithosphere model WINTERC-G
Barend Cornelis Root, Josef Sebera, Wolfgang Szwillus, Cedric Thieulot, Zdeněk Martinec, and Javier Fullea
Solid Earth, 13, 849–873, https://doi.org/10.5194/se-13-849-2022,https://doi.org/10.5194/se-13-849-2022, 2022
Short summary
GRACE constraints on Earth rheology of the Barents Sea and Fennoscandia
Marc Rovira-Navarro, Wouter van der Wal, Valentina R. Barletta, Bart C. Root, and Louise Sandberg Sørensen
Solid Earth, 11, 379–395, https://doi.org/10.5194/se-11-379-2020,https://doi.org/10.5194/se-11-379-2020, 2020
Short summary

Cited articles

Afonso, J. C., Fullea, J., Griffin, W. L., Yang, Y., Jones, A. G., D. Connolly, J. A., and O'Reilly, S. Y.: 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: A priori petrological information and geophysical observables, J. Geophys. Res.-Sol. Ea., 118, 2586–2617, https://doi.org/10.1002/jgrb.50124, 2013. a
Afonso, J. C., Salajegheh, F., Szwillus, W., Ebbing, J., and Gaina, C.: A global reference model of the lithosphere and upper mantle from joint inversion and analysis of multiple data sets, Geophys. J. Int., 217, 1602–1628, https://doi.org/10.1093/gji/ggz094, 2019. a
Amante, C. and Eakins, B. W.: ETOPO1 Global Relief Model converted to PanMap layer format, NOAA-National Geophysical Data Center, PANGAEA https://doi.org/10.1594/PANGAEA.769615, 2009. a
Ballmer, M. D., Schmerr, N. C., Nakagawa, T., and Ritsema, J.: Compositional mantle layering revealed by slab stagnation at ∼1000-km depth, Science Advances, 1, e1500815, https://doi.org/10.1126/sciadv.1500815, 2015. a
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M., and Hirose, K.: Persistence of strong silica-enriched domains in the Earth's lower mantle, Nat. Geosci., 10, 236–240, https://doi.org/10.1038/NGEO2898, 2017. a
Download
Short summary
At the bottom of the mantle (2850 km depth) two large volumes of reduced seismic velocity exist underneath Africa and the Pacific. Their reduced velocity can be explained by an increased temperature or a different chemical composition. We use the gravity field to determine the density distribution inside the Earth's mantle and find that it favors a distinct chemical composition over a purely thermal cause.