Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1571-2020
https://doi.org/10.5194/se-11-1571-2020
Research article
 | 
26 Aug 2020
Research article |  | 26 Aug 2020

On the morphology and amplitude of 2D and 3D thermal anomalies induced by buoyancy-driven flow within and around fault zones

Laurent Guillou-Frottier, Hugo Duwiquet, Gaëtan Launay, Audrey Taillefer, Vincent Roche, and Gaétan Link

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Laurent Guillou-Frottier on behalf of the Authors (24 Jun 2020)  Author's response   Manuscript 
ED: Publish as is (14 Jul 2020) by Fabrizio Balsamo
ED: Publish as is (23 Jul 2020) by CharLotte Krawczyk (Executive editor)
AR by Laurent Guillou-Frottier on behalf of the Authors (23 Jul 2020)
Download
Short summary
In the first kilometers of the subsurface, temperature anomalies due to heat conduction rarely exceed 20–30°C. However, when deep hot fluids in the shallow crust flow upwards, for example through permeable fault zones, hydrothermal convection can form high-temperature geothermal reservoirs. Numerical modeling of hydrothermal convection shows that vertical fault zones may host funnel-shaped, kilometer-sized geothermal reservoirs whose exploitation would not need drilling at depths below 2–3 km.