Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1747-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-1747-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Tracking geothermal anomalies along a crustal fault using (U − Th)∕He apatite thermochronology and rare-earth element (REE) analyses: the example of the Têt fault (Pyrenees, France)
Gaétan Milesi
CORRESPONDING AUTHOR
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Patrick Monié
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Philippe Münch
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Roger Soliva
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Audrey Taillefer
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Olivier Bruguier
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Mathieu Bellanger
TLS Geothermics, 91 chemin de Gabardie, 31200 Toulouse, France
Michaël Bonno
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Céline Martin
Géosciences Montpellier, Université de Montpellier, CNRS,
Université des Antilles, Montpellier, France
Related authors
No articles found.
Maxime Jamet, Gregory Ballas, Roger Soliva, Olivier Gerbeaud, Thierry Lefebvre, Christine Leredde, and Didier Loggia
Solid Earth, 15, 895–920, https://doi.org/10.5194/se-15-895-2024, https://doi.org/10.5194/se-15-895-2024, 2024
Short summary
Short summary
This study characterizes the Tchirezrine II sandstone reservoir in northern Niger. Crucial for potential uranium in situ recovery (ISR), our multifaceted approach reveals (i) a network of homogeneously distributed orthogonal structures, (ii) the impact of clustered E–W fault structures on anisotropic fluid flow, and (iii) local changes in the matrix behaviour of the reservoir as a function of the density and nature of the deformation structure.
Leonardo Del Sole, Marco Antonellini, Roger Soliva, Gregory Ballas, Fabrizio Balsamo, and Giulio Viola
Solid Earth, 11, 2169–2195, https://doi.org/10.5194/se-11-2169-2020, https://doi.org/10.5194/se-11-2169-2020, 2020
Short summary
Short summary
This study focuses on the impact of deformation bands on fluid flow and diagenesis in porous sandstones in two different case studies (northern Apennines, Italy; Provence, France) by combining a variety of multiscalar mapping techniques, detailed field and microstructural observations, and stable isotope analysis. We show that deformation bands buffer and compartmentalize fluid flow and foster and localize diagenesis, recorded by carbonate cement nodules spatially associated with the bands.
Laurent Guillou-Frottier, Hugo Duwiquet, Gaëtan Launay, Audrey Taillefer, Vincent Roche, and Gaétan Link
Solid Earth, 11, 1571–1595, https://doi.org/10.5194/se-11-1571-2020, https://doi.org/10.5194/se-11-1571-2020, 2020
Short summary
Short summary
In the first kilometers of the subsurface, temperature anomalies due to heat conduction rarely exceed 20–30°C. However, when deep hot fluids in the shallow crust flow upwards, for example through permeable fault zones, hydrothermal convection can form high-temperature geothermal reservoirs. Numerical modeling of hydrothermal convection shows that vertical fault zones may host funnel-shaped, kilometer-sized geothermal reservoirs whose exploitation would not need drilling at depths below 2–3 km.
Roger Soliva, Frantz Maerten, Laurent Maerten, and Jussi Mattila
Solid Earth, 10, 1141–1154, https://doi.org/10.5194/se-10-1141-2019, https://doi.org/10.5194/se-10-1141-2019, 2019
Short summary
Short summary
We propose innovative parametric modeling allowing for analysis of a very large number of fault-slip numerical simulations on 3-D discrete fault network. The approach allows for the first time producing failure envelopes of large rock volumes containing faults, using variations of geological conditions such as remote stresses, cohesion, friction, and fluid pressure. This tool helps to define the most conservative fault slip hazard case or to account for potential uncertainties in the input data.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochronology
Uplift and denudation history of the Ellsworth Mountains: insights from low-temperature thermochronology
Thermal history of the East European Platform margin in Poland based on apatite and zircon low-temperature thermochronology
Joaquín Bastías-Silva, David Chew, Fernando Poblete, Paula Castillo, William Guenthner, Anne Grunow, Ian W. D. Dalziel, Airton N. C. Dias, Cristóbal Ramírez de Arellano, and Rodrigo Fernandez
Solid Earth, 15, 555–566, https://doi.org/10.5194/se-15-555-2024, https://doi.org/10.5194/se-15-555-2024, 2024
Short summary
Short summary
The Ellsworth Mountains, situated in a remote area of Antarctica, span 350 km in length and 50 km in width, encompassing Antarctica's tallest peak. Due to their isolated location, understanding their formation has been challenging and remains incomplete. Our analysis of zircon minerals from the Ellsworth Mountains indicates that the mountain chain formed between 180 and 100 million years ago, contributing to our understanding of their formation.
Dariusz Botor, Stanisław Mazur, Aneta A. Anczkiewicz, István Dunkl, and Jan Golonka
Solid Earth, 12, 1899–1930, https://doi.org/10.5194/se-12-1899-2021, https://doi.org/10.5194/se-12-1899-2021, 2021
Short summary
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
Cited articles
Agosta, F., Prasad, M., and Aydin, A.: Physical properties of carbonate fault
rocks, fucino basin (Central Italy): implications for fault seal in platform
carbonates, Geofluids, 7, 19–32, https://doi.org/10.1111/j.1468-8123.2006.00158.x,
2007.
Andrews, J. N. and Lee, D. J.: Inert gases in groundwater from the Bunter
Sandstone of England as indicators of age and palaeoclimatic trends, J. Hydrol., 41, 233–252, https://doi.org/10.1016/0022-1694(79)90064-7, 1979.
Ault, A. K., Gautheron, C., and King, G. E.: Innovations in ,
Fission Track, and Trapped Charge Thermochronometry with Applications to
Earthquakes, Weathering, Surface Connections, and the Growth and
Decay of Mountains, Tectonics, 38, 3705–3739, https://doi.org/10.1029/2018TC005312,
2019.
Ballas, G., Soliva, R., Sizun, J.-P., Benedicto, A., Cavailhes, T., and
Raynaud, S.: The importance of the degree of cataclasis in shear bands for
fluid flow in porous sandstone, Provence, France, AAPG Bull., 96,
2167–2186, https://doi.org/10.1306/04051211097, 2012.
Ballouard, C., Poujol, M., Boulvais, P., Mercadier, J., Tartèse, R.,
Venneman, T., Deloule, E., Jolivet, M., Kéré, I., Cathelineau, M.,
and Cuney, M.: Magmatic and hydrothermal behavior of uranium in syntectonic
leucogranites: The uranium mineralization associated with the Hercynian
Guérande granite (Armorican Massif, France), Ore Geology Reviews, 80,
309–331, https://doi.org/10.1016/j.oregeorev.2016.06.034, 2017.
Barbey, P., Cheilletz, A., and Laumonier, B.: The Canigou orthogneisses
(Eastern Pyrenees, France, Spain): an Early Ordovician rapakivi granite
laccolith and its contact aureole, Comptes Rendus de l'Académie des
Sciences – Series IIA, Earth Planet. Sc., 332, 129–136,
https://doi.org/10.1016/S1251-8050(00)01506-8, 2001.
Barbier, E.: Geothermal energy technology and current status: an overview,
Renewable and Sustainable Energy Reviews, 6, 3–65,
https://doi.org/10.1016/S1364-0321(02)00002-3, 2002.
Belousova, E. A., Griffin, W. L., O'Reilly, S. Y., and Fisher, N. I.: Apatite
as an indicator mineral for mineral exploration: trace-element compositions
and their relationship to host rock type, Journal of Geochemical
Exploration, 76, 45–69, https://doi.org/10.1016/S0375-6742(02)00204-2, 2002.
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault
zone hydrogeology, Earth-Sci. Rev., 127, 171–192,
https://doi.org/10.1016/j.earscirev.2013.09.008, 2013.
Berg, S. S. and Skar, T.: Controls on damage zone asymmetry of a normal
fault zone: outcrop analyses of a segment of the Moab fault, SE Utah,
J. Struct. Geol., 27, 1803–1822,
https://doi.org/10.1016/j.jsg.2005.04.012, 2005.
Bertani, R.: Geothermal power generation in the world 2005–2010 update
report, Geothermics, 41, 1–29, https://doi.org/10.1016/j.geothermics.2011.10.001, 2012.
Billi, A., Salvini, F., and Storti, F.: The damage zone-fault core transition
in carbonate rocks: implications for fault growth, structure and
permeability, J. Struct. Geol., 25, 1779–1794,
https://doi.org/10.1016/S0191-8141(03)00037-3, 2003.
Blackwell, D. D., Golan, B., and Beniot, D.: Thermal regime in the Dixie
valley geothermal system, Proceedings World Geothermal Congress 2000, 6,
2000.
Boulvais, P., Ruffet, G., Cornichet, J., and Mermet, M.: Cretaceous
albitization and dequartzification of Hercynian peraluminous granite in the
Salvezines Massif (French Pyrénées), Lithos, 93, 89–106,
https://doi.org/10.1016/j.lithos.2006.05.001, 2007.
Boutin, A., de Saint Blanquat, M., Poujol, M., Boulvais, P., de Parseval,
P., Rouleau, C., and Robert, J.-F.: Succession of Permian and Mesozoic
metasomatic events in the eastern Pyrenees with emphasis on the Trimouns
talc–chlorite deposit, Int. J. Earth Sci., 105,
747–770, https://doi.org/10.1007/s00531-015-1223-x, 2016.
Brown, R. W., Beucher, R., Roper, S., Persano, C., Stuart, F., and
Fitzgerald, P.: Natural age dispersion arising from the analysis of broken
crystals, Part I: Theoretical basis and implications for the apatite
thermochronometer, Geochim. Cosmoch. Ac., 122,
478–497, https://doi.org/10.1016/j.gca.2013.05.041, 2013.
Bruguier, O., Becq-Giraudon, J. F., Champenois, M., Deloule, E., Ludden, J.,
and Mangin, D.: Application of in situ zircon geochronology and accessory
phase chemistry to constraining basin development during post-collisional
extension: a case study from the French Massif Central, Chem. Geol.,
201, 319–336, https://doi.org/10.1016/j.chemgeo.2003.08.005, 2003.
Burbank, D. W., Puigdefàbregas, C. A. I., and Munoz, J. A.: The chronology of the Eocene tectonic and stratigraphic development of the eastern Pyrenean foreland basin, northeast Spain, Geol. Soc. Am. Bull., 104, 1101–1120, 1992.
Cabrera, L., Roca, E., and Santanach, P.: Basin formation at the end of a
strike-slip fault: the Cerdanya Basin (eastern Pyrenees), J. Geol. Soc., 145, 261–268, 1988.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025,
https://doi.org/10.1130/0091-7613(1996)024<1025:FZAAPS>2.3.CO;2,
1996.
Caine, J. S. and Tomusiak, S. R. A.: Brittle structures and their role in
controlling porosity and permeability in a complex Precambrian
crystalline-rock aquifer system in the Colorado Rocky Mountain Front Range,
Geol. Soc. Am. Bull., 115, 1410, https://doi.org/10.1130/B25088.1,
2003.
Carozza, J.-M. and Baize, S.: L'escarpement de faille de la Têt est-il
le résultat de la tectonique active Plio-Pléistocène ou d'une
exhumation Pléistocène?, Comptes Rendus Geoscience, 336,
217–226, https://doi.org/10.1016/j.crte.2003.10.026, 2004.
Castiñeiras, P., Navidad, M., Casas, J. M., Liesa, M., and Carreras, J.:
Petrogenesis of Ordovician Magmatism in the Pyrenees (Albera and Canigó
Massifs) Determined on the Basis of Zircon Minor and Trace Element
Composition, J. Geol., 119, 521–534, https://doi.org/10.1086/660889,
2011.
Chew, D. M., Babechuk, M. G., Cogné, N., Mark, C., O'Sullivan, G. J.,
Henrichs, I. A., Doepke, D., and McKenna, C. A.: (LA,Q)-ICPMS trace-element
analyses of Durango and McClure Mountain apatite and implications for making
natural LA-ICPMS mineral standards, Chem. Geol., 435, 35–48,
https://doi.org/10.1016/j.chemgeo.2016.03.028, 2016.
Clauzon, G., Le Strat, P., Duvail, C., Do Couto, D., Suc, J.-P., Molliex,
S., Bache, F., Besson, D., Lindsay, E. H., Opdyke, N. D., Rubino, J.-L.,
Popescu, S.-M., Haq, B. U., and Gorini, C.: The Roussillon Basin (S. France):
A case-study to distinguish local and regional events between 6 and 3 Ma,
Mar. Petrol. Geol., 66, 18–40,
https://doi.org/10.1016/j.marpetgeo.2015.03.012, 2015.
Cocherie, A., Baudin, T., Autran, A., Guerrot, C., Fanning, C. M., and
Laumonier, B.: U-Pb zircon (ID-TIMS and SHRIMP) evidence for the early
ordovician intrusion of metagranites in the late Proterozoic Canaveilles
Group of the Pyrenees and the Montagne Noire (France), Bulletin de la
Société Géologique de France, 176, 269–282,
https://doi.org/10.2113/176.3.269, 2005.
Cox, S. C., Menzies, C. D., Sutherland, R., Denys, P. H., Chamberlain, C.,
and Teagle, D. A. H.: Changes in hot spring temperature and hydrogeology of
the Alpine Fault hanging wall, New Zealand, induced by distal South Island
earthquakes, Geofluids, 15, 216–239, https://doi.org/10.1111/gfl.12093, 2015.
Cramer, J. J. and Nesbitt, H. W.: Mass-balance relations and trace-element
mobility during continental weathering of various igneous rocks, Sci.
Géol., 73, 63–73, 1983.
Craw, D., Upton, P., Horton, T., and Williams, J.: Migration of hydrothermal
systems in an evolving collisional orogen, New Zealand, Mineralium Deposita,
48, 233–248, https://doi.org/10.1007/s00126-012-0421-8, 2013.
Cuney, M.: Evolution of Uranium Fractionation Processes through Time:
Driving the Secular Variation of Uranium Deposit Types, Economic Geology,
105, 553–569, https://doi.org/10.2113/gsecongeo.105.3.553, 2010.
Danišík, M., Fodor, L., Dunkl, I., Gerdes, A., Csizmeg, J.,
Hámor-Vidó, M., and Evans, N. J.: A multi-system geochronology in the
Ad-3 borehole, Pannonian Basin (Hungary) with implications for dating
volcanic rocks by low-temperature thermochronology and for interpretation of
data, Terra Nova, 27, 258–269, https://doi.org/10.1111/ter.12155, 2015.
Delmas, M., Calvet, M., Gunnell, Y., Voinchet, P., Manel, C., Braucher, R.,
Tissoux, H., Bahain, J.-J., Perrenoud, C., and Saos, T.: Terrestrial 10 Be
and electron spin resonance dating of fluvial terraces quantifies quaternary
tectonic uplift gradients in the eastern Pyrenees, Quaternary Sci. Rev., 193, 188–211, https://doi.org/10.1016/j.quascirev.2018.06.001, 2018.
Deming, D.: Fluid flow and heat transport in the upper continental crust,
Geological Society, London, Special Publications, 78, 27–42,
https://doi.org/10.1144/GSL.SP.1994.078.01.04, 1994.
Dobson, P. F.: A Review of Exploration Methods for Discovering Hidden
Geothermal Systems, GRC Transactions, 40, 695–706, 2016.
Eichhubl, P., Davatzes, N. C., and Becker, S. P.: Structural and diagenetic
control of fluid migration and cementation along the Moab fault, Utah, AAPG
Bulletin, 93, 653–681, https://doi.org/10.1306/02180908080, 2009.
Fallourd, S., Poujol, M., Boulvais, P., Paquette, J.-L., de Saint Blanquat,
M., and Rémy, P.: In situ LA-ICP-MS U–Pb titanite dating of Na–Ca
metasomatism in orogenic belts: the North Pyrenean example, Int. J. Earth Sci., 103, 667–682, https://doi.org/10.1007/s00531-013-0978-1,
2014.
Farley, K. A., Wolf, R. A., and Silver, L. T.: The effects of long
alpha-stopping distances on ages, Geochim. Cosmochim. Ac.,
60, 4223–4229, https://doi.org/10.1016/S0016-7037(96)00193-7, 1996.
Faulds, J. E., Price, L. M., Snee, L. W., Gans, P. B., Umhoefer, P. J.,
Beard, L. S., and Lamb, M. A.: A chronicle of Miocene extension near the
Colorado Plateau–Basin and Range boundary, southern White Hills,
northwestern Arizona: Paleogeographic and tectonic implications, Miocene
Tectonics of the Lake Mead Region, Central Basin and Range: Geological
Society of America Special Paper, 463, 87–119. 2010.
Faulds, J. and Hinz, N.: Favorable Tectonic and Structural Settings of
Geothermal Systems in the Great Basin Region, Western USA: Proxies for
Discovering Blind Geothermal Systems, Proceedings World Geothermal Congress
2015, 1–6, 2015.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton,
Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent
developments concerning the structure, mechanics and fluid flow properties
of fault zones, J. Struct. Geol., 32, 1557–1575,
https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Favara, R., Grassa, F., Inguaggiato, S., and Valenza, M.: Hydrogeochemistry
and stable isotopes of thermal springs: earthquake-related chemical changes
along Belice Fault (Western Sicily), Appl. Geochem., 16, 1–17,
https://doi.org/10.1016/S0883-2927(00)00015-9, 2001.
Fillon, C. and van der Beek, P.: Post-orogenic evolution of the southern
Pyrenees: constraints from inverse thermo-kinematic modelling of
low-temperature thermochronology data, Basin Res., 24, 418–436,
https://doi.org/10.1111/j.1365-2117.2011.00533.x, 2012.
Fisher, Q. J. and Knipe, R. J.: Fault sealing processes in siliciclastic
sediments, Geological Society, London, Special Publications, 147,
117–134, https://doi.org/10.1144/GSL.SP.1998.147.01.08, 1998.
Fitzgerald, P. G., Muñoz, J. A., Coney, P. J., and Baldwin, S. L.:
Asymmetric exhumation across the Pyrenean orogen: implications for the
tectonic evolution of a collisional orogen, Earth Planet. Sc. Lett., 173, 157–170, https://doi.org/10.1016/S0012-821X(99)00225-3, 1999.
Fitzgerald, P. G., Baldwin, S. L., Webb, L. E., and O'Sullivan, P. B.:
Interpretation of single grain ages from slowly cooled crustal
terranes: A case study from the Transantarctic Mountains of southern
Victoria Land, Chem. Geol., 225, 91–120,
https://doi.org/10.1016/j.chemgeo.2005.09.001, 2006.
Flowers, R. M., Ketcham, R. A., Shuster, D. L., and Farley, K. A.: Apatite
thermochronometry using a radiation damage accumulation and
annealing model, Geochim. Cosmochim. Ac., 73, 2347–2365,
https://doi.org/10.1016/j.gca.2009.01.015, 2009.
Forster, C. and Smith, L.: The influence of groundwater flow on thermal
regimes in mountainous terrain: A model study, J. Geophys. Res., 94, 9439, https://doi.org/10.1029/JB094iB07p09439, 1989.
Förster, H.-J.: The chemical composition of REE-Y-Th-U-rich accessory
minerals in peraluminous granites of the Erzgebirge-Fichtelgebirge region,
Germany; Part I, The monazite-(Ce)-brabantite solid solution series,
American Mineralogist, 83, 259–272, https://doi.org/10.2138/am-1998-3-409, 1998.
Fossen, H. and Rotevatn, A.: Fault linkage and relay structures in
extensional settings – A review, Earth-Sci. Rev., 154, 14–28,
https://doi.org/10.1016/j.earscirev.2015.11.014, 2016.
Gallagher, K.: Transdimensional inverse thermal history modeling for
quantitative thermochronology, J. Geophys. Res.-Sol. Ea.,
117, 16, https://doi.org/10.1029/2011JB008825, 2012.
Gastil, RG., De Lisle, M., and Morgan, J.: Some Effects of Progressive
Metamorphism on Zircons, Geol. Soc. Am. Bull., 78, 879,
https://doi.org/10.1130/0016-7606(1967)78[879:SEOPMO]2.0.CO;2, 1967.
Gautheron, C., Tassan-Got, L., Barbarand, J., and Pagel, M.: Effect of
alpha-damage annealing on apatite thermochronology, Chem. Geol., 266, 157–170, https://doi.org/10.1016/j.chemgeo.2009.06.001, 2009.
Gautheron, C. and Tassan-Got, L.: A Monte Carlo approach to diffusion
applied to noble gas/helium thermochronology, Chem. Geol., 273,
212–224, https://doi.org/10.1016/j.chemgeo.2010.02.023, 2010.
Gibert, J. M. D., Dom, R., and Martinell, J.: Bioerosion in shell beds from
the Pliocene Roussillon Basin, France: Implications for the
(macro)bioerosion ichnofacies model, Acta Palaeontologica Polonica, 16, 783–798,
2007.
Gibson, M., Sinclair, H. D., Lynn, G. J., and Stuart, F. M.: Late- to
post-orogenic exhumation of the Central Pyrenees revealed through combined
thermochronological data and modelling, Basin Res., 19, 323–334,
https://doi.org/10.1111/j.1365-2117.2007.00333.x, 2007.
Gieré, R.: Hydrothermal mobility of Ti, Zr and REE: examples from the
Bergell and Adamello contact aureoles (Italy), Terra Nova, 2, 60–67,
https://doi.org/10.1111/j.1365-3121.1990.tb00037.x, 1990.
Gorynski, K. E., Walker, J. D., Stockli, D. F., and Sabin, A.: Apatite
(U–Th)/He thermochronometry as an innovative geothermal exploration tool: A
case study from the southern Wassuk Range, Nevada, Journal of Volcanology
and Geothermal Research, 270, 99–114, https://doi.org/10.1016/j.jvolgeores.2013.11.018,
2014.
Grasby, S. E. and Hutcheon, I.: Controls on the distribution of thermal
springs in the southern Canadian cordillera, Canadian Journal of Earth
Sciences, 38, 427–440. 2001.
Griffiths, L., Heap, M. J., Wang, F., Daval, D., Gilg, H. A., Baud, P.,
Schmittbuhl, J., and Genter, A.: Geothermal implications for fracture-filling
hydrothermal precipitation, Geothermics, 64, 235–245,
https://doi.org/10.1016/j.geothermics.2016.06.006, 2016.
Gunnell, Y., Calvet, M., Brichau, S., Carter, A., Aguilar, J.-P., and Zeyen,
H.: Low long-term erosion rates in high-energy mountain belts: Insights from
thermo- and biochronology in the Eastern Pyrenees, Earth Planet. Sc. Lett., 278, 208–218, https://doi.org/10.1016/j.epsl.2008.12.004, 2009.
Harlov, D. E., Richard Wirth, R., and Förster H.-J.: An experimental study
of dissolution–reprecipitation in fluorapatite: fluid infiltration and the
formation of monazite, Contrib. Mineral Petrol., 150, 268–286, https://doi.org/10.1007/s00410-005-0017-8, 2005.
Heffington, W. M., Kline, J. M., and Rottman, J. W.: Volcanoes as a source of
geothermal energy, Energy, 2, 457–459, https://doi.org/10.1016/0360-5442(77)90008-1,
1977.
Henrichs, I. A., O'Sullivan, G., Chew, D. M., Mark, C., Babechuk, M. G.,
McKenna, C., and Emo, R.: The trace element and U-Pb systematics of
metamorphic apatite, Chem. Geol., 483, 218–238,
https://doi.org/10.1016/j.chemgeo.2017.12.031, 2018.
Hoÿm de Marien, L., Le Bayon, B., Pitra, P., Van Den Driessche, J.,
Poujol, M., and Cagnard, F.: Two Variscan metamorphism in the Canigou
massif: Evidence for crustal thickening in the Pyrenees, Journal of
Metamorphic Geology, 37, 863–888, https://doi.org/10.1111/jmg.12487, 2019.
Janots, E., Grand'Homme, A., Bernet, M., Guillaume, D., Gnos, E., Boiron, M.-C., Rossi, M., Seydoux-Guillaume, A.-M., and De Ascenção Guedes, R.: Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps), Solid Earth, 10, 211–223, https://doi.org/10.5194/se-10-211-2019, 2019.
Jochum, K. P., Seufert, H. M., and Thirlwall, M. F.: High-sensitivity Nb
analysis by spark-source mass spectrometry (SSMS) and calibration of XRF Nb
and Zr, Chem. Geol., 81, 1–16, https://doi.org/10.1016/0009-2541(90)90035-6,
1990.
Jordan, T. A., Martin, C., Ferraccioli, F., Matsuoka, K., Corr, H.,
Forsberg, R., Olesen, A., and Siegert, M.: Anomalously high geothermal flux
near the South Pole, Sci. Rep., 8,
https://doi.org/10.1038/s41598-018-35182-0, 2018.
Ketcham, R. A., Gautheron, C., and Tassan-Got, L.: Accounting for long
alpha-particle stopping distances in (U-Th-Sm)/He geochronology:
Refinement of the baseline case, Geochim. Cosmochim. Ac., 75,
7779–7791, https://doi.org/10.1016/j.gca.2011.10.011, 2011.
Kim, Y.-S., Peacock, D. C. P., and Sanderson, D. J.: Fault damage zones,
J. Struct. Geol., 26, 503–517,
https://doi.org/10.1016/j.jsg.2003.08.002, 2004.
Krimissa, M.: Application des méthodes isotopiques a l'étude des
eaux thermales en milieu granitique (Pyrénées, France), Orsay
Paris-Sud., 248 pp., 1992.
Lacan, P. and Ortuño, M.: Active Tectonics of the Pyrenees: A review,
Journal of Iberian Geology, 38, https://doi.org/10.5209/rev_JIGE.2012.v38.n1.39203, 2012.
Louis, S., Luijendijk, E., Dunkl, I., and Person, M.: Episodic fluid flow in
an active fault, Geology, 47, 938–942, https://doi.org/10.1130/G46254.1, 2019.
Lund, J. W., Freeston, D. H., and Boyd, T. L.: Direct utilization of
geothermal energy 2010 worldwide review, Geothermics, 40, 159–180,
https://doi.org/10.1016/j.geothermics.2011.07.004, 2011.
Masson, C., Mazzotti, S., Vernant, P., and Doerflinger, E.: Extracting small deformation beyond individual station precision from dense Global Navigation Satellite System (GNSS) networks in France and western Europe, Solid Earth, 10, 1905–1920, https://doi.org/10.5194/se-10-1905-2019, 2019.
Mauffret, A., de Grossouvre, B. D., Dos Reis, A. T., Gorini, C., and
Nercessian, A.: Structural geometry in the eastern Pyrenees and western Gulf
of Lion (Western Mediterranean), J. Struct. Geol., 23,
1701–1726, 2001.
Maurel, O., Monié, P., Pik, R., Arnaud, N., Brunel, M., and Jolivet, M.:
The Meso-Cenozoic thermo-tectonic evolution of the Eastern Pyrenees: an
40Ar/39Ar fission track and thermochronological study of the
Canigou and Mont-Louis massifs, Int. J. Earth Sci.,
97, 565–584, https://doi.org/10.1007/s00531-007-0179-x, 2008.
Mayolle, S., Soliva, R., Caniven, Y., Wibberley, C., Ballas, G., Milesi, G.,
and Dominguez, S.: Scaling of fault damage zones in carbonate rocks, J. Struct. Geol., 124, 35–50, https://doi.org/10.1016/j.jsg.2019.03.007, 2019.
McCay, A. T., Shipton, Z. K., Lunn, R. J., and Gale, J. F.: Mini thief zones:
Subcentimeter sedimentary features enhance fracture connectivity in shales,
AAPG Bulletin, 103, 951–971, https://doi.org/10.1306/0918181610617114, 2019.
McDowell, F. W., McIntosh, W. C., and Farley, K. A.: A precise 40Ar–39Ar
reference age for the Durango apatite and fission-track dating
standard, Chem. Geol., 214, 249–263,
https://doi.org/10.1016/j.chemgeo.2004.10.002, 2005.
McKenna, J. R. and Blackwell, D. D.: Numerical modeling of transient Basin
and Range extensional geothermal systems, Geothermics, 33, 457–476,
https://doi.org/10.1016/j.geothermics.2003.10.001, 2004.
Metcalf, J. R., Fitzgerald, P. G., Baldwin, S. L., and Muñoz, J.-A.:
Thermochronology of a convergent orogen: Constraints on the timing of thrust
faulting and subsequent exhumation of the Maladeta Pluton in the Central
Pyrenean Axial Zone, Earth Planet. Sc. Lett., 287,
488–503, https://doi.org/10.1016/j.epsl.2009.08.036, 2009.
Meixner, J., Schill, E., Grimmer, J. C., Gaucher, E., Kohl, T., and Klingler,
P.: Structural control of geothermal reservoirs in extensional tectonic
settings: An example from the Upper Rhine Graben, J. Struct. Geol., 82, 1–15, https://doi.org/10.1016/j.jsg.2015.11.003, 2016.
Milesi, G., Soliva, R., Monié, P., Münch, P., Bellanger, M.,
Bruguier, O., Bonno, M., Taillefer, A., and Mayolle, S.: Mapping a geothermal
anomaly using apatite (U/Th)/He thermochronology in the Têt fault
damage zone, eastern Pyrenees, France, Terra Nova, 31, 569–576,
https://doi.org/10.1111/ter.12429, 2019.
Paternoster, M., Oggiano, G., Sinisi, R., Caracausi, A., and Mongelli, G.:
Geochemistry of two contrasting deep fluids in the Sardinia microplate
(western Mediterranean): Relationships with tectonics and heat sources,
Journal of Volcanology and Geothermal Research, 336, 108–117,
https://doi.org/10.1016/j.jvolgeores.2017.02.011, 2017.
Petit, C. and Mouthereau, F.: Steep topographic slope preservation by
anisotropic diffusion: An example from the Neogene Têt fault scarp,
eastern Pyrenees, Geomorphology, 171, 173–179,
https://doi.org/10.1016/j.geomorph.2012.05.016, 2012.
Petit, V., Le Goff, E., and Brisset, N.: Avec la collaboration de – Ressource
en eau thermale des Thermes de Vernet-Les-Bains: État des lieux
(Pyrénées Orientales), BRGM/RP-59182-FR, p. 73, 20 ill., 5 ann.
2014.
Poujol, M., Boulvais, P., and Kosler, J.: Regional-scale Cretaceous
albitization in the Pyrenees: evidence from in situ U-Th-Pb dating of
monazite, titanite and zircon, J. Geol. Soc., 167,
751–767, https://doi.org/10.1144/0016-76492009-144, 2010.
Roche, V., Sternai, P., Guillou-Frottier, L., Menant, A., Jolivet, L.,
Bouchot, V., and Gerya, T.: Emplacement of metamorphic core complexes and
associated geothermal systems controlled by slab dynamics, Earth Planet. Sc. Lett., 498, 322–333, https://doi.org/10.1016/j.epsl.2018.06.043,
2018.
Sartégou, A., Bourlès, D. L., Blard, P.-H., Braucher, R., Tibari,
B., Zimmermann, L., Leanni, L., Aumaître, G., and Keddadouche, K.:
Deciphering landscape evolution with karstic networks: A Pyrenean case
study, Quat. Geochronol., 43, 12–29,
https://doi.org/10.1016/j.quageo.2017.09.005, 2018.
Séranne, M., Benedicto, A., Labaum, P., Truffert, C., and Pascal, G.:
Structural style and evolution of the Gulf of Lion Oligo-Miocene rifting:
Role of the Pyrenean orogeny, Mar. Petrol. Geol., 12, 809–820,
1995.
Sha, L.-K. and Chappell, B. W.: Apatite chemical composition, determined by
electron microprobe and laser-ablation inductively coupled plasma mass
spectrometry, as a probe into granite petrogenesis, Geochim. Cosmochim. Ac., 63, 3861–3881, https://doi.org/10.1016/S0016-7037(99)00210-0,
1999.
Shipton, Z. K. and Cowie, P. A.: Damage zone and slip-surface evolution
over µm to km scales in high-porosity Navajo sandstone, Utah, J. Struct. Geol., 23, 1825–1844, 2001.
Shuster, D. L. and Farley, K. A.: The influence of artificial radiation
damage and thermal annealing on helium diffusion kinetics in apatite,
Geochim. Cosmochim. Ac., 73, 183–196,
https://doi.org/10.1016/j.gca.2008.10.013, 2009.
Sibson, R. H.: Fluid involvement in normal faulting, J. Geodynam.,
29, 469–499, https://doi.org/10.1016/S0264-3707(99)00042-3, 2000.
Sibuet, J.-C., Srivastava, S. P., and Spakman, W.: Pyrenean orogeny and plate
kinematics: Pyrenean orogeny and plate kinematics, J. Geophys. Res.-Sol. Ea., 109, B08104,
https://doi.org/10.1029/2003JB002514, 2004.
Sinclair, H. D.: Asymmetric growth of the Pyrenees revealed through
measurement and modeling of orogenic fluxes, Am. J. Sci.,
305, 369–406, https://doi.org/10.2475/ajs.305.5.369, 2005.
Souriau, A. and Pauchet, H.: A new synthesis of Pyrenean seismicity and its
tectonic implications, Tectonophysics, 290, 221–244,
https://doi.org/10.1016/S0040-1951(98)00017-1, 1998.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of
oceanic basalts: implications for mantle composition and processes,
Geological Society, London, Special Publications, 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Sutherland, R., Townend, J., Toy, V., Upton, P., Coussens, J., Allen, M.,
Baratin, L.-M., Barth, N., Becroft, L., Boese, C., Boles, A., Boulton, C.,
Broderick, N. G. R., Janku-Capova, L., Carpenter, B. M., Célérier,
B., Chamberlain, C., Cooper, A., Coutts, A., Cox, S., Craw, L., Doan, M.-L.,
Eccles, J., Faulkner, D., Grieve, J., Grochowski, J., Gulley, A., Hartog,
A., Howarth, J., Jacobs, K., Jeppson, T., Kato, N., Keys, S., Kirilova, M.,
Kometani, Y., Langridge, R., Lin, W., Little, T., Lukacs, A., Mallyon, D.,
Mariani, E., Massiot, C., Mathewson, L., Melosh, B., Menzies, C., Moore, J.,
Morales, L., Morgan, C., Mori, H., Niemeijer, A., Nishikawa, O., Prior, D.,
Sauer, K., Savage, M., Schleicher, A., Schmitt, D. R., Shigematsu, N.,
Taylor-Offord, S., Teagle, D., Tobin, H., Valdez, R., Weaver, K., Wiersberg,
T., Williams, J., Woodman, N., and Zimmer, M.: Extreme hydrothermal
conditions at an active plate-bounding fault, Nature, 546, 137–140,
https://doi.org/10.1038/nature22355, 2017.
Taillefer, A., Soliva, R., Guillou-Frottier, L., Le Goff, E., Martin, G., and
Seranne, M.: Fault-Related Controls on Upward Hydrothermal Flow: An
Integrated Geological Study of the Têt Fault System, Eastern
Pyrénées (France), Geofluids, 2017, 1–19, https://doi.org/10.1155/2017/8190109,
2017.
Taillefer, A., Guillou-Frottier, L., Soliva, R., Magri, F., Lopez, S.,
Courrioux, G., Millot, R., Ladouche, B. and Le Goff, E.: Topographic and
Faults Control of Hydrothermal Circulation Along Dormant Faults in an
Orogen, Geochem. Geophy. Geosy., 19, 4972–4995, https://doi.org/10.1029/2018GC007965,
2018.
Teixell, A., Labaume, P., and Lagabrielle, Y.: The crustal evolution of the
west-central Pyrenees revisited: Inferences from a new kinematic scenario,
Comptes Rendus Geoscience, 348, 257–267,
https://doi.org/10.1016/j.crte.2015.10.010, 2016.
Ternois, S., Odlum, M., Ford, M., Pik, R., Stockli, D., Tibari, B.,
Vacherat, A., and Bernard, V.: Thermochronological Evidence of Early
Orogenesis, Eastern Pyrenees, France, Tectonics, 38, 1308–1336,
https://doi.org/10.1029/2018TC005254, 2019.
Valla, P. G., Rahn, M., Shuster, D. L., and van der Beek, P. A.: Multi-phase
late-Neogene exhumation history of the Aar massif, Swiss central Alps, Terra
Nova, 28, 383–393, https://doi.org/10.1111/ter.12231, 2016.
Vacherat, A., Mouthereau, F., Pik, R., Bernet, M., Gautheron, C., Masini,
E., Le Pourhiet, L., Tibari, B., and Lahfid, A.: Thermal imprint of
rift-related processes in orogens as recorded in the Pyrenees, Earth Planet. Sc. Lett., 408, 296–306, https://doi.org/10.1016/j.epsl.2014.10.014,
2014.
Vacherat, A., Mouthereau, F., Pik, R., Bellahsen, N., Gautheron, C., Bernet,
M., Daudet, M., Balansa, J., Tibari, B., Pinna Jamme, R., and Radal, J.:
Rift-to-collision transition recorded by tectonothermal evolution of the
northern Pyrenees: cooling history of the northern Pyrenees, Tectonics,
35, 907–933, https://doi.org/10.1002/2015TC004016, 2016.
Van der Zwaan, B. and Dalla Longa, F.: Integrated assessment projections for
global geothermal energy use, Geothermics, 82, 203–211,
https://doi.org/10.1016/j.geothermics.2019.06.008, 2019.
Vergés, J., Millán, H., Roca, E., Muñoz, J. A., Marzo, M.,
Cirés, J., Bezemer, T. D., Zoetemeijer, R., and Cloetingh, S.: Eastern
Pyrenees and related foreland basins: pre-, syn- and post-collisional
crustal-scale cross-sections, Mar. Petrol. Geol., 12, 903–915,
https://doi.org/10.1016/0264-8172(95)98854-X, 1995.
Vermeesch, P.: HelioPlot, and the treatment of overdispersed (U-Th-Sm)/He
data, Chem. Geol., 271, 108–111,
https://doi.org/10.1016/j.chemgeo.2010.01.002, 2010.
Volpi, G., Magri, F., Frattini, P., Crosta, G. B., and Riva, F.:
Groundwater-driven temperature changes at thermal springs in response to
recent glaciation: Bormio hydrothermal system, Central Italian Alps,
Hydrogeol. J., 25, 1967–1984, https://doi.org/10.1007/s10040-017-1600-6,
2017.
Wanner, C., Waber, H. N., and Bucher, K.: Geochemical evidence for regional
and long-term topography-driven groundwater flow in an orogenic crystalline
basement (Aar Massif, Switzerland), J. Hydrol., 81, 124374,
https://doi.org/10.1016/j.jhydrol.2019.124374, 2019.
Whipp, D. M. and Ehlers, T. A.: Influence of groundwater flow on
thermochronometer-derived exhumation rates in the central Nepalese Himalaya,
Geology, 35, 851, https://doi.org/10.1130/G23788A.1, 2007.
Whitchurch, A. L., Carter, A., Sinclair, H. D., Duller, R. A., Whittaker, A.
C., and Allen, P. A.: Sediment routing system evolution within a
diachronously uplifting orogen: Insights from detrital zircon
thermochronological analyses from the South-Central Pyrenees, Am.
J. Sci., 311, 442–482, https://doi.org/10.2475/05.2011.03, 2011.
Wölfler, A., Kurz, W., Danišík, M., and Rabitsch, R.: Dating of
fault zone activity by apatite fission track and apatite
thermochronometry: a case study from the Lavanttal fault system (Eastern
Alps): Dating of fault zone activity, Terra Nova, 22, 274–282,
https://doi.org/10.1111/j.1365-3121.2010.00943.x, 2010.
Wu, L., Monié, P., Wang, F., Lin, W., Ji, W., Bonno, M., Münch, P.,
and Wang, Q.: Cenozoic exhumation history of Sulu terrane: Implications from
thermochrology, Tectonophysics, 672–673, 1–15,
https://doi.org/10.1016/j.tecto.2016.01.035, 2016.
Zeitler, P. K., Enkelmann, E., Thomas, J. B., Watson, E. B., Ancuta, L. D.,
and Idleman, B. D.: Solubility and trapping of helium in apatite, Geochim. Cosmochim. Ac., 209, 1–8, https://doi.org/10.1016/j.gca.2017.03.041, 2017.
Short summary
This study proposes a new way to highlight hydrothermal fluid circulations and thermal anomalies in the Earth's crust with a combined evaluation of the age of granite and gneiss apatites (< 200 µm) as well as the behaviour of their chemical elements. As an exploration tool, this approach is very promising and complementary to other geothermal exploration techniques based on numerical modelling. Moreover, it is a cost-effective tool as it allows for constraining geothermal models.
This study proposes a new way to highlight hydrothermal fluid circulations and thermal anomalies...
Special issue