Articles | Volume 11, issue 5
https://doi.org/10.5194/se-11-1747-2020
https://doi.org/10.5194/se-11-1747-2020
Research article
 | 
14 Sep 2020
Research article |  | 14 Sep 2020

Tracking geothermal anomalies along a crustal fault using (U − Th)∕He apatite thermochronology and rare-earth element (REE) analyses: the example of the Têt fault (Pyrenees, France)

Gaétan Milesi, Patrick Monié, Philippe Münch, Roger Soliva, Audrey Taillefer, Olivier Bruguier, Mathieu Bellanger, Michaël Bonno, and Céline Martin

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Gaétan Milesi on behalf of the Authors (30 Jun 2020)  Author's response   Manuscript 
ED: Publish as is (27 Jul 2020) by Fabrizio Balsamo
ED: Publish as is (28 Jul 2020) by CharLotte Krawczyk (Executive editor)
AR by Gaétan Milesi on behalf of the Authors (28 Jul 2020)
Download
Short summary
This study proposes a new way to highlight hydrothermal fluid circulations and thermal anomalies in the Earth's crust with a combined evaluation of the age of granite and gneiss apatites (< 200 µm) as well as the behaviour of their chemical elements. As an exploration tool, this approach is very promising and complementary to other geothermal exploration techniques based on numerical modelling. Moreover, it is a cost-effective tool as it allows for constraining geothermal models.