Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2327-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-2327-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of upper mantle convection on lithosphere hyperextension and subsequent horizontally forced subduction initiation
Lorenzo G. Candioti
CORRESPONDING AUTHOR
Institut des sciences de la Terre, Bâtiment Géopolis, Quartier UNIL-Mouline, Université de Lausanne, 1015 Lausanne (VD), Switzerland
Stefan M. Schmalholz
Institut des sciences de la Terre, Bâtiment Géopolis, Quartier UNIL-Mouline, Université de Lausanne, 1015 Lausanne (VD), Switzerland
Thibault Duretz
Univ Rennes, CNRS, Géosciences Rennes UMR 6118, Rennes, France
Institut des sciences de la Terre, Bâtiment Géopolis, Quartier UNIL-Mouline, Université de Lausanne, 1015 Lausanne (VD), Switzerland
Related authors
Lorenzo G. Candioti, Thibault Duretz, Evangelos Moulas, and Stefan M. Schmalholz
Solid Earth, 12, 1749–1775, https://doi.org/10.5194/se-12-1749-2021, https://doi.org/10.5194/se-12-1749-2021, 2021
Short summary
Short summary
We quantify the relative importance of forces driving the dynamics of mountain building using two-dimensional computer simulations of long-term coupled lithosphere–upper-mantle deformation. Buoyancy forces can be as high as shear forces induced by far-field plate motion and should be considered when studying the formation of mountain ranges. The strength of rocks flooring the oceans and the density structure of the crust control deep rock cycling and the topographic elevation of orogens.
Ludovic Räss, Ivan Utkin, Thibault Duretz, Samuel Omlin, and Yuri Y. Podladchikov
Geosci. Model Dev., 15, 5757–5786, https://doi.org/10.5194/gmd-15-5757-2022, https://doi.org/10.5194/gmd-15-5757-2022, 2022
Short summary
Short summary
Continuum mechanics-based modelling of physical processes at large scale requires huge computational resources provided by massively parallel hardware such as graphical processing units. We present a suite of numerical algorithms, implemented using the Julia language, that efficiently leverages the parallelism. We demonstrate that our implementation is efficient, scalable and robust and showcase applications to various geophysical problems.
Lorenzo G. Candioti, Thibault Duretz, Evangelos Moulas, and Stefan M. Schmalholz
Solid Earth, 12, 1749–1775, https://doi.org/10.5194/se-12-1749-2021, https://doi.org/10.5194/se-12-1749-2021, 2021
Short summary
Short summary
We quantify the relative importance of forces driving the dynamics of mountain building using two-dimensional computer simulations of long-term coupled lithosphere–upper-mantle deformation. Buoyancy forces can be as high as shear forces induced by far-field plate motion and should be considered when studying the formation of mountain ranges. The strength of rocks flooring the oceans and the density structure of the crust control deep rock cycling and the topographic elevation of orogens.
Richard Spitz, Arthur Bauville, Jean-Luc Epard, Boris J. P. Kaus, Anton A. Popov, and Stefan M. Schmalholz
Solid Earth, 11, 999–1026, https://doi.org/10.5194/se-11-999-2020, https://doi.org/10.5194/se-11-999-2020, 2020
Short summary
Short summary
We apply three-dimensional (3D) thermo-mechanical numerical simulations of the shortening of the upper crustal region of a passive margin in order to investigate the control of 3D laterally variable inherited structures on fold-and-thrust belt evolution and associated nappe formation. The model is applied to the Helvetic nappe system of the Swiss Alps. Our results show a 3D reconstruction of the first-order tectonic evolution showing the fundamental importance of inherited geological structures.
Dániel Kiss, Thibault Duretz, and Stefan Markus Schmalholz
Solid Earth, 11, 287–305, https://doi.org/10.5194/se-11-287-2020, https://doi.org/10.5194/se-11-287-2020, 2020
Short summary
Short summary
In this paper, we investigate the physical mechanisms of tectonic nappe formation by high-resolution numerical modeling. Tectonic nappes are key structural features of many mountain chains which are packets of rocks displaced, sometimes even up to 100 km, from their original position. However, the physical mechanisms involved are not fully understood. We solve numerical equations of fluid and solid dynamics to improve our knowledge. The results are compared with data from the Helvetic Alps.
Stefan Markus Schmalholz and Neil Sydney Mancktelow
Solid Earth, 7, 1417–1465, https://doi.org/10.5194/se-7-1417-2016, https://doi.org/10.5194/se-7-1417-2016, 2016
Short summary
Short summary
About 200 years ago in 1815 Sir James Hall made his famous analogue experiments, which showed probably for the first time that natural folds in ductile rock are the result of a horizontal compression. If such rocks are extended, then the rock layers can thin only locally, which is a process termed necking, and the resulting structure is often termed pinch-and-swell. We review here theoretical and experimental results on folding and necking on all geological scales.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Structural geology and tectonics, paleoseismology, rock physics, experimental deformation | Discipline: Geodynamics
Pore-scale permeability prediction for Newtonian and non-Newtonian fluids
Oblique rifting: the rule, not the exception
The effect of obliquity on temperature in subduction zones: insights from 3-D numerical modeling
Philipp Eichheimer, Marcel Thielmann, Anton Popov, Gregor J. Golabek, Wakana Fujita, Maximilian O. Kottwitz, and Boris J. P. Kaus
Solid Earth, 10, 1717–1731, https://doi.org/10.5194/se-10-1717-2019, https://doi.org/10.5194/se-10-1717-2019, 2019
Short summary
Short summary
Prediction of rock permeability is of crucial importance for several research areas in geoscience. In this study, we enhance the finite difference code LaMEM to compute fluid flow on the pore scale using Newtonian and non-Newtonian rheologies. The accuracy of the code is demonstrated using several analytical solutions as well as experimental data. Our results show good agreement with analytical solutions and recent numerical studies.
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary
Short summary
Fragmentation of continents often involves obliquely rifting segments that feature a complex three-dimensional structural evolution. Here we show that more than ~ 70 % of Earth’s rifted margins exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. This highlights the importance of three-dimensional approaches in modelling, surveying, and interpretation of those rift segments where oblique rifting is the dominant mode of deformation.
Alexis Plunder, Cédric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 9, 759–776, https://doi.org/10.5194/se-9-759-2018, https://doi.org/10.5194/se-9-759-2018, 2018
Short summary
Short summary
The thermal state of the Earth's crust determines how it reacts to tectonic forces and to fluid flow responsible for ore formation. We hypothesize that the angle between plate motion and convergent boundaries determines the thermal regime of subduction zones (where a plate goes under another one). Computer models and a geological reconstruction of Turkey were used to validate this hypothesis.
This research was done to validate a hypothesis made on the basis of nonquantitative field data.
Cited articles
Beaussier, S. J., Gerya, T. V., and Burg, J.-P.: 3D numerical modelling of the Wilson cycle: structural inheritance of alternating subduction polarity, Geological Society, London, Special Publications, 470, 439–461, 2019. a
Becker, T. W.: Superweak asthenosphere in light of upper mantle seismic anisotropy, Geochem. Geophy. Geosy., 18, 1986–2003, 2017. a
Bercovici, D. and Ricard, Y.: Mechanisms for the generation of plate tectonics by two-phase grain-damage and pinning, Phys. Earth Planet. In., 202, 27–55, 2012. a
Bercovici, D., Schubert, G., and Glatzmaier, G. A.: Three-dimensional convection of an infinite-Prandtl-number compressible fluid in a basally heated spherical shell, J. Fluid Mech., 239, 683–719, 1992. a
Beuchert, M. J. and Podladchikov, Y. Y.: Viscoelastic mantle convection and lithospheric stresses, Geophys. J. Int., 183, 35–63, 2010. a
Boonma, K., Kumar, A., García-Castellanos, D., Jiménez-Munt, I., and Fernández, M.: Lithospheric mantle buoyancy: the role of tectonic convergence and mantle composition, Scientific Reports, 9, 1–8, 2019. a
Buck, W. R.: Small-scale convection induced by passive rifting: the cause for uplift of rift shoulders, Earth Planet. Sc. Lett., 77, 362–372, 1986. a
Candioti, L. G.: Convergence phase of model M4, Supplemental videos of the paper “Impact of upper mantle convection on lithosphere hyper-extension and subsequent convergence-induced subduction”, Copernicus Publications, https://doi.org/10.5446/48940, 2020a. a
Candioti, L. G.: Full cycle of model M1, Supplemental videos of the paper ”Impact of upper mantle convection on lithosphere hyper-extension and subsequent convergence-induced subduction”, Copernicus Publications, https://doi.org/10.5446/48939, 2020b. a
Chen, J.: Lower-mantle materials under pressure, Science, 351, 122–123, 2016. a
Chenin, P., Schmalholz, S. M., Manatschal, G., and Karner, G. D.: Necking of the lithosphere: A reappraisal of basic concepts with thermo-mechanical numerical modeling, J. Geophys. Res.-Sol. Ea., 123, 5279–5299, 2018. a
Christensen, U.: Effects of phase transitions on mantle convection, Annu. Rev. Earth Pl. Sc., 23, 65–87, 1995. a
Crameri, F.: Geodynamic diagnostics, scientific visualisation and StagLab 3.0, Geosci. Model Dev., 11, 2541–2562, https://doi.org/10.5194/gmd-11-2541-2018, 2018. a
Crameri, F., Conrad, C. P., Montési, L., and Lithgow-Bertelloni, C. R.: The dynamic life of an oceanic plate, Tectonophysics, 760, 107–135, 2019. a
Crameri, F., Magni, V., Domeier, M., Shephard, G. E., Chotalia, K., Cooper, G., Eakin, C. M., Grima, A. G., Gürer, D., Király, Á., Mulyukova, E., Peters, K., Robert, B., and Thielmann, M.: A transdisciplinary and community-driven database to unravel subduction zone initiation, Nat. Commun., 11, 1–14, 2020. a, b, c, d, e
Currie, C. A., Huismans, R. S., and Beaumont, C.: Thinning of continental backarc lithosphere by flow-induced gravitational instability, Earth Planet. Sc. Lett., 269, 436–447, 2008. a
Dal Zilio, L., Faccenda, M., and Capitanio, F.: The role of deep subduction in supercontinent breakup, Tectonophysics, 746, 312–324, 2018. a
De Graciansky, P.-C., Roberts, D. G., and Tricart, P.: The Western Alps, from rift to passive margin to orogenic belt: an integrated geoscience overview, in: Developments in Earth Surface Processes, Vol. 14, Elsevier, 2010. a
Duretz, T., May, D. A., and Yamato, P.: A free surface capturing discretization for the staggered grid finite difference scheme, Geophys. J.
Int., 204, 1518–1530, 2016a. a
Duretz, T., Petri, B., Mohn, G., Schmalholz, S., Schenker, F., and Müntener, O.: The importance of structural softening for the evolution and architecture of passive margins, Scientific Reports, 6, 38704, https://doi.org/10.1038/srep38704, 2016b. a, b, c
Erdös, Z., Huismans, R. S., and van der Beek, P.: Control of increased sedimentation on orogenic fold-and-thrust belt structure – insights into the evolution of the Western Alps, Solid Earth, 10, 391–404, https://doi.org/10.5194/se-10-391-2019, 2019. a
Faccenna, C. and Becker, T. W.: Shaping mobile belts by small-scale convection, Nature, 465, 602–605, 2010. a
Favre, P. and Stampfli, G.: From rifting to passive margin: the examples of the Red Sea, Central Atlantic and Alpine Tethys, Tectonophysics, 215, 69–97, 1992. a
Forte, A. M., Quéré, S., Moucha, R., Simmons, N. A., Grand, S. P., Mitrovica, J. X., and Rowley, D. B.: Joint seismic–geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints, Earth Planet. Sc. Lett., 295, 329–341, 2010. a, b
Froitzheim, N. and Manatschal, G.: Kinematics of Jurassic rifting, mantle
exhumation, and passive-margin formation in the Austroalpine and Penninic
nappes (eastern Switzerland), Geol. Soc. Am. Bull., 108, 1120–1133, 1996. a
Garel, F., Goes, S., Davies, D., Davies, J. H., Kramer, S. C., and Wilson, C. R.: Interaction of subducted slabs with the mantle transition-zone: A regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate, Geochem. Geophy. Geosy., 15, 1739–1765, 2014. a
Gerya, T. V. and Yuen, D. A.: Characteristics-based marker-in-cell method with conservative finite-differences schemes for modeling geological flows with strongly variable transport properties, Phys. Earth Planet. In., 140, 293–318, 2003. a
Golabek, G. J., Keller, T., Gerya, T. V., Zhu, G., Tackley, P. J., and Connolly, J. A.: Origin of the Martian dichotomy and Tharsis from a giant impact causing massive magmatism, Icarus, 215, 346–357, 2011. a
Gülcher, A. J., Beaussier, S. J., and Gerya, T. V.: On the formation of oceanic detachment faults and their influence on intra-oceanic subduction initiation: 3D thermomechanical modeling, Earth Planet. Sc. Lett., 506, 195–208, 2019. a
Herzberg, C., Condie, K., and Korenaga, J.: Thermal history of the Earth and its petrological expression, Earth Planet. Sc. Lett., 292, 79–88, 2010. a
Holt, A., Royden, L., and Becker, T.: The dynamics of double slab subduction, Geophys. J. Int., 209, 250–265, 2017. a
Hua, Y., Zhao, D., and Xu, Y.: P wave anisotropic tomography of the Alps, J. Geophys. Res.-Sol. Ea., 122, 4509–4528, 2017. a
Huang, J., Zhong, S., and van Hunen, J.: Controls on sublithospheric small-scale convection, J. Geophys. Res., 108, 2405, https://doi.org/10.1029/2003JB002456, 2003. a, b, c
Huismans, R. and Beaumont, C.: Depth-dependent extension, two-stage breakup and cratonic underplating at rifted margins, Nature, 473, 74–78, 2011. a
Jammes, S. and Huismans, R. S.: Structural styles of mountain building: Controls of lithospheric rheologic stratification and extensional inheritance, J. Geophys. Res., 117, B10403, https://doi.org/10.1029/2012JB009376, 2012. a
Kamenetskii, D. F.: Diffusion and heat transfer in chemical kinetics, Plenum Press, New York, 1969. a
Kaus, B. J., Liu, Y., Becker, T., Yuen, D. A., and Shi, Y.: Lithospheric stress-states predicted from long-term tectonic models: Influence of rheology and possible application to Taiwan, J. Asian Earth Sci., 36, 119–134, 2009. a
Kondepudi, D. and Prigogine, I.: Modern thermodynamics: from heat engines to dissipative structures, John Wiley & Sons, New York, 2014. a
Kronenberg, A. K., Kirby, S. H., and Pinkston, J.: Basal slip and mechanical anisotropy of biotite, J. Geophys. Res., 95, 19257–19278, 1990. a
Li, C., van der Hilst, R. D., Engdahl, E. R., and Burdick, S.: A new global model for P wave speed variations in Earth's mantle, Geochem. Geophy. Geosy., 9, Q05018, https://doi.org/10.1029/2007GC001806, 2008. a
Li, D., Wang, G., Bons, P., Zhao, Z., Du, J., Wang, S., Yuan, G., Liang, X., Zhang, L., Li, C., Fang, D. R., Tang, Y., Hu, Y. L., and Fu, Y. Z.: Subduction reversal in a divergent double subduction zone drives the exhumation of southern Qiangtang blueschist-bearing mélange, central Tibet, Tectonics, 39, e2019TC006051, https://doi.org/10.1029/2019TC006051, 2020. a
Li, Z.-H., Gerya, T., and Connolly, J. A.: Variability of subducting slab morphologies in the mantle transition zone: Insight from petrological-thermomechanical modeling, Earth-Sci. Rev., 196, 102874, https://doi.org/10.1016/j.earscirev.2019.05.018, 2019. a
Mackwell, S., Zimmerman, M., and Kohlstedt, D.: High-temperature deformation of dry diabase with application to tectonics on Venus, J. Geophys. Res., 103, 975–984, 1998. a
Mallard, C., Coltice, N., Seton, M., Müller, R. D., and Tackley, P. J.:
Subduction controls the distribution and fragmentation of Earth's tectonic
plates, Nature, 535, 140–143, 2016. a
Manatschal, G. and Müntener, O.: A type sequence across an ancient magma-poor ocean–continent transition: the example of the western Alpine Tethys ophiolites, Tectonophysics, 473, 4–19, 2009. a
Manzotti, P., Ballevre, M., Zucali, M., Robyr, M., and Engi, M.: The tectonometamorphic evolution of the Sesia–Dent Blanche nappes (internal Western Alps): review and synthesis, Swiss J. Geosci., 107, 309–336, 2014. a
McCarthy, A., Tugend, J., Mohn, G., Candioti, L., Chelle-Michou, C., Arculus, R., Schmalholz, S. M., and Müntener, O.: A case of Ampferer-type subduction and consequences for the Alps and the Pyrenees, Am. J. Sci., 320, 313–372, 2020. a
McKenzie, D.: The initiation of trenches: a finite amplitude instability, in: island arcs, deep sea trenches and back‐arc basins, edited by: Talwani, M. and Pitman, W. C., 1, 57–61, 1977. a
Montési, L. G.: Fabric development as the key for forming ductile shear zones and enabling plate tectonics, J. Struct. Geol., 50, 254–266, 2013. a
Mueller, S. and Phillips, R. J.: On the initiation of subduction, J. Geophys. Res., 96, 651–665, 1991. a
Müller, R. D., Sdrolias, M., Gaina, C., and Roest, W. R.: Age, spreading rates, and spreading asymmetry of the world's ocean crust, Geochem. Geophy. Geosy., 9, Q04006, https://doi.org/10.1029/2007GC001743, 2008. a, b
Peron-Pinvidic, G., Manatschal, G., and the “IMAGinING RIFTING” Workshop Participants: Rifted margins: state of the art and future challenges, Frontiers in Earth Science, 7, 218, https://doi.org/10.3389/feart.2019.00218, 2019. a
Petersen, K. D., Nielsen, S., Clausen, O., Stephenson, R., and Gerya, T.: Small-scale mantle convection produces stratigraphic sequences in sedimentary basins, Science, 329, 827–830, 2010. a
Petri, B., Duretz, T., Mohn, G., Schmalholz, S. M., Karner, G. D., and Müntener, O.: Thinning mechanisms of heterogeneous continental lithosphere, Earth Planet. Sc. Lett., 512, 147–162, 2019. a
Picazo, S., Müntener, O., Manatschal, G., Bauville, A., Karner, G., and Johnson, C.: Mapping the nature of mantle domains in Western and Central Europe based on clinopyroxene and spinel chemistry: Evidence for mantle modification during an extensional cycle, Lithos, 266, 233–263, 2016. a
Piromallo, C. and Morelli, A.: P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res., 108, 2065, https://doi.org/10.1029/2002JB001757, 2003. a, b
Poh, J., Yamato, P., Duretz, T., Gapais, D., and Ledru, P.: Precambrian deformation belts in compressive tectonic regimes: A numerical perspective, Tectonophysics, 777, 228350, https://doi.org/10.1016/j.tecto.2020.228350, 2020. a
Popov, A. and Sobolev, S.: SLIM3D: A tool for three-dimensional thermomechanical modeling of lithospheric deformation with elasto-visco-plastic rheology, Phys. Earth Planet. In., 171, 55–75, 2008. a
Prout, W.: Chemistry, meteorology and the function of digestion [Bridgewater
Treatise No. 8],: W. Pickering, London, 1834. a
Ranalli, G.: Rheology of the Earth, Springer Science & Business Media, 1995. a
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al‐Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al‐Ghazzi, R., and Karam, G.: GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res., 111, B05411, https://doi.org/10.1029/2005JB004051, 2006. a
Ruh, J. B., Le Pourhiet, L., Agard, P., Burov, E., and Gerya, T.: Tectonic slicing of subducting oceanic crust along plate interfaces: Numerical modeling, Geochem. Geophy. Geosy., 16, 3505–3531, 2015. a
Schmalholz, S., Podladchikov, Y., and Schmid, D.: A spectral/finite difference method for simulating large deformations of heterogeneous, viscoelastic materials, Geophys. J. Int., 145, 199–208, 2001. a
Schmalholz, S. M. and Fletcher, R. C.: The exponential flow law applied to necking and folding of a ductile layer, Geophys. J. Int., 184, 83–89, 2011. a
Schmid, S., Boland, J., and Paterson, M.: Superplastic flow in finegrained limestone, Tectonophysics, 43, 257–291, 1977. a
Solomatov, V.: Initiation of subduction by small-scale convection, J. Geophys. Res., 109, B01412, https://doi.org/10.1029/2003JB002628, 2004. a
Tackley, P. J., Schubert, G., Glatzmaier, G. A., Schenk, P., Ratcliff, J. T., and Matas, J.-P.: Three-dimensional simulations of mantle convection in Io, Icarus, 149, 79–93, 2001. a
Thielmann, M. and Schmalholz, S. M.: Contributions of Grain Damage, Thermal Weakening, and Necking to Slab Detachment, Frontiers in Earth Science, 8, 254, https://doi.org/10.3389/feart.2020.00254, 2020. a
Tosi, N., Stein, C., Noack, L., Hüttig, C., Maierova, P., Samuel, H., Davies, D. R., Wilson, C. R., Kramer, S. C., Thieulot, C., Glerum, A., Fraters, M., Spakman, W., Rozel, A., and Tackley, P. J.: A community benchmark for viscoplastic thermal convection in a 2-D square box, Geochem. Geophy. Geosy., 16, 2175–2196, 2015. a, b, c, d, e, f, g
Trubitsyn, V. and Trubitsyna, A.: Effects of compressibility in the mantle convection equations, Izvestiya, Physics of the Solid Earth, 51, 801–813,
2015. a
van Hunen, J., van den Berg, A. P., and Vlaar, N. J.: Latent heat effects of the major mantle phase transitions on low-angle subduction, Earth Planet. Sc. Lett., 190, 125–135, 2001. a
Van Wijk, J., Van Hunen, J., and Goes, S.: Small-scale convection during
continental rifting: Evidence from the Rio Grande rift, Geology, 36,
575–578, 2008. a
White, S. T. and Knipe, R.: Transformation-and reaction-enhanced ductility in rocks, J. Geol. Soc., 135, 513–516, 1978. a
Wilson, J. T.: Did the Atlantic close and then re-open?, Nature, 211, 676–681, 1966. a
Wilson, R., Houseman, G., Buiter, S., McCaffrey, K., and Doré, A.: Fifty years of the Wilson Cycle concept in plate tectonics: an overview,
Geological Society, London, special publications, 470, 1–17, 2019. a
Yamato, P., Duretz, T., May, D. A., and Tartese, R.: Quantifying magma segregation in dykes, Tectonophysics, 660, 132–147, 2015. a
Yamato, P., Duretz, T., and Angiboust, S.: Brittle/ductile deformation of eclogites: insights from numerical models, Geochem. Geophy. Geosy., 20, 3116–3133, 2019. a
Yang, F., Santosh, M., Tsunogae, T., Tang, L., and Teng, X.: Multiple magmatism in an evolving suprasubduction zone mantle wedge: the case of the composite mafic–ultramafic complex of Gaositai, North China Craton, Lithos, 284, 525–544, 2017. a
Zahnle, K. J., Kasting, J. F., and Pollack, J. B.: Evolution of a steam atmosphere during Earth's accretion, Icarus, 74, 62–97, 1988. a
Zhao, Z., Bons, P. D., Wang, G., Soesoo, A., and Liu, Y.: Tectonic evolution and high-pressure rock exhumation in the Qiangtang terrane, central Tibet, Solid Earth, 6, 457–473, https://doi.org/10.5194/se-6-457-2015, 2015. a
Zhou, X., Li, Z.-H., Gerya, T. V., and Stern, R. J.: Lateral propagation–induced subduction initiation at passive continental margins controlled by preexisting lithospheric weakness, Science Advances, 6, eaaz1048, https://doi.org/10.1126/sciadv.aaz1048, 2020. a
Short summary
With computer simulations, we study the interplay between thermo-mechanical processes in the lithosphere and the underlying upper mantle during a long-term (> 100 Myr) tectonic cycle of extension–cooling–convergence. The intensity of mantle convection is important for (i) subduction initiation, (ii) the development of single- or double-slab subduction zones, and (iii) the forces necessary to initiate subduction. Our models are applicable to the opening and closure of the western Alpine Tethys.
With computer simulations, we study the interplay between thermo-mechanical processes in the...