Articles | Volume 11, issue 3
https://doi.org/10.5194/se-11-889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-11-889-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Introduction: Handling uncertainty in the geosciences: identification, mitigation and communication
Lucía Pérez-Díaz
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN,
UK
Juan Alcalde
Instituto de Ciencias de la Tierra Jaume Almera, ICTJA, CSIC,
Barcelona, 08028, Spain
Clare E. Bond
Department of Geology and Geophysics, University of Aberdeen,
Aberdeen, AB24 3UE, UK
Related authors
Annabel Causer, Lucía Pérez-Díaz, Jürgen Adam, and Graeme Eagles
Solid Earth, 11, 397–417, https://doi.org/10.5194/se-11-397-2020, https://doi.org/10.5194/se-11-397-2020, 2020
Short summary
Short summary
Here we discuss the validity of so-called “break-up” markers along the Newfoundland margin, challenging their perceived suitability for plate kinematic reconstructions of the southern North Atlantic. We do this on the basis of newly available seismic transects across the Southern Newfoundland Basin. Our new data contradicts current interpretations of the extent of oceanic lithosphere and illustrates the need for a differently constraining the plate kinematics of the Iberian plate pre M0 times.
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Eloi González-Esvertit, Juan Alcalde, and Enrique Gomez-Rivas
Earth Syst. Sci. Data, 15, 3131–3145, https://doi.org/10.5194/essd-15-3131-2023, https://doi.org/10.5194/essd-15-3131-2023, 2023
Short summary
Short summary
Evaporites are, scientifically and economically, key rocks due to their unique geological features and value for industrial purposes. To compile and normalise the vast amount of information of evaporite structures in the Iberian Peninsula, we present the IESDB – the first comprehensive database of evaporite structures and their surrounding rocks in Spain and Portugal. The IESDB is free to use, open access, and can be accessed and downloaded through the interactive IESDB webpage.
Clare E. Bond, Jessica H. Pugsley, Lauren Kedar, Sarah R. Ledingham, Marianna Z. Skupinska, Tomasz K. Gluzinski, and Megan L. Boath
Geosci. Commun., 5, 307–323, https://doi.org/10.5194/gc-5-307-2022, https://doi.org/10.5194/gc-5-307-2022, 2022
Short summary
Short summary
Virtual field trips are used to engage students who are unable to go into the field with geological field work. Here, we investigate the perceptions of staff and students before and after a virtual field trip, including the investigation of the success of mitigation measures designed to decrease barriers to engagement and inclusion. We conclude that negative and positive perceptions exist and that effective mitigation measures can be used to improve the student experience.
Lauren Kedar, Clare E. Bond, and David K. Muirhead
Solid Earth, 13, 1495–1511, https://doi.org/10.5194/se-13-1495-2022, https://doi.org/10.5194/se-13-1495-2022, 2022
Short summary
Short summary
Raman spectroscopy of carbon-bearing rocks is often used to calculate peak temperatures and therefore burial history. However, strain is known to affect Raman spectral parameters. We investigate a series of deformed rocks that have been subjected to varying degrees of strain and find that there is a consistent change in some parameters in the most strained rocks, while other parameters are not affected by strain. We apply temperature calculations and find that strain affects them differently.
Juan Alcalde, Ramon Carbonell, Solveig Pospiech, Alba Gil, Liam A. Bullock, and Fernando Tornos
Solid Earth, 13, 1161–1168, https://doi.org/10.5194/se-13-1161-2022, https://doi.org/10.5194/se-13-1161-2022, 2022
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Alexander Schaaf, Miguel de la Varga, Florian Wellmann, and Clare E. Bond
Geosci. Model Dev., 14, 3899–3913, https://doi.org/10.5194/gmd-14-3899-2021, https://doi.org/10.5194/gmd-14-3899-2021, 2021
Short summary
Short summary
Uncertainty is an inherent property of any model of the subsurface. We show how geological topology information – how different regions of rocks in the subsurface are connected – can be used to train uncertain geological models to reduce uncertainty. More widely, the method demonstrates the use of probabilistic machine learning (Bayesian inference) to train structural geological models on auxiliary geological knowledge that can be encoded in graph structures.
Jennifer J. Roberts, Clare E. Bond, and Zoe K. Shipton
Geosci. Commun., 4, 303–327, https://doi.org/10.5194/gc-4-303-2021, https://doi.org/10.5194/gc-4-303-2021, 2021
Short summary
Short summary
The potential for hydraulic fracturing (fracking) to induce seismicity is a topic of widespread interest. We find that terms used to describe induced seismicity are poorly defined and ambiguous and do not translate into everyday language. Such bad language has led to challenges in understanding, perceiving, and communicating risks around seismicity and fracking. Our findings and recommendations are relevant to other geoenergy topics that are potentially associated with induced seismicity.
Clare E. Bond and Adam J. Cawood
Geosci. Commun., 4, 233–244, https://doi.org/10.5194/gc-4-233-2021, https://doi.org/10.5194/gc-4-233-2021, 2021
Short summary
Short summary
Virtual outcrop models are increasingly used in geoscience teaching, but their efficacy as a training tool for 3D thinking has been little tested. We find that using a virtual outcrop increases the participants' ability to choose the correct geological block model. That virtual outcrops are viewed positively, but only in a blended learning environment and not as a replacement for fieldwork, and virtual outcrop use could improve equality, diversity and inclusivity in geoscience.
Irene DeFelipe, Juan Alcalde, Monika Ivandic, David Martí, Mario Ruiz, Ignacio Marzán, Jordi Diaz, Puy Ayarza, Imma Palomeras, Jose-Luis Fernandez-Turiel, Cecilia Molina, Isabel Bernal, Larry Brown, Roland Roberts, and Ramon Carbonell
Earth Syst. Sci. Data, 13, 1053–1071, https://doi.org/10.5194/essd-13-1053-2021, https://doi.org/10.5194/essd-13-1053-2021, 2021
Short summary
Short summary
Seismic data provide critical information about the structure of the lithosphere, and their preservation is essential for innovative research reusing data. The Seismic DAta REpository (SeisDARE) comprises legacy and recently acquired seismic data in the Iberian Peninsula and Morocco. This database has been built by a network of different institutions that promote multidisciplinary research. We aim to make seismic data easily available to the research, industry, and educational communities.
Annabel Causer, Lucía Pérez-Díaz, Jürgen Adam, and Graeme Eagles
Solid Earth, 11, 397–417, https://doi.org/10.5194/se-11-397-2020, https://doi.org/10.5194/se-11-397-2020, 2020
Short summary
Short summary
Here we discuss the validity of so-called “break-up” markers along the Newfoundland margin, challenging their perceived suitability for plate kinematic reconstructions of the southern North Atlantic. We do this on the basis of newly available seismic transects across the Southern Newfoundland Basin. Our new data contradicts current interpretations of the extent of oceanic lithosphere and illustrates the need for a differently constraining the plate kinematics of the Iberian plate pre M0 times.
Juan Alcalde, Clare E. Bond, Gareth Johnson, Armelle Kloppenburg, Oriol Ferrer, Rebecca Bell, and Puy Ayarza
Solid Earth, 10, 1651–1662, https://doi.org/10.5194/se-10-1651-2019, https://doi.org/10.5194/se-10-1651-2019, 2019
Cristina G. Wilson, Clare E. Bond, and Thomas F. Shipley
Solid Earth, 10, 1469–1488, https://doi.org/10.5194/se-10-1469-2019, https://doi.org/10.5194/se-10-1469-2019, 2019
Short summary
Short summary
In this paper, we outline the key insights from decision-making research about how, when faced with uncertainty, humans constrain decisions through the use of heuristics (rules of thumb), making them vulnerable to systematic and suboptimal decision biases. We also review existing strategies to debias decision-making that have applicability in the geosciences, giving special attention to strategies that make use of information technology and artificial intelligence.
Alexander Schaaf and Clare E. Bond
Solid Earth, 10, 1049–1061, https://doi.org/10.5194/se-10-1049-2019, https://doi.org/10.5194/se-10-1049-2019, 2019
Short summary
Short summary
Seismic reflection data allow us to infer subsurface structures such as horizon and fault surfaces. The interpretation of this indirect data source is inherently uncertainty, and our work takes a first look at the scope of uncertainties involved in the interpretation of 3-D seismic data. We show how uncertainties of fault interpretations can be related to data quality and discuss the implications for the 3-D modeling of subsurface structures derived from 3-D seismic data.
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, https://doi.org/10.5194/se-10-951-2019, 2019
Short summary
Short summary
When carbon dioxide is introduced into the subsurface it will migrate upwards and can encounter faults, which, depending on their hydrogeological properties and composition, can form barriers or pathways for the migrating fluid. We analyse uncertainties associated with these properties in order to better understand the implications for the retention of CO2 in the subsurface. We show that faults that form seals for other fluids may not be seals for CO2, which has implications for storage sites.
Xènia Ogaya, Juan Alcalde, Ignacio Marzán, Juanjo Ledo, Pilar Queralt, Alex Marcuello, David Martí, Eduard Saura, Ramon Carbonell, and Beatriz Benjumea
Solid Earth, 7, 943–958, https://doi.org/10.5194/se-7-943-2016, https://doi.org/10.5194/se-7-943-2016, 2016
Short summary
Short summary
This paper explores the compatibility of seismic and magnetotelluric methods across scales highlighting the importance of joint interpretation in reservoir characterisation. The combination of the two methods together with well-log data at the Hontomín CO2 storage pilot plant (Spain) allowed a detailed characterisation of the shallow subsurface and defined the structural and fluid flow characteristics of the existing faults, which are key aspects for the risk assessment of the site.
Juvenal Andrés, Juan Alcalde, Puy Ayarza, Eduard Saura, Ignacio Marzán, David Martí, José Ramón Martínez Catalán, Ramón Carbonell, Andrés Pérez-Estaún, José Luis García-Lobón, and Félix Manuel Rubio
Solid Earth, 7, 827–841, https://doi.org/10.5194/se-7-827-2016, https://doi.org/10.5194/se-7-827-2016, 2016
J. Alcalde, D. Martí, C. Juhlin, A. Malehmir, D. Sopher, E. Saura, I. Marzán, P. Ayarza, A. Calahorrano, A. Pérez-Estaún, and R. Carbonell
Solid Earth, 4, 481–496, https://doi.org/10.5194/se-4-481-2013, https://doi.org/10.5194/se-4-481-2013, 2013
Cited articles
Alcalde, J., Bond, C. E., Johnson, G., Butler, R. W. H., Cooper, M. A., and
Ellis, J. F.: The importance of structural model availability on seismic
interpretation, J. Struct. Geol., 97, 161–171,
https://doi.org/10.1016/j.jsg.2017.03.003, 2017.
Alcalde, J., Bond, C. E., Johnson, G., Kloppenburg, A., Ferrer, O., Bell, R., and Ayarza, P.: Fault interpretation in seismic reflection data: an experiment analysing the impact of conceptual model anchoring and vertical exaggeration, Solid Earth, 10, 1651–1662, https://doi.org/10.5194/se-10-1651-2019, 2019.
Andrews, B. J., Roberts, J. J., Shipton, Z. K., Bigi, S., Tartarello, M. C., and Johnson, G.: How do we see fractures? Quantifying subjective bias in fracture data collection, Solid Earth, 10, 487–516, https://doi.org/10.5194/se-10-487-2019, 2019.
Bárbara, C. P., Cabello, P., Bouche, A., Aarnes, I., Gordillo, C., Ferrer, O., Roma, M., and Arbués, P.: Quantifying the impact of the structural uncertainty on the gross rock volume in the Lubina and Montanazo oil fields (Western Mediterranean), Solid Earth, 10, 1597–1619, https://doi.org/10.5194/se-10-1597-2019, 2019.
Bodur, Ö. F. and Rey, P. F.: The impact of rheological uncertainty on dynamic topography predictions, Solid Earth, 10, 2167–2178, https://doi.org/10.5194/se-10-2167-2019, 2019.
Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt,
J. Struct. Geol., 74, 185–200, https://doi.org/10.1016/j.jsg.2015.03.003, 2015.
Bond, C. E., Gibbs, Z., Shipton, Z. K., and Jones, S.: What do you think this is? Conceptual uncertainty in geoscience interpretation, GSA Today, 17, 4–10, https://doi.org/10.1130/GSAT01711A.1, 2007.
Bond, C. E., Shipton, Z. K., Gibbs, A. D., and Jones, S.: Structural models: optimizing risk analysis by understanding conceptual uncertainty, First Break, 26, 65–71, https://doi.org/10.3997/1365-2397.2008006, 2008.
Bond, C. E., Lunn, R., Shipton, Z., and Lunn, A.: What makes an expert
effective at interpreting seismic images?, Geology, 40, 75–78,
https://doi.org/10.1130/G32375.1, 2012.
Campos, F., Neves, A., and De Souza, F. M. C.: Decision making under
subjective uncertainty, in: Proceedings of the 2007 IEEE Symposium on
Computational Intelligence in Multicriteria Decision Making, MCDM 2007,
85–90, https://doi.org/10.1109/MCDM.2007.369421, 2007.
Causer, A., Pérez-Díaz, L., Adam, J., and Eagles, G.: Uncertainties in break-up markers along the Iberia–Newfoundland margins illustrated by new seismic data, Solid Earth, 11, 397–417, https://doi.org/10.5194/se-11-397-2020, 2020.
Eagles, G., Pérez-Díaz, L., and Scarselli, N.: Getting over
continent ocean boundaries, Earth-Sci. Rev., 151, 244–265,
https://doi.org/10.1016/j.earscirev.2015.10.009, 2015.
Frodeman, R.: Geological reasoning: geology as an interpretive and
historical science, Geol. Soc. Am. Bull., 107, 960–968,
https://doi.org/10.1130/0016-7606(1995)107<0960:GRGAAI>2.3.CO;2, 1995.
Hora, S. C.: Aleatory and epistemic uncertainty in probability elicitation
with an example from hazardous waste management, Reliab. Eng. Syst. Safe,
54, 217–223, https://doi.org/10.1016/S0951-8320(96)00077-4, 1996.
Mather, B. and Fullea, J.: Constraining the geotherm beneath the British Isles from Bayesian inversion of Curie depth: integrated modelling of magnetic, geothermal, and seismic data, Solid Earth, 10, 839–850, https://doi.org/10.5194/se-10-839-2019, 2019.
Miocic, J. M., Johnson, G., and Bond, C. E.: Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects, Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, 2019.
Pakyuz-Charrier, E., Jessell, M., Giraud, J., Lindsay, M., and Ogarko, V.: Topological analysis in Monte Carlo simulation for uncertainty propagation, Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019, 2019.
Polson, D. and Curtis, A.: Dynamics of uncertainty in geological
interpretation, J. Geol. Soc. Lond., 167, 5–10,
https://doi.org/10.1144/0016-76492009-055, 2010.
Potts, P.: Glossary of analytical and metrological terms from the International Vocabulary of Metrology (2008), Geostand. Geoanal. Res., 36, 231–246, https://doi.org/10.1111/j.1751-908X.2011.00122.x, 2012.
Rankey, E. C. and Mitchell, J. C.: Interpreter's corner – That's why it's called interpretation: Impact of horizon uncertainty on seismic attribute analysis, Leading Edge, 22, 820–828, https://doi.org/10.1190/1.1614152, 2003.
Schaaf, A. and Bond, C. E.: Quantification of uncertainty in 3-D seismic interpretation: implications for deterministic and stochastic geomodeling and machine learning, Solid Earth, 10, 1049–1061, https://doi.org/10.5194/se-10-1049-2019, 2019.
Stamm, F. A., de la Varga, M., and Wellmann, F.: Actors, actions, and uncertainties: optimizing decision-making based on 3-D structural geological models, Solid Earth, 10, 2015–2043, https://doi.org/10.5194/se-10-2015-2019, 2019.
Tannert, C., Elvers, H.-D., and Jandrig, B.: The Ethics of Uncertainty, EMBO
Rep., 8, 892–896, https://doi.org/10.1038/sj.embor.7401072, 2007.
Walker, W. E., Harremoëes, P., Rotmans, J., Sluijs, J. P., Van Der
Asselt, M. B. A., Van Janssen, P., and Krayer Von Krauss, M. P.: A conceptual
basis for uncertainty management, Integr. Assess., 4, 5–17,
https://doi.org/10.1076/iaij.4.1.5.16466, 2003.
Wilkinson, M. and Polson, D.: Uncertainty in regional estimates of capacity for carbon capture and storage, Solid Earth, 10, 1707–1715, https://doi.org/10.5194/se-10-1707-2019, 2019.
Wilson, C. G., Bond, C. E., and Shipley, T. F.: How can geologic decision-making under uncertainty be improved?, Solid Earth, 10, 1469–1488, https://doi.org/10.5194/se-10-1469-2019, 2019.