Davaille, A., Stutzmann, E., Silveira, G., Besse, J., and Courtillot, V.:
Convective patterns under the Indo-Atlantic box, Earth Planet. Sc. Lett., 239, 233–252,
https://doi.org/10.1016/j.epsl.2005.07.024,
2005.
a,
b,
c
Foley, B. J., Bercovici, D., and Landuyt, W.: The conditions for plate
tectonics on super-Earths: Inferences from convection models with damage,
Earth Planet. Sc. Lett., 331, 281–290,
https://doi.org/10.1016/j.epsl.2012.03.028,
2012.
a
Frost, H. and Ashby, M.: Deformation-Mechanism Maps: The Plasticity and Creep
of Metals and Ceramics, Pergamon Press, Oxford, 1982. a
Garnero, E. and McNamara, A.: Structure and Dynamics of Earth's Lower Mantle,
Science, 320, 626–628, 2008.
a,
b
Garnero, E. J.: Heterogeneity of the lowermost mantle, Ann. Rev. Earth
Planet. Sci., 28, 509–537, 2000. a
Garnero, E. J., McNamara, A. K., and Shim, S.-H.: Continent-sized anomalous
zones with low seismic velocity at the base of Earth's mantle, Nat. Geosci., 9, 481–489,
https://doi.org/10.1038/ngeo2733, 2016.
a
Hernlund, J. W. and Houser, C.: On the statistical distribution of seismic
velocities in Earth's deep mantle, Earth Planet. Sc. Lett., 265,
423–437, 2008. a
Hernlund, J. W. and Tackley, P. J.: Modeling mantle convection in the spherical recent Advances in Computational Geodynamics: Theory, Numerics and
Applications,
annulus, Phys. Earth Planet. In., 171, 48–54,
https://doi.org/10.1016/j.pepi.2008.07.037,
2008.
a,
b
Hiraga, T., Tachibana, C., Ohashi, N., and Sano, S.: Grain growth systematics
for forsterite
± enstatite aggregates: Effect of lithology on grain size
in the upper mantle, Earth Planet. Sc. Lett., 291, 10–20,
https://doi.org/10.1016/j.epsl.2009.12.026,
2010.
a
Ishii, M. and Tromp, J.: Normal-mode and free-air gravity constraints on
lateral variations in velocity and density of Earth's mantle, Science, 285,
1231–1236, 1999.
a,
b
Karato, S. and Rubie, D.: Toward an experimental study of deep mantle rheology:
A new multianvil sample assembly for deformation studies under high pressures
and temperatures, J. Geophys. Res., 102, 20111–20122, 1997.
a,
b
Karato, S.-I.: Grain growth kinetics in olivine aggregates, Tectonophysics,
168, 255–273, 1989. a
Karato, S.-I.: Some remarks on the origin of seismic anisotropy in the D
layer, Earth Planets Space, 50, 1019–1028, 1998.
a,
b
Karato, S.-I.: Rheology of the Earth's mantle: A historical review, Gondwana
Res., 18, 17–45, 2010. a
Kendall, J.-M. and Silver, P. G.: Constraints from seismic anisotropy on the
nature of the lowermost mantle, Nature, 381, 409, 1996.
a,
b
Koelemeijer, P., Ritsema, J., Deuss, A., and van Heijst, H.-J.: SP12RTS: a
degree-12 model of shear- and compressional-wave velocity for Earth's mantle,
Geophys. J. Int., 204, 1024,
https://doi.org/10.1093/gji/ggv481, 2016.
a
Korenaga, J.: Firm mantle plumes and the nature of the core-mantle boundary
region, Earth Planet. Sc. Lett., 232, 29–37, 2005.
a,
b
Kuo, B.-Y., Garnero, E. J., and Lay, T.: Tomographic inversion of S-SKS times
for shear velocity heterogeneity in D: Degree 12 and hybrid models,
J. Geophys. Res.-Sol. Ea., 105, 28139–28157, 2000. a
Lay, T. and Young, C. J.: Analysis of seismic SV waves in the core's penumbra,
Geophys. Res. Lett., 18, 1373–1376, 1991. a
Lay, T., Williams, Q., Garnero, E. J., Kellogg, L., and Wysession, M. E.:
Seismic wave anisotropy in the D region and its implications, The
core-mantle boundary region, 28, 299–318, 1998.
a,
b
Lekic, V., Cottaar, S., Dziewonski, A., and Romanowicz, B.: Cluster analysis of
global lower mantle tomography: A new class of structure and implications for
chemical heterogeneity, Earth Planet. Sc. Lett., 357, 68–77,
2012. a
Lourenço, D. L., Rozel, A. B., and Tackley, P. J.: Melting-induced crustal
production helps plate tectonics on Earth-like planets, Earth Planet. Sc. Lett., 439, 18–28,
https://doi.org/10.1016/j.epsl.2016.01.024,
2016.
a
Lourenço, D. L., Rozel, A. B., Gerya, T. V., and Tackley, P. J.: Efficient
cooling of rocky planets by intrusive magmatism, Nat. Geosci., 11,
322–327,
https://doi.org/10.1038/s41561-018-0094-8, 2018.
a,
b
Masters, G., Laske, G., Bolton, H., and Dziewonski, A.: The relative behavior
of shear velocity, bulk sound speed, and compressional velocity in the
mantle: implications for chemical and thermal structure, Earth's deep
interior: mineral physics and tomography from the atomic to the global scale, 117, 63–87, 2000.
a,
b
McNamara, A. and Zhong, S.: Thermochemical structures within a spherical
mantle: Superplumes or Piles?, J. Geophys. Res.-Sol. Ea., 109, B07402,
https://doi.org/10.1029/2003JB002847, 2004.
a,
b,
c,
d
McNamara, A. and Zhong, S.: Thermochemical Structures Beneath Africa and the
Pacific Ocean, Nature, 437, 1136–1139, 2005.
a,
b
McNamara, A. K., Karato, S.-I., and van Keken, P. E.: Localization of
dislocation creep in the lower mantle: implications for the origin of seismic
anisotropy, Earth Planet. Sc. Lett., 191, 85–99,
https://doi.org/10.1016/S0012-821X(01)00405-8,
2001.
a,
b
McNamara, A. K., Van Keken, P. E., and Karato, S.-I.: Development of
anisotropic structure in the Earth's lower mantle by solid-state convection,
Nature, 416, 310–314, 2002.
a,
b
Mulyukova, E. and Bercovici, D.: Formation of lithospheric shear zones: Effect
of temperature on two-phase grain damage, Phys. Earth Planet. In., 270, 195–212, 2017. a
Nakagawa, T. and Tackley, P. J.: Influence of combined primordial layering and
recycled MORB on the coupled thermal evolution of Earth's mantle and core,
Geochem. Geophys. 15, 619–633,
https://doi.org/10.1002/2013GC005128, 2014.
a,
b
Poirier, J., Peyronneau, J., Gesland, J., and Brebec, G.: Viscosity and
conductivity of the lower mantle; an experimental study on a
MgSiO3
perovskite analogue,
KZnF3, Phys. Earth Planet. In., 32,
273–287,
https://doi.org/10.1016/0031-9201(83)90131-0, 1983.
a
Ranalli, G.: Rheology of the Earth, Chapman and Hall, London, UK, 2 Edn., 1995. a
Ranalli, G. and Fischer, B.: Diffusion creep, dislocation creep, and mantle
rheology, Phys. Earth Planet. In., 34, 77–84, 1984.
a,
b
Ritsema, J., Deuss, A., van Heijst, H. J., and Woodhouse, J. H.: S40RTS: a
degree-40 shear-velocity model for the mantle from new Rayleigh wave
dispersion, teleseismic traveltime and normal-mode splitting function
measurements, Geophys. Int., 184, 1223,
https://doi.org/10.1111/j.1365-246X.2010.04884.x, 2011.
a
Rozel, A. B., Ricard, Y., and Bercovici, D.: A thermodynamically
self-consistent damage equation for grain size evolution during dynamic
recrystallization, Geophys. J. Int., 184, 719–728,
https://doi.org/10.1111/j.1365-246X.2010.04875.x, 2011.
a,
b,
c
Schierjott, J. C.: Data sets used for model 3, 7 and 72 in the paper “On the self-regulating effect of grain size evolution
in mantle convection models: Application to thermo-chemical piles”, ETH Zürich,
https://doi.org/10.3929/ethz-b-000371505, 2019.
a
Solomatov, V.: Grain size-dependent viscosity convection and the thermal
evolution of the Earth, Earth Planet. Sc. Lett., 191, 203–212, 2001.
a,
b
Solomatov, V. and Reese, C.: Grain size variations in the Earth's mantle and
the evolution of primordial chemical heterogeneities, J. Geophys. Res., 113, B07408,
https://doi.org/10.1029/2007JB005319, 2008.
a,
b
Solomatov, V. S. and Moresi, L.-N.: Stagnant lid convection on Venus, J.
Geophys. Res., 101, 4737–4753, 1996.
a,
b
Solomatov, V. S., El-Khozondar, R., and Tikare, V.: Grain size in the lower
mantle: constraints from numerical modeling of grain growth in two-phase
systems, Phys. Earth Planet. In., 129, 265–282,
https://doi.org/10.1016/S0031-9201(01)00295-3,
2002.
a,
b
Tackley, P., Ammann, M., Brodholt, J., Dobson, D., and Valencia, D.: Mantle
dynamics in super-Earths: Post-perovskite rheology and self-regulation of
viscosity, Icarus, 225, 50–61,
https://doi.org/10.1016/j.icarus.2013.03.013,
2013.
a
Tackley, P. J.: Modelling compressible mantle convection with large viscosity
contrasts in a three-dimensional spherical shell using the yin-yang grid, recent Advances in Computational Geodynamics: Theory, Numerics and
Applications, Phys. Earth Planet. In., 171, 7–18,
https://doi.org/10.1016/j.pepi.2008.08.005,
2008.
a,
b
Torsvik, T. H., Smethurst, M. A., Burke, K., and Steinberger, B.: Large igneous
provinces generated from the margins of the large low-velocity provinces in
the deep mantle, Geophys. J. Int., 167, 1447,
https://doi.org/10.1111/j.1365-246X.2006.03158.x, 2006.
a,
b
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J., and Ashwal, L. D.:
Diamonds sampled by plumes from the core-mantle boundary, Nature, 466,
352–355, 2010.
a,
b
Trampert, J., Deschamps, F., Resovsky, J., and Yuen, D.: Probabilistic
tomography maps chemical heterogeneities throughout the lower mantle,
Science, 306, 853–856, 2004.
a,
b,
c
Warren, J. and Hirth, G.: Grain size sensitive deformation mechanisms in
naturally deformed peridotites, Earth Planet. Sc. Lett., 248, 428–450, 2006. a
Weertman, J.: The creep strength of the Earth's mantle, Rev. Geophys.,
8, 145–168, 1970. a
Yamazaki, D., Inoue, T., Okamoto, M., and Irifune, T.: Grain growth kinetics of ringwoodite and its implication for rheology of the subducting
slab, Earth Planet. Sc. Lett., 236, 871–881,
https://doi.org/10.1016/j.epsl.2005.06.005, 2005.
a