Articles | Volume 12, issue 1
https://doi.org/10.5194/se-12-1-2021
https://doi.org/10.5194/se-12-1-2021
Research article
 | 
11 Jan 2021
Research article |  | 11 Jan 2021

Simulating permeability reduction by clay mineral nanopores in a tight sandstone by combining computer X-ray microtomography and focussed ion beam scanning electron microscopy imaging

Arne Jacob, Markus Peltz, Sina Hale, Frieder Enzmann, Olga Moravcova, Laurence N. Warr, Georg Grathoff, Philipp Blum, and Michael Kersten

Download

Interactive discussion

Status: closed
Status: closed
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
Printer-friendly Version - Printer-friendly version Supplement - Supplement

Peer-review completion

AR: Author's response | RR: Referee report | ED: Editor decision
AR by Arne Jacob on behalf of the Authors (13 Nov 2020)  Author's response   Manuscript 
ED: Publish subject to minor revisions (review by editor) (22 Nov 2020) by Florian Fusseis
AR by Arne Jacob on behalf of the Authors (23 Nov 2020)  Author's response   Manuscript 
ED: Publish as is (23 Nov 2020) by Florian Fusseis
ED: Publish as is (25 Nov 2020) by Federico Rossetti (Executive editor)
AR by Arne Jacob on behalf of the Authors (25 Nov 2020)
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
In this work, we combined different imaging and experimental measuring methods for analysis of cross-scale effects which reduce permeability of tight reservoir rocks. Simulated permeability of digital images of rocks is often overestimated, which is caused by non-resolvable clay content within the pores of a rock. By combining FIB-SEM with micro-XCT imaging, we were able to simulate the true clay mineral abundance to match experimentally measured permeability with simulated permeability.