Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1025-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1025-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
Jean-Baptiste P. Koehl
CORRESPONDING AUTHOR
Centre for Earth Evolution and Dynamics (CEED), University of Oslo, P.O.
Box 1028 Blindern, 0315 Oslo, Norway
Department of Geosciences, UiT The Arctic University of Norway in
Tromsø, 9037 Tromsø, Norway
Research Centre for Arctic Petroleum Exploration (ARCEx), University
of Tromsø, 9037 Tromsø, Norway
CAGE – Centre for Arctic Gas Hydrate, Environment and Climate,
9037 Tromsø, Norway
Related authors
Jean-Baptiste P. Koehl, John E. A. Marshall, and Gilda Lopes
Solid Earth, 13, 1353–1370, https://doi.org/10.5194/se-13-1353-2022, https://doi.org/10.5194/se-13-1353-2022, 2022
Short summary
Short summary
The paper reviews age constraints for a short-lived episode of deformation in Svalbard (Ellesmerian and Svalbardian orogenies) that is thought to have occurred ca. 380–360 million years ago. The review mostly discusses (but is not limited to) paleontological, palynological, and geochronological evidence. The review finds it most unlikely that the event discussed ever occurred in Svalbard.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Jean-Baptiste P. Koehl
Solid Earth Discuss., https://doi.org/10.5194/se-2019-200, https://doi.org/10.5194/se-2019-200, 2020
Revised manuscript not accepted
Short summary
Short summary
Svalbard is thought to have been involved into a contractional event ca. 360 Ma, the Ellesmerian Orogeny. New field data and interpretation of seismic data instead suggest that Svalbard was affected by an episode of continuous extension in the Devonian–Carboniferous (ca. 420–300 Ma) with exhumation of basement ridges, followed by an episode of contraction in the early Cenozoic (ca. 65–45 Ma), the Eurekan tectonic event, and that the Ellesmerian Orogeny did not affect Svalbard.
Jean-Baptiste P. Koehl and Jhon M. Muñoz-Barrera
Solid Earth, 9, 1535–1558, https://doi.org/10.5194/se-9-1535-2018, https://doi.org/10.5194/se-9-1535-2018, 2018
Short summary
Short summary
This research is dedicated to the study of poorly understood coal-bearing Mississippian (ca. 360–325 Ma) sedimentary rocks in central Spitsbergen. Our results suggest that these rocks were deposited during a period of widespread extension involving multiple fault trends, including faults striking subparallel to the extension direction, while overlying Pennsylvanian rocks (ca. 325–300 Ma) were deposited during extension localized along fewer, larger faults.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Klaus Wemmer
Solid Earth, 9, 923–951, https://doi.org/10.5194/se-9-923-2018, https://doi.org/10.5194/se-9-923-2018, 2018
Short summary
Short summary
We dated the formation of large faults in order to constrain the tectonic and exhumation history of the Barents Sea and northern Norway. Some of the dated faults formed apprx. 1 Ga and are much older than expected. However, most dated faults were active during two periods of extension: 375–325 and 315–265 Ma. The study of minerals along these cracks shows that exposed rocks in Finnmark were exhumed from deep (> 10 km) to shallow depth (< 3.5 km) during the two periods of extension.
Jean-Baptiste P. Koehl, Steffen G. Bergh, Tormod Henningsen, and Jan Inge Faleide
Solid Earth, 9, 341–372, https://doi.org/10.5194/se-9-341-2018, https://doi.org/10.5194/se-9-341-2018, 2018
Short summary
Short summary
The goal of this work is to study large cracks in the Earth's crust called faults near the coast of northern Norway in the SW Barents Sea. We interpreted seismic data (equivalent to X-ray diagram of the Earth) that showed the presence of a large fault near the coast of Norway, which contributed to building the mountain chain observed in Norway and later helped open the North Atlantic Ocean, separating Greenland from Norway.
Jean-Baptiste P. Koehl, John E. A. Marshall, and Gilda Lopes
Solid Earth, 13, 1353–1370, https://doi.org/10.5194/se-13-1353-2022, https://doi.org/10.5194/se-13-1353-2022, 2022
Short summary
Short summary
The paper reviews age constraints for a short-lived episode of deformation in Svalbard (Ellesmerian and Svalbardian orogenies) that is thought to have occurred ca. 380–360 million years ago. The review mostly discusses (but is not limited to) paleontological, palynological, and geochronological evidence. The review finds it most unlikely that the event discussed ever occurred in Svalbard.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Arthur G. Sylvester
Solid Earth, 13, 1169–1190, https://doi.org/10.5194/se-13-1169-2022, https://doi.org/10.5194/se-13-1169-2022, 2022
Short summary
Short summary
The San Andreas fault is a major active fault associated with ongoing earthquake sequences in southern California. The present study investigates the development of the Indio Hills area in the Coachella Valley along the main San Andreas fault and the Indio Hills fault. The Indio Hills area is located near an area with high ongoing earthquake activity (Brawley seismic zone), and, therefore, its recent tectonic evolution has implications for earthquake prediction.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Jean-Baptiste P. Koehl
Solid Earth Discuss., https://doi.org/10.5194/se-2019-200, https://doi.org/10.5194/se-2019-200, 2020
Revised manuscript not accepted
Short summary
Short summary
Svalbard is thought to have been involved into a contractional event ca. 360 Ma, the Ellesmerian Orogeny. New field data and interpretation of seismic data instead suggest that Svalbard was affected by an episode of continuous extension in the Devonian–Carboniferous (ca. 420–300 Ma) with exhumation of basement ridges, followed by an episode of contraction in the early Cenozoic (ca. 65–45 Ma), the Eurekan tectonic event, and that the Ellesmerian Orogeny did not affect Svalbard.
Jean-Baptiste P. Koehl and Jhon M. Muñoz-Barrera
Solid Earth, 9, 1535–1558, https://doi.org/10.5194/se-9-1535-2018, https://doi.org/10.5194/se-9-1535-2018, 2018
Short summary
Short summary
This research is dedicated to the study of poorly understood coal-bearing Mississippian (ca. 360–325 Ma) sedimentary rocks in central Spitsbergen. Our results suggest that these rocks were deposited during a period of widespread extension involving multiple fault trends, including faults striking subparallel to the extension direction, while overlying Pennsylvanian rocks (ca. 325–300 Ma) were deposited during extension localized along fewer, larger faults.
Jean-Baptiste P. Koehl, Steffen G. Bergh, and Klaus Wemmer
Solid Earth, 9, 923–951, https://doi.org/10.5194/se-9-923-2018, https://doi.org/10.5194/se-9-923-2018, 2018
Short summary
Short summary
We dated the formation of large faults in order to constrain the tectonic and exhumation history of the Barents Sea and northern Norway. Some of the dated faults formed apprx. 1 Ga and are much older than expected. However, most dated faults were active during two periods of extension: 375–325 and 315–265 Ma. The study of minerals along these cracks shows that exposed rocks in Finnmark were exhumed from deep (> 10 km) to shallow depth (< 3.5 km) during the two periods of extension.
Jean-Baptiste P. Koehl, Steffen G. Bergh, Tormod Henningsen, and Jan Inge Faleide
Solid Earth, 9, 341–372, https://doi.org/10.5194/se-9-341-2018, https://doi.org/10.5194/se-9-341-2018, 2018
Short summary
Short summary
The goal of this work is to study large cracks in the Earth's crust called faults near the coast of northern Norway in the SW Barents Sea. We interpreted seismic data (equivalent to X-ray diagram of the Earth) that showed the presence of a large fault near the coast of Norway, which contributed to building the mountain chain observed in Norway and later helped open the North Atlantic Ocean, separating Greenland from Norway.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Reflection tomography by depth warping: a case study across the Java trench
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake
Multi-scale analysis and modelling of aeromagnetic data over the Bétaré-Oya area in eastern Cameroon, for structural evidence investigations
Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations
A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems
Seismic attenuation and dispersion in poroelastic media with fractures of variable aperture distributions
Structural expression of a fading rift front: a case study from the Oligo-Miocene Irbid rift of northwest Arabia
Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network
Srishti Singh and Radheshyam Yadav
Solid Earth, 14, 937–959, https://doi.org/10.5194/se-14-937-2023, https://doi.org/10.5194/se-14-937-2023, 2023
Short summary
Short summary
We use numerical models to study the stresses arising from gravitational potential energy (GPE) variations and shear tractions associated with mantle convection in the Zagros–Iran region. The joint models predicted consistent deviatoric stresses that can explain most of the deformation indicators. Stresses associated with mantle convection are found to be higher than those from GPE, thus indicating the deformation in this region may primarily be caused by the mantle, except in eastern Iran.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Andrei Maksymowicz, Daniela Montecinos-Cuadros, Daniel Díaz, María José Segovia, and Tomás Reyes
Solid Earth, 13, 117–136, https://doi.org/10.5194/se-13-117-2022, https://doi.org/10.5194/se-13-117-2022, 2022
Short summary
Short summary
This work analyses the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Results show a segmentation of the continental wedge along and perpendicular to the margin. The extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods. This analysis highlights the role of the overriding plate on the seismotectonic process.
Christian Emile Nyaban, Théophile Ndougsa-Mbarga, Marcelin Bikoro-Bi-Alou, Stella Amina Manekeng Tadjouteu, and Stephane Patrick Assembe
Solid Earth, 12, 785–800, https://doi.org/10.5194/se-12-785-2021, https://doi.org/10.5194/se-12-785-2021, 2021
Short summary
Short summary
A multi-scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward continuation, and 2.75D modelling was applied over Cameroon between the latitudes 5°30'–6° N and the longitudes 13°30'–14°45' E. Major families of faults oriented ENE–WSW, E–W, NW–SE, and N–S with a NE–SW prevalence were mapped. Depths of interpreted faults range from 1000 to 3400 m, mylonitic veins were identified, and 2.75D modelling revealed fault depths greater than 1200 m.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Simón Lissa, Nicolás D. Barbosa, J. Germán Rubino, and Beatriz Quintal
Solid Earth, 10, 1321–1336, https://doi.org/10.5194/se-10-1321-2019, https://doi.org/10.5194/se-10-1321-2019, 2019
Short summary
Short summary
We quantify the effects that 3-D fractures with realistic distributions of aperture have on seismic wave attenuation and velocity dispersion. Attenuation and dispersion are caused by fluid pressure diffusion between the fractures and the porous background. We show that (i) both an increase in the density of contact areas and a decrease in their correlation length reduce attenuation and (ii) a simple planar fracture can be used to emulate the seismic response of realistic fracture models.
Reli Wald, Amit Segev, Zvi Ben-Avraham, and Uri Schattner
Solid Earth, 10, 225–250, https://doi.org/10.5194/se-10-225-2019, https://doi.org/10.5194/se-10-225-2019, 2019
Short summary
Short summary
Plate-scale rifting is frequently expressed by the subsidence of structural basins along an axis, but postdating tectonic and magmatic activity mostly obscures them. A 3-D subsurface imaging and facies analysis down to 1 km reveals uniquely preserved Galilean basins subsiding along a failing rift front in two main stages. Rifting within a large releasing jog (20–9 Ma), followed by localized grabenization off the Dead Sea fault plate boundary (9–5 Ma), prevents them from dying out peacefully.
Dietrich Lange, Frederik Tilmann, Tim Henstock, Andreas Rietbrock, Danny Natawidjaja, and Heidrun Kopp
Solid Earth, 9, 1035–1049, https://doi.org/10.5194/se-9-1035-2018, https://doi.org/10.5194/se-9-1035-2018, 2018
Short summary
Cited articles
Aakvik, R.: Fasies analyse av Undre Karbonske kullførende sedimenter,
Billefjorden, Spitsbergen, PhD Thesis, University of Bergen, Bergen,
Norway, 219 pp., 1981.
Allen, K. C.: Lower and Middle Devonian spores of north and central
Vestspitsbergen, Palaeontology, 8, 678–748, 1965.
Allen, K. C.: Further information on the Lower and Middle Devonian spores
from Dickson Land, Spitsbergen, Norsk Polarinstitutt Årbok 1971, 7–15,
1973.
Andresen, A.: Geology of Svalbard – A Window into the Barents Sea
Hydrocarbon Province, Svalex 2009 cruise report, Statoil, 2009.
Andresen, A., Haremo, P., Swensson, E., and Bergh, S. G.: Structural geology
around the southern termination of the Lomfjorden Fault Complex,
Agardhdalen, east Spitsbergen, Norsk Geol. Tidsskr., 72, 83–91, 1992.
Andresen, A., Bergh, S. G., and Haremo, P.: Basin inversion and thin-skinned
deformation associated with the Tertiary transpressional west Spitsbergen
Orogen, in: Proceedings of the International Conference on Arctic Margins,
edited by: Thurston, D. K. and Fujita, K., Anchorage, Alaska, USA, September
1992, 161–166, 1994.
Bahroudi, A. and Koyi, H. A.: Effect of spatial distribution of Hormuz salt
on deformation style in the Zagros fold and thrust belt: an analogue
modelling approach, J. Geol. Soc. Lond., 160, 719–733, 2003.
Balashov, Yu. A., Larionov, A. N., Gannibal, L. F., Sirotkin, A. N.,
Tebenkov, A. M., Ryüngenen, G. I., and Ohta, Y.: An Early Proterozoic
U–Pb zircon age from an Eskolabreen Formation gneiss in southern Ny
Friesland, Spitsbergen, Polar Res., 12, 147–152, 1993.
Bælum, K. and Braathen, A.: Alongstrike changes in fault array and rift
basin geometry of the Carboniferous Billefjorden Trough, Svalbard, Norway,
Tectonophys., 546–547, 38–55, 2012.
Beauchamp, B., Alonso-Torres, D., Piepjohn, K., Thériault, P., and
Grasby, S. E.: Early Carboniferous syn-rift sedimentation in the Sverdrup
Basin (Yelverton Pass area, northern Ellesmere Island, Arctic Canada): A
solution to the Okse Bay problem, in: Circum-Arctic Structural Events:
Tectonic Evolution of the Arctic Margins and Trans-Arctic Links with
Adjacent Orogens, edited by: Piepjohn, K., Strauss, J. V., Reinhardt, L., and
McClelland, W. C., GSA Spec. Paper, 541, 255–284, 2018.
Bergh, S. G. and Andresen, A.: Structural development of the Tertiary
fold-and-thrust belt in east Oscar II Land, Spitsbergen, Polar Res., 8,
217–236, 1990.
Bergh, S. G. and Grogan, P.: Tertiary structure of the Sørkapp–Hornsund
Region, South Spitsbergen, and implications for the offshore southern
continuation of the fold-thrust Belt, Norsk Geol. Tidsskr., 83, 43–60,
2003.
Bergh, S. G., Maher Jr., H. D., and Braathen, A.: Tertiary divergent thrust
directions from partitioned transpression, Brøggerhalvøya,
Spitsbergen, Norsk Geol. Tidsskr., 80, 63–82, 2000.
Bergh, S. G., Maher Jr., H. D., and Braathen, A.: Late Devonian
transpressional tectonics in Spitsbergen, Svalbard, and implications for
basement uplift of the Sørkapp–Hornsund High, J. Geol. Soc. Lond., 168,
441–456, 2011.
Berry, C. M. and Marshall, J. E. A.: Lycopsid forests in the early Late
Devonian paleoequatorial zone of Svalbard, Geology, 43, 1043–1046, 2015.
Birkenmayer, K. and Turnau, E.: Lower Carboniferous age of the so-called
Wijde Bay Series in Hornsund, Vestspitsbergen, Nor. Polarinst. Årb.
1961, 41–61, 1962.
Blinova, M., Faleide, J. I., Gabrielsen, R. H., and Mjelde, R.: Seafloor
expression and shallow structure of a fold-and-thrust system, Isfjorden,
west Spitsbergen, Polar Res., 31, 11209, https://doi.org/10.3402/polar.v31i0.11209, 2012.
Bonini, M.: Passive roof thrusting and forelandward fold propagation in
scaled brittle–ductile physical models of thrust wedges, J. Geophys.
Res., 106, 2291–2311, 2001.
Boyer, S. E. and Elliott, D.: Thrust Systems, AAPG Bulletin, 66,
1196–1230, 1982.
Braathen, A. and Bergh, S. G.: Kinematics of Tertiary deformation in the
basement-involved fold-thrust complex, western Nordenskiøld Land,
Svalbard: tectonic implications based on fault-slip data analysis,
Tectonophys., 249, 1–29, 1995.
Braathen, A., Bergh, S. G., and Maher Jr., H. D.: Application of a critical
wedge taper model to the Tertiary transpressional fold-thrust belt on
Spitsbergen, Svalbard, GSA Bull., 111, 1468–1485, 1999.
Braathen, A., Bælum, K., Maher Jr., H. D., and Buckley, S. J.: Growth of
extensional faults and folds during deposition of an evaporite-dominated
half-graben basin; the Carboniferous Billefjorden Trough, Svalbard, Norsk
Geol. Tidsskr., 91, 137–160, 2011.
Braathen, A., Osmundsen, P. T., Maher Jr., H. D., and Ganerød, M.: The
Keisarhjelmen detachment records Silurian–Devonian extensional collapse in
Northern Svalbard, Terra Nova, 30, 34–39, 2018.
Brinkmann, L.: Geologie des östlichen zentralen Dickson Landes und
Palynologie der Mimerdalen Formation (Devon), Spitzbergen [Geology of
eastern–central Dickson Land and palynology of the Mimerdalen Formation
[Devonian], Spitsbergen], Master's Thesis, University of
Münster, Münster, Germany, 94 pp., 1997.
Bugge, T., Mangerud, G., Elvebakk, G., Mørk, A., Nilsson, I., Fanavoll,
S., and Vigran, J. O.: The Upper Palaeozoic succession on the Finnmark
Platform, Barents Sea, Norsk Geol. Tidsskr., 75, 3–30, 1995.
Buiter, S. J. H. and Pfiffner, O. A.: Numerical models of the inversion of
half-graben basins, Tectonics, 5, 1057, https://doi.org/10.1029/2002TC001417, 2003.
Chalmers, J. A. and Pulvertaft, T. C. R.: Development of the continental
margins of the Labrador Sea: a review, in: Non-Volcanic Rifting of
Continental Margins: A Comparison of Evidence from Land and Sea, edited by:
Wilson, R. C. L., Taylor, R. B., and Froitzheim, N., Geol. Soc. Lond. Spec.
Publ., 187, 77–105, 2001.
Chorowicz, J.: Gravity-induced detachment of Devonian basin sediments in
northern Svalbard, Norsk Geol. Tidsskr., 72, 21–25, 1992.
Cosgrove, J. W.: The association of folds and fractures and the link between
folding, fracturing and fluid flow during the evolution of a fold–thrust
belt: a brief review, in: Industrial Structural Geology: Principles,
Techniques and Integration, edited by: Richards, F. L., Richardson, N. J.,
Rippington, S. J., Wilson, R. W., and Bond, C. E., Geol. Soc. Lond. Spec.
Publ., 421, 41–68, 2015.
Costa, E. and Vendeville, B. C.: Experimental insights on the geometry and
kinematics of fold-and-thrust belts above weak, viscous evaporitic
décollement, J. Struct. Geol., 24, 1729–1739, 2002.
Cutbill, J. L. and Challinor, A.: Revision of the Stratigraphical Scheme for
the Carboniferous and Permian of Spitsbergen and Bjørnøya, Geol. Mag.,
102, 418–439, 1965.
Cutbill, J. L., Henderson, W. G., and Wright, N. J. R.: The Billefjorden
Group (Early Carboniferous) of central Spitsbergen, Norsk Polarinst. Skr.,
164, 57–89, 1976.
Dallmann, W. K.: Multiphase tectonic evolution of the Sørkapp–Hornsund
mobile zone (Devonian, Carboniferous, Tertiary), Svalbard, Norsk Geol.
Tidsskr., 72, 49–66, 1992.
Dallmann, W. K.: Notes on the stratigraphy, extent and tectonic implications
of the Minkinfjellet Basin, Middle Carboniferous of central Spitsbergen,
Polar Res., 12, 153–160, 1993.
Dallmann, W. K.: Geoscience Atlas of Svalbard, Norsk Polarinstitutt,
Tromsø, Norway, Rapportserie nr. 148, 2015.
Dallmann, W. K. and Maher Jr., H. D.: The Supanberget area – basement
imbrication and detached foreland thrusting in the Tertiary fold-and-thrust
belt, Svalbard, Polar Res., 7, 95–107, 1989.
Dallmann, W. K. and Piepjohn, K.: The structure of the Old Red Sandstone and
the Svalbardian Orogenic Event (Ellesmerian Orogeny) in Svalbard, Norg.
Geol. Unders. B., 15, 106 pp., 2020.
Dallmann, W. K., Ohta, Y., and Andresen, A.: Tertiary Tectonics of Svalbard,
Norsk Polarinstitutt Rapportserie, 46, 112 pp., 1988.
Dallmann, W. K., Andresen, A., Bergh, S. G., Maher Jr., H. D., and Ohta, Y.:
Tertiary fold-and-thrust belt of Spitsbergen Svalbard, Norsk Polarinstitutt
Meddelelser 128, 51 pp., 1993.
Dallmann, W. K., Dypvik, H., Gjelberg, J. G., Harland, W. B., Johannessen,
E. P., Keilen, H. B., Larssen, G. B., Lønøy, A., Midbøe, P. S.,
Mørk, A., Nagy, J., Nilsson, I., Nøttvedt, A., Olaussen, S., Pcelina,
T. M., Steel, R. J., and Worsley, D.: Lithostratigraphic Lexicon of Svalbard,
edited by: Dallmann, W. K., Norwegian Polar Institute, Polar Environmental
Centre, Tromsø, Norway, 1999.
Dallmann, W. K., Piepjohn, K., and Blomeier, D.: Geological map of
Billefjorden, Central Spitsbergen, Svalbard, with geological excursion
guide, Scale 1 : 50,000, Temakart No. 36, Norsk Polarinstitutt, 2004.
Dallmann, W. K., Piepjohn, K., Blomeier, D., and Elvevold, S.: Geological map of Svalbard 1 : 100 000, sheet C8G, Billejorden, revised edition, Norsk Polarinstitutt Temakart, 43, 2009.
Davies, G. R. and Nassichuck, W. W.: An Early Carboniferous (Visean)
Lacustrine Oil Shale in Canadian Arctic Archipelago, AAPG Bull., 72,
8–20, 1988.
Dißmann, B. and Grewing, A.: Post-svalbardische kompressive
Strukturen im westlichen Dickson Land (Hugindalen), Zentral-Spitzbergen,
Münster. Forsch. Geol. Paläont., 82, 235–242, 1997.
Eide, J. R., Ree, R., and Rockman, P. O.: Final well report – 7816/12-1 July
1991, Norsk Hydro A.S., Harstad, Norway, 1991.
Elizalde, C., Griffith, W. A., and Miller, T.: Thrust fault nucleation due to
heterogeneous bedding plane slip: evidence from an Ohio coal mine,
Eng. Geol., 206, 1–17, 2016.
Faisal, S. and Dixon, J. M.: Physical analog (centrifuge) model
investigation of contrasting structural styles in the Salt Range and Potwar
Plateau, northern Pakistan, J. Struct. Geol., 77, 277–292,
2015.
Fard, I. A., Braathen, A., Mokhtari, M., and Alavi, S. A.: Interaction of the
Zagros Fold–Thrust Belt and the Arabian-type, deep-seated folds in the
Abadan Plain and the Dezful Embayment, SW Iran, Petrol. Geosci., 12,
347–362, 2006.
Fedorowski, J.: Coral thanatocoenoses and depositional environment in the
upper Treskelodden beds of the Hornsund area, Spitsbergen, Palaeontologica
Polonica, 43, 17–68, 1982.
Flood, B., Gee, D. G., Hjelle, A., Siggerud, T., and Winsnes, T. S.: The
geology of Nordaustlandet, northern and central parts, Norsk Polarinst.
Skr., 146, 145 pp., 1969.
Friend, P. F.: The Devonian stratigraphy of north and central
Vestspitsbergen, P. Yorks. Geol. Soc., 33,
77–118, 1961.
Friend, P. F. and Moody-Stuart, M.: Sedimentation of the Wood Bay Formation
(Devonian) of Spitsbergen: Regional analysis of a late orogenic basin, Norsk
Polarinst. Skr., 157, 80 pp., 1972.
Friend, P. F., Heintz, N., and Moody-Stuart, M.: New unit terms for the
Devonian of Spitsbergen and a new stratigraphical scheme for the Wood Bay
Formation, Polarinst. Årbok, 1965, 59–64, 1966.
Friend, P. F., Harland, W. B., Rogers, D. A., Snape, I., and Thornley, R. S.:
Late Silurian and Early Devonian stratigraphy and probable strike-slip
tectonics in northwestern Spitsbergen, Geol. Mag., 134, 459–479, 1997.
Frodsham, K. and Gayer, R. A.: The impact of tectonic deformation upon coal
seams in the South Wales coalfield, UK, Int. J. Coal Geol., 38, 297–332,
1999.
Gasser, D. and Andresen, A.: Caledonian terrane amalgamation of Svalbard:
detrital zircon provenance of Mesoproterozoic to Carboniferous strata from
Oscar II Land, western Spitsbergen, Geol. Mag., 150, 1103–1126, 2013.
Gawthorpe, R. L. and Leeder, M. R.: Tectono-sedimentary evolution of active
extensional basins, Basin Res., 12, 195–218, 2000.
Gayer, R. A., Gee, D. G., Harland, W. B., Miller, J. A., Spall, H. R.,
Wallis, R. H., and Winsnes, T. S.: Radiometric age determinations on rocks
from Spitsbergen, Norsk Polarinstitutt Skrifter, 137, 43 pp., 1966.
Gee, D. G. and Moody-Stuart, M.: The base of the Old Red Sandstone in
central north Haakon VII Land, Vestspitsbergen, Polarinst. Årbok, 1964,
57–68, 1966.
Gee, D. G. and Page, L. M.: Caledonian terrane assembly on Svalbard: New
evidence from 40Ar 39Ar dating in Ny Friesland, Am. J.
Sci., 294, 1166–1186, 1994.
Gjelberg, J. G.: Upper Devonian (Famennian) – Middle Carboniferous
succession of Bjørnøya, a study of ancient alluvial and coastal marine
sedimentation, Norsk Polarinst. Skr., 174, 67 pp., 1981.
Gjelberg, J. G.: Early–Middle Carboniferous sedimentation on Svalbard. A
study of ancient alluvial and coastal marine sedimentation in rift- and
strike-slip basins, PhD Thesis, University of Bergen, Bergen, Norway, 306
pp., 1984.
Gjelberg, J. G. and Steel, R. J.: An outline of Lower–Middle Carboniferous
sedimentation on Svalbard: Effects of tectonic, climatic and sea level
changes in rift basin sequences, in: Geology of the North Atlantic
Borderlands, edited by: Kerr, J. W. and Ferguson, A. J., Can. Soc. Petrol.
Geol. Mem., 7, 543–561, 1981.
Hamilton, E., Harland, W. B., and Miller, J. A.: Isotopic Ages from Some
Spitsbergen Rocks, Nature, 195, 1191–1192, 1962.
Haremo, P. and Andresen, A.: Tertiary décollements thrusting and
inversion structures along Billefjorden and Lomfjorden Fault Zones, East
Central Spitsbergen, in: Structural and Tectonic Modelling and its
Apllication to Petroleum Geology, edited by: Larsen, R. M., Brekke, H.,
Larsen, B. T., and Talleraas, E., Norwegian Petroleum Society (NPF) Special
Publications, 1, 481–494, 1992.
Haremo, P., Andresen, A., Dypvik, H., Nagy, J., Elverøi, A., Eikeland, T.
A., and Johansen, H.: Structural development along the Billefjorden Fault
Zone in the area between Kjellströmdalen and Adventdalen/Sassendalen,
central Spitsbergen, Polar Res., 8, 195–216, 1990.
Harland, W. B.: Contribution of Spitsbergen to understanding of tectonic
evolution of North Atlantic region, AAPG Memoirs, 12, 817–851, 1969.
Harland, W. B. and Horsfield, W. T.: West Spitsbergen Orogen, in:
Mesozoic–Cenozoic orogenic belts, edited by: Spencer, A. M., Geol. Soc.
Lond. Spec. Publ., 4, 747–755, 1974.
Harland, W. B. and Kelly, S. R. A.: Eastern Svalbard Platform, in: Geology
of Svalbard, edited by: Harland, W. B., Geol. Soc. London Mem., 17, 75–95,
1997.
Harland, W. B. and Wright, N. J. R.: Alternative hypothesis for the
pre-Carboniferous evolution of Svalbard, Norsk Polarinst. Skr., 167,
89–117, 1979.
Harland, W. B., Cutbill, L. J., Friend, P. F., Gobbett, D. J., Holliday, D.
W., Maton, P. I., Parker, J. R., and Wallis, R. H.: The Billefjorden Fault
Zone, Spitsbergen – the long history of a major tectonic lineament, Norsk
Polarinst. Skr., 161, 1–72, 1974.
Harland, W. B., Mann, A., and Townsend, C.: Deformation of anhydrite-gypsum
rocks in central Spitsbergen, Geol. Mag., 125, 103–116, 1988.
Holliday, D. W. and Cutbill, J. L.: The Ebbadalen Formation (Carboniferous),
Spitsbergen, P. Yorks. Geol. Soc., 39,
1–32, 1972.
Horsfield, W. T.: Glaucophane schists of Caledonian age from Spitsbergen,
Geol. Mag., 109, 29–36, 1972.
Izquierdo-Llavall, E., Roca, E., Xie, H., Pla, O., Muñoz, J.A., Rowan,
M. G., Yuan, N., and Huang, S.: Structural style of a fold-and-thrust belt
involving laterally-changing, multiple décollements: the Kuqa
fold-and-thrust belt (NW China), in: Fold and Thrust Belts: structural
style, evolution and exploration, Petroleum Group of the Geological Society
of London, 31 October–2 November 2017, Burlington House, London, UK, 2017.
Jakobsson, M., Mayer, L., Coackley, B., Dowdeswell, J. A., Forbes, S., Fridman, B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W., Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P., Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell, B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D., Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The International Bathymetric Chart of the Arctic Ocean (IBCAO) Version 3.0, Geophys. Res. Lett., 39, L12609, https://doi.org/10.1029/2012GL052219, 2012.
Johannessen, E.: Facies analysis of the Ebbadalen Formation, Middle
Carboniferous, Billefjorden Trough, Spitsbergen, unpublished Master's
Thesis, University of Bergen, Bergen, Norway, 314 pp., 1980.
Johannessen, E. P. and Steel, R. J.: Mid-Carboniferous extension and
rift-infill sequences in the Billefjorden Trough, Svalbard, Norsk Geol.
Tidsskr., 72, 35–48, 1992.
Johansson, Å. and Gee, D. G.: The late Palaeoproterozoic Eskolabreen
granitoids of southern Ny Friesland, Svalbard Caledonides – geochemistry,
age, and origin, GFF, 121, 113–126, 1999.
Johansson, Å., Larionov, A. N., Gee, D. G., Ohta, Y., Tebenkov, A. M.,
and Sandelin, S.: Greenvillian and Caledonian tectono-magmatic activity in
northeasternmost Svalbard, in: The Neoproterozoic Timanide Orogen of Eastern
Baltica, edited by: Gee, D. G. and Pease, V., Geol. Soc. London Memoirs, 30,
207–232, 2004.
Johansson, Å., Gee, D. G., Larionov, A. N., Ohta, Y., and Tebenkov, A.
M.: Greenvillian and Caledonian evolution of eastern Svalbard – a tale of
two orogenies, Terra Nova, 17, 317–325, 2005.
Koehl, J.-B.: Impact of Timanian thrusts on the Phanerozoic tectonic history of Svalbard, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020–2170, https://doi.org/10.5194/egusphere-egu2020-2170, 2020.
Koehl, J.-B. P.: Latest Devonian–Mississippian tectonic history of
Bjørnøya, Solid Earth, in preparation, 2021a.
Koehl, J.-B. P.: Replication data for: “Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard”, DataverseNO [data set], https://doi.org/10.18710/IIHGSH, 2021b.
Koehl, J.-B. P. and Muñoz-Barrera, J. M.: From widespread Mississippian to localized Pennsylvanian extension in central Spitsbergen, Svalbard, Solid Earth, 9, 1535–1558, https://doi.org/10.5194/se-9-1535-2018, 2018.
Koehl, J.-B. P., Tveranger, J., Osmundsen, P. T., Braathen, A., Taule, C.,
and Collombin, M.: Fault-growth deposit in a Carboniferous rift-basin: the
Billefjorden Trough, Svalbard, Geophys. Res. Abstr.,
EGU2016-7131, EGU General Assembly 2016, Vienna, Austria, 2016.
Koehl, J.-B. P., Bergh, S. G., Henningsen, T., and Faleide, J. I.: Middle to Late Devonian–Carboniferous collapse basins on the Finnmark Platform and in the southwesternmost Nordkapp basin, SW Barents Sea, Solid Earth, 9, 341–372, https://doi.org/10.5194/se-9-341-2018, 2018.
Koehl, J.-B. P., Collombin, M., Taule, C., Christophersen, G., Allaart, L., and Noormets, R.: Devonian–Carboniferous collapse and segmentation of the Billefjorden Trough, and Eurekan inversion–overprint and strain partitioning and decoupling along inherited WNW–ESE-striking faults, Norw. J. Geol., submitted, 2020.
Kośmińska, K., Majka, J., Mazur, S., Krumbholz, M., Klonowska, I.,
Manecki, M., Czerny, J., and Dwornik, M.: Blueschist facies metamorphism in
Nordenskiöld Land of west-central Svalbard, Terra Nova, 26, 377–386,
2014.
Lamar, D. L. and Douglass, D. N.: Geology of an area astride the
Billefjorden Fault Zone, Northern Dicksonland, Spitsbergen, Svalbard,
Polarist. Skr., 197, 46 pp., 1995.
Lamar, D. L., Reed, W. E., and Douglass, D. N.: Structures bearing on the
sense and magnitude of displacement and tectonic significance of
Billefjorden Fault Zone, Dicksonland, Spitsbergen, Svalbard: Progress
report, 1982 field season, Lamar-Merifield, Geologists, Technical report
82-6, 48 pp., 1982.
Lamar, D. L., Reed, W. E., and Douglass, D. N.: Billefjorden fault zone,
Spitsbergen: Is it part of a major Late Devonian transform?, Geol. Soc. Am., 97,
1083–1088, 1986.
Larsen, B. T.: Tertiary thrust tectonics in the east of Spitsbergen, and
implications for the plate-tectonic development of the North-Atlantic, in:
Tertiary Tectonics of Svalbard, edited by: Dallmann, W. K., Ohta, Y., and
Andresen, A., Norsk Polarinstitutt Rapportserie, 46, 85–88, 1988.
Larssen, G. B., Elvebakk, G., Henriksen, S. E., Nilsson, I., Samuelsberg, T.
J., Svånå, T. A., Stemmerik, L., and Worsley, D.: Upper Palaeozoic
lithostratigraphy of the Southern Norwegian Barents Sea, Norwegian Petroleum
Directorate Bulletin, 9, 1–76, 2002.
Lindemann, F.-J., Volohonsky, E., and Marshall, J. E.: A bonebed in the
Hørbybreen Formation (Fammenian-Viséan) on Spitsbergen, NGF Abstracts
and Proceedings, 1, Winter Meeting, 8–10 January 2013, Oslo, 2013.
Livshitz, J. J.: New data on the geological structure of the Pyramiden
area (Vestspitsbergen), Uchenie Zapiski (Inst. Geol. Arctic) Regional'naya
geologiya (NIIGA), 9, 36–56, 1966.
Lowell, J. D.: Spitsbergen Tertiary Orogenic Belt and the Spitsbergen
Fracture Zone, Geol. Soc. Am. Bull., 83, 3091–3102, 1972.
Lønøy, A.: A Mid-Carboniferous, carbonate-dominated platform, Central
Spitsbergen, Norsk Geol. Tidsskr., 75, 48–63, 1995.
Maher, H. D.: Structure and stratigraphy of the Midterhuken peninsula,
Bellsund, west Spitsbergen, PhD Thesis, University of Wisconsin–Madison,
Madison, USA, 437 pp., 1984.
Maher Jr., H. D.: Photointerpretation of Tertiary structures in platform
cover strata of interior Oscar II Land, Spitsbergen, Polar Res., 6,
155–172, 1988.
Maher Jr., H. D.: Atypical rifting during the Carboniferous of the NW
Barents Shelf, Report for Saga Petroleum, November 1996, 1996.
Maher Jr., H. D. and Braathen, A.: Løvehovden fault and Billefjorden rift
basin segmentation and development, Spitsbergen, Norway, Geol. Mag., 148,
154–170, 2011.
Maher Jr., H. D. and Welbon, A. I.: Influence of Carboniferous structures on
Tertiary tectonism at St. Jonsfjorden and Bellsund, Western Svalbard, Norsk
Geol. Tidsskr., 72, 67–75, 1992.
Maher Jr., H. D., Craddock, C., and Maher, K.: Kinematics of Tertiary
structures in upper Paleozoic and Mesozoic strata on Midterhuken, west
Spitsbergen, Geol. Soc. Am. Bull., 97, 1411–1421, 1986.
Manby, G. M. and Lyberis, N.: Tectonic evolution of the Devonian Basin of
northern Spitsbergen, Norsk Geol. Tidsskr., 72, 7–19, 1992.
Manby, G. M. and Michalski, K.: Contrasting metamorphic terranes of
Ny-Friesland and their place in the Arctic Caledonides, in: SvalGeoBase:
Proterozoic and Lower Palaeozoic basement of Svalbard – state of knowledge
and new perspectives of investigations, Workshop report, January 2014, edited by:
Dallmann, W. K., Manecki, M., Michalski, K., and Glowacki, P., Tromsø,
2014.
Manby, G. M., Lyberis, N., Chorowicz, J., and Thiedig, F.: Post-Caledonian
tectonics along the Billefjorden fault zone, Svalbard, and implications for
the Arctic region, Geol. Soc. Am. Bull., 105, 201–216, 1994.
Marshall, J., Lindemann, F. J., Finney, S., and Berry, C.: A Mid Fammenian
(Late Devonian) spore assemblage from Svalbard and its significance, CIMP
Meeting, 17–18 September 2015, Bergen, Norway, 2015.
McCann, A. J.: The Billefjorden Fault Zone, Dickson Land, Svalbard: Basement
fault control on cover deformation, PhD Thesis, Imperial College, London,
UK, 1993.
McCann, A. J.: Deformation of the Old Red Sandstone of NW Spitsbergen; links
to the Ellesmerian and Caledonian orogenies, in: New Perspectives on the Old
Red Sandstone, edited by: Friends, P. F. and Williams, B. P. J., Geol. Soc.
Lond., 180, 567–584, 2000.
McCann, A. J. and Dallmann, W. K.: Reactivation of the long-lived
Billefjorden Fault Zone in north central Spitsbergen, Svalbard, Geol. Mag.,
133, 63–84, 1996.
McClay, K. R.: Analogue models of inversion tectonics, Geol. Soc. Lond.
Spec. Publ., 44, 41–59, 1989.
McClay, K. R.: Glossary of thrust tectonics terms, in: Thrust tectonics,
edited by: McClay, K. R., London, Chapman and Hall, 419–433, 1992.
McClay, K. R. and Insley, M. W.: Duplex structures in the Lewis thrust
sheet, Crowsnest Pass, Rocky Mountains, Alberta, Canada, J.
Struct. Geol., 8, 911–922, 1986.
McWhae, J. R. H.: The major fault zone of central Vestspitsbergen, Q. J.
Geol. Soc. Lond., 108, 209–232, 1953.
Michaelsen, B.: Strukturgeologie des svalbardischen Überschiebungs- und
Faltengürtels im zentralen, östlichen Dickson Land, Spizbergen
(Structural geology of the Svalbardian fold-and-thrust belt in
central–eastern Dickson Land, Spitsbergen), Master's Thesis, University of
Münster, Münster, Germany, 134 pp., 1998.
Michaelsen, B., Piepjohn, K., and Brinkmann, L.: Struktur und Entwicklung der
svalbardischen Mimerelva Synkline im zentralen Dickson Land, Spitzbergen,
Münster. Forsch. Geol. Paläont., 82, 203–214, 1997.
Molinda, G. M.: Geologic Hazards and Roof Stability in Coal Mines,
Information Circular, 9466, U.S. Department of Health and Human Services,
2003.
Morley, C. K., von Hagke, C., Hansberry, R. L., Collins, A. S., Kanitpanyacharoen, W., and King, R.: Review of major shale-dominated detachment and thrust characteristics in the diagenetic zone: Part I, meso- and macro-scopic scale, Earth-Sci. Rev., 173, 168–228, 2017.
Murascov, L. G. and Mokin, J. I.: Stratigraphic subdivision of the Devonian
deposits of Spitsbergen, Polarinst. Skr., 167, 249–261, 1979.
Myhre, P. I., Corfu, F., and Andresen, A.: Caledonian anatexis of
Greenvillian crust: a U/Pb study of Albert I Land, NW Svalbard, Norw. J.
Geol., 89, 173–191, 2008.
Oakey, G. N. and Chalmers, J. A.: A new model for the Paleogene motion of
Greenland relative to North America: Plate reconstructions of the Davis
Strait and Nares Strait regions between Canada and Greenland, J. Geophys.
Res., 117, B10401, https://doi.org/10.1029/2011JB008942, 2012.
Ohta, Y., Dallmeyer, R. D., and Peucat, J. J.: Caledonian terranes in
Svalbard, GSA Spec. Paper, 230, 1–15, 1989.
Ohta, Y., Krasil'ščikov, A. A., Lepvrier, C., and Teben'kov, A. M.:
Northern continuation of Caledonian high-pressure metamorphic rocks in
central-western Spitsbergen, Polar Res., 14, 303–315, 1995.
Ohta, Y., Larionov, A. N., Tebenkov, A. M., Lepvrier, C., Maluski, H.,
Lange, M., and Hellebrandt, B.: Single-zircon Pb-evaporation and
40Ar 39Ar dating of the metamorphic and granitic rocks in
north-west Spitsbergen, Polar Res., 21, 73–89, 2002.
Pčelina, T. M., Bogač, S. I., and Gavrilov, B. P.: Novye dannye po
litostratigrafii devonskih otloženji rajona Mimerdalen arhipelaga
Špicbergen [New data on the lithostratigraphy of the Devonian deposits
of the region of Mimerdalen of the Svalbard Archipelago], in: Geologija
osadocnogo cehla arhipelaga Špicbergen (Geology of the sedimentary
blanket of the archipelago of Spitsbergen), edited by:
Krasil'ščikov, A. A. and Mirzaev, M. N., Leningrad: Sevmorgeologija,
7–19, 1986.
Petersen, T. G., Thomsen, T. B., Olaussen, S., and Stemmerik, L.: Provenance
shifts in an evolving Eurekan foreland basin: the Tertiary Central Basin,
Spitsbergen, J. Geol. Soc., 173, 634–648, 2016.
Phillipson, S. E.: The control of coal bed decollement-related slickensides
on roof falls in North American Late Paleozoic coal basins, Int.
J. Coal Geol., 53, 181–195, 2003.
Phillipson, S. E.: Effects of late Paleozoic foreland deformation on
underground coal mine ground instability, Illinois and Appalachians Basins,
Int. J. Coal Geol., 64, 3–19, 2005.
Piepjohn, K.: The Svalbardian–Ellesmerian deformation of the Old Red
Sandstone and the pre-Devonian basement in NW Spitsbergen (Svalbard), in:
New Perspectives on the Old Red Sandstone, edited by: Friend, P. F. and
Williams, B. P. J., Geol. Soc. Lond. Spec. Publ., 180, 585–601, 2000.
Piepjohn, K. and Dallmann, W. K.: Stratigraphy of the uppermost Old Red
Sandstone of Svalbard (Mimerdalen Subgroup), Polar Res., 33, 19998, https://doi.org/10.3402/polar.v33.19998, 2014.
Piepjohn, K., Brinkmann, L., Dißmann, B., Grewing, A., Michaelsen, B.,
and Kerp, H.: Geologische und strukturelle Entwicklung des Devon sim
zentralen Dickson Land, Spitzbergen, Münster. Forsch. Geol.
Paläont., 82, 175–202, 1997.
Piepjohn, K., Brinkmann, L., Grewing, A., and Kerp, H.: New data on the age
of the uppermost ORS and the lowermost post-ORS strata in Dickson Land
(Spitsbergen) and implications for the age of the Svalbardian deformation,
in: New Perspectives on the Old Red Sandstone, edited by: Friend, P. F. and
Williams, B. P. J., Geol. Soc. Lond. Spec. Publ., 180, 603–609, 2000.
Piepjohn, K., Thiedig, F., and Manby, G. M.: Nappe Stacking on
Brøggerhalvøya, NW Spitsbergen, Geol. Jb. B, 91, 55–79, 2001.
Prosser, S.: Rift-related linked depositional systems and their seismic
expression, in: Tectonics and Seismic Sequence Stratigraphy, edited by:
Williams, G. D. and Dobb, A., Geol. Soc. Lond. Spec. Publ., 71, 35–66,
1993.
Ringset, N. and Andresen, A.: The Gipshuken Fault System – Evidence for
Tertiary thrusting along the Billefjorden Fault Zone, in: Tertiary Tectonics
of Svalbard, edited by: Dallmann, W. K., Ohta, Y., and Andresen, A., Norsk
Polarinstitutt Rapportserie, 46, 67–70, 1988.
Roy, J.-C. L. G.: La géologie du fossé des Vieux Grès Rouges du
Spitzberg (archipel du Svalbard, territoire de l'Arctique) – Synthèse
stratigraphique, consequences paléoenvironnementales et tectoniques
synsédimentaires, Mémoires des sciences de la Terre de
l'Université Pierre et Marie Curie, PhD Thesis, Pierre and Marie Curie
University, Paris, France, 2007-15, 242 pp., 2007.
Roy, J.-C. L. G.: La saga des vieux grès rouges du Spitzberg (archipel du
Svalbard, Arctique): Une histoire géologique et naturelle,
Charenton-le-pont: Auto-Edition Roy-Poulain, 290 pp., 2009.
Saalman, K. and Thiedig, F.: Structural Evolution of the Tertiary West
Spitsbergen Fold-and-Thrust Belt on Brøggerhalvøya, NW-Spitsbergen,
Polarforschung, 68, 111–119, 2000.
Saalman, K. and Thiedig, F.: Tertiary West Spitsbergen fold and thrust belt
on Brøggerhalvøya, Svalbard: Structural evolution and kinematics,
Tectonics, 20, 976–988, 2001.
Scheibner, C., Hartkopf-Fröder, C., Blomeier, D., and Forke, H.: The
Mississippian (Lower Carboniferous) in northeast Spitsbergen (Svalbard) and
a re-evaluation of the Billefjorden Group, Z. Dt. Ges. Geowiss., 163/3,
293–308, 2012.
Schlische, R. W.: Geometry and Origin of Fault-Related Folds in Extensional
Settings, AAPG Bull., 79, 1661–1678, 1995.
Schweitzer, H.-J.: Die Devonfloren Spitzbergens [The Devonian flora of
Spitsbergen], Palaeontographica Abteilung B Band, 252,
Schweizerbart Science Publishers, Stuttgart, 1999.
Smyrak-Sikora, A. A., Johannessen, E. P., Olaussen, S., Sandal, G., and
Braathen, A.: Sedimentary architecture during Carboniferous rift initiation
– the arid Billefjorden Trough, Svalbard, J. Geol. Soc. Lond., 176,
225–252, 2018.
Stipp, M., Stünitz, H., Heilbronner, R., and Schmid, S. M.: The eastern
Tonale fault zone: a “natural laboratory” for crystal plastic deformation of
quartz over a temperature range from 250 to 700 ∘C, J.
Struct. Geol., 24, 1861–1884, 2002.
Tonstad, S. A.: The Late Paleozoic development of the Ottar basin from
seismic 3D interpretation, Master's Thesis, University of Tromsø,
Tromsø, Norway, 135 pp., 2018.
Vigran, J. O.: Spores from Devonian deposits, Mimerdalen, Spitsbergen, Norsk
Polarinstitutt Skrifter, 132, 49 pp., 1964.
Vogt, T.: The stratigraphy and tectonics of the Old Red formations of
Spitsbergen, Abstracts of the Proceedings of the Geological Society London,
1343, 88, 1938.
Wang, G., Liu, Y., Gu, Y., Xiong, X., Yuan, K., Li, L., Zhou, H., Liu, J.,
and Shang, G.: Multi-Décollement Structure Modelling of Kuqa Fold-Thrust
Belt in Tarim Basin, in: International Petroleum Technology Conference, 26–28 March 2013,
Beijing, China, 2013.
Wilson, R. L. and Wojtal, S. F.: Cumberland Plateau décollement zone at
Dunlap, Tennessee, GSA Centennail Field Guide – Southeastern Section,
143–148, 1986.
Witt-Nilsson, P., Gee, D. G., and Hellman, F. J.: Tectonostratigraphy of the
Caledonian Atomfjella Antiform of northern Ny Friesland, Svalbard, Norsk
Geol. Tidsskr., 78, 67–80, 1998.
Würtzen, C. L., Stemmerik, L., Olaussen, S., and Ahokas, J.: Facies
analysis of the uppermost Devonian to Lower Carboniferous Billefjorden
Group, central Spitsbergen, Svalbard, NGF Winter conference, 7–9 January 2019, Bergen, Norway,
2019.
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary...