Articles | Volume 12, issue 5
https://doi.org/10.5194/se-12-1125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1125-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy
Department of Earth and Environmental Sciences, Lehigh University,
Bethlehem, PA 18015, USA
Frank J. Pazzaglia
Department of Earth and Environmental Sciences, Lehigh University,
Bethlehem, PA 18015, USA
Josep M. Parés
Geochronology, Centro Nacional de Investigación de la
Evolución Humana (CENIEH) Burgos, Burgos, 09002, Spain
Kenneth P. Kodama
Department of Earth and Environmental Sciences, Lehigh University,
Bethlehem, PA 18015, USA
Claudio Berti
Idaho Geological Survey, Moscow, ID 83844, USA
James A. Fisher
Department of Earth and Environmental Sciences, Lehigh University,
Bethlehem, PA 18015, USA
Alessandro Montanari
Osservatorio Geologico di Coldigioco, Apiro, Macerata, 62021, Italy
Lorraine K. Carnes
Geological Sciences, Arizona State University, Tempe, AZ 85281, USA
Related authors
No articles found.
Sietske J. Batenburg, David De Vleeschouwer, Mario Sprovieri, Frederik J. Hilgen, Andrew S. Gale, Brad S. Singer, Christian Koeberl, Rodolfo Coccioni, Philippe Claeys, and Alessandro Montanari
Clim. Past, 12, 1995–2009, https://doi.org/10.5194/cp-12-1995-2016, https://doi.org/10.5194/cp-12-1995-2016, 2016
Short summary
Short summary
The relative contributions of astronomical forcing and tectonics to ocean anoxia in the Cretaceous are unclear. This study establishes the pacing of Late Cretaceous black cherts and shales. We present a 6-million-year astrochronology from the Furlo and Bottaccione sections in Italy that spans the Cenomanian–Turonian transition and OAE2. Together with a new radioisotopic age for the mid-Cenomanian event, we show that astronomical forcing determined the timing of these carbon cycle perturbations.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Structural geology
Fault-controlled fluid circulation and diagenesis along basin-bounding fault systems in rifts – insights from the East Greenland rift system
Towards the application of Stokes flow equations to structural restoration simulations
Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks
Stress field orientation controls on fault leakage at a natural CO2 reservoir
Diagenetic evolution of fault zones in Urgonian microporous carbonates, impact on reservoir properties (Provence – southeast France)
Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects
The role of mechanical stratigraphy on the refraction of strike-slip faults
Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar Massif)
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon
Solid Earth, 11, 1909–1930, https://doi.org/10.5194/se-11-1909-2020, https://doi.org/10.5194/se-11-1909-2020, 2020
Short summary
Short summary
This paper presents a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method relies on the assumption that rock layers can be modeled as highly viscous fluids. It shows promising results on simple setups, including models with faults and non-flat topography. While issues still remain, this could open a way to add more physics to reverse time structural modeling.
Romesh Palamakumbura, Maarten Krabbendam, Katie Whitbread, and Christian Arnhardt
Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020, https://doi.org/10.5194/se-11-1731-2020, 2020
Short summary
Short summary
The aim of this paper is to describe, evaluate and develop a simple but robust low-cost method for capturing 2-D fracture network data in GIS and make them more accessible to a broader range of users in both academia and industry. We present a breakdown of the key steps in the methodology, which provides an understanding of how to avoid error and improve the accuracy of the final dataset. The 2-D digital method can be used to interpret traces of 2-D linear features on a wide variety of scales.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Johannes M. Miocic, Gareth Johnson, and Stuart M. V. Gilfillan
Solid Earth, 11, 1361–1374, https://doi.org/10.5194/se-11-1361-2020, https://doi.org/10.5194/se-11-1361-2020, 2020
Short summary
Short summary
At the St. Johns Dome, Arizona, CO2 naturally occurs in the subsurface, but there are travertine rocks on the surface which are an expression of CO2 leakage to the surface. These travertine deposits occur along faults, zones where the rock layers are fractured and displaced. In our research, we use geomechanical analysis to show that the CO2 leakage occurs at points where the faults are likely to be permeable due to the orientation of the geological stress field in the subsurface.
Irène Aubert, Philippe Léonide, Juliette Lamarche, and Roland Salardon
Solid Earth, 11, 1163–1186, https://doi.org/10.5194/se-11-1163-2020, https://doi.org/10.5194/se-11-1163-2020, 2020
Short summary
Short summary
In carbonate rocks, fault zones influence the fluid flows and lead to important diagenetic processes modifying reservoir properties. The aim of this study is to identify the impact of two polyphase fault zones on fluid flows and reservoir properties during basin history. We determined petro-physic and diagenetic properties on 92 samples. This study highlights that fault zones acted as drains at their onset and induced fault zone cementation, which has strongly altered local reservoir properties.
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, https://doi.org/10.5194/se-10-951-2019, 2019
Short summary
Short summary
When carbon dioxide is introduced into the subsurface it will migrate upwards and can encounter faults, which, depending on their hydrogeological properties and composition, can form barriers or pathways for the migrating fluid. We analyse uncertainties associated with these properties in order to better understand the implications for the retention of CO2 in the subsurface. We show that faults that form seals for other fluids may not be seals for CO2, which has implications for storage sites.
Mirko Carlini, Giulio Viola, Jussi Mattila, and Luca Castellucci
Solid Earth, 10, 343–356, https://doi.org/10.5194/se-10-343-2019, https://doi.org/10.5194/se-10-343-2019, 2019
Short summary
Short summary
Physical properties of layered sedimentary rocks affect nucleation and propagation of discontinuities therein. Fractures developing through sedimentary sequences characterized by the alternation of strong and weak layers are strongly deviated along their track at layers’ boundaries, and depending on the layer they cross-cut, they show very thick (strong layers) or very thin (weak layers) infills of precipitated minerals, potentially representing pathways for ore deposits and oil/water resources.
Paul Perron, Michel Guiraud, Emmanuelle Vennin, Isabelle Moretti, Éric Portier, Laetitia Le Pourhiet, and Moussa Konaté
Solid Earth, 9, 1239–1275, https://doi.org/10.5194/se-9-1239-2018, https://doi.org/10.5194/se-9-1239-2018, 2018
Short summary
Short summary
In this paper we present an original multidisciplinary workflow involving various tools (e.g., seismic profiles, satellite images, well logs) and techniques (e.g., photogeology, seismic interpretation, well correlation, geophysics, geochronology, backstripping) as a basis for discussing the potential factors controlling the tectono-stratigraphic architecture within the Palaeozoic intracratonic basins of the Saharan Platform using the Reggane, Ahnet, Mouydir and Illizi basins as examples.
Cited articles
Advanced Geoscience Instruments Company (AGICO): Anisoft – Advanced Treatment of Magnetic Anisotropy Data, available at: https://www.agico.com/text/software/anisoft/anisoft.php (last access: 18 May 2021), 2020.
Alvarez, W.: Drainage on evolving fold-trust belts: a study of transverse
canyons in the Apennines, Basin Res., 11, 267–284, 1999.
Artoni, A.: The Pliocene-Pleistocne stratigraphic and tectonic evolution of
the central sector of the Western Periadriatic Basin of Italy, Mar.
Petrol. Geol., 42, 82–106, 2013.
Averbuch, O., Delamotte, D. F., and Kissel, C.: Magnetic fabric as a
structural indicator of the deformation path within a fold thrust structure
– a test case from the Corbieres (NE Pyrenees, France), J. Struct. Geol., 14,
461–474, 1992.
Azañón, J. M, Galve, J. P., Perez-Pena, J. V., Giaconia, F.,
Carvajal, R., Booth-Rea, G., Jabaloy, A., Vazquez, M., Azor, A., and Roldan,
F. J.: Relief and drainage evolution during the exhumation of the Sierra
Nevada (SE Spain): Is denudation keeping pace with uplift?, Tectonophysics, 663, 19–32,
https://doi.org/10.1016/j.tecto.2015.06.015, 2015.
Bally, A. W., Burbi, L., Cooper, C., and Ghelardoni, R.: Balanced sections
and seismic reflection profiles across the central Apennines, Mem. Soc. Geol.
Ital., 35, 257–310, 1986.
Barchi, M., De Feyter, A., Magnani, M., Minelli, G., Pialli, G., and Sotera,
B.: Extensional tectonics in the Northern Apennines (Italy): evidence from
the CROP03 deep seismic reflection line, Mem. Soc. Geol. Ital., 52, 528–538,
1998.
Beccaluva, L., Gabbianelli, G., Lucchini, F., Rossi, P. L., and Savelli, C.:
Petrology and Ages of volcanics dredged from the Eolian seamounts:
Implications for geodynamic evolution of the Southern Tyrrhenian Basin,
Earth Pl. Sc. Lett., 74, 187–208, https://doi.org/10.1016/0012-821X(85)90021-4, 1985.
Bennett, R. A., Serpelloni, E., Hreinsdottir, S., Brandon, M. T., Buble, G.,
Basic, T., Casale, G., Cavaliere, A., Anzidei, M., Marjonovic, M., Minelli,
G., Molli, G., and Montanari, A.: Syn-convergent extension observed using
the RETREAT GPS network, northern Apennines, Italy, J. Geophys. Res., 117,
B04408, https://doi.org/10.1029/2011JB008744, 2012.
Bernini, B. M.: The role of transpression movements in the evolution of
Neogene basins of the Betic Cordillera, An Tect, 4 ISSN: 0394-5596, 1990.
Biedermann, A. R.: Magnetic Anisotropy in Single Crystals: A Review,
Geosciences, 8, 302, 16 pp., https://doi.org/10.3390/geosciences8080302, 2018.
Boccaletti, M., Corti, G., and Martelli, L.: Recent and active tectonics of
the external zone of the Northern Apennines (Italy), Int. J. Earth Sci.,
100, 1331–1348, https://doi.org/10.1007/s00531-010-0545-y, 2011.
Boncio, P., Lavecchia, G., and Pace, B.: Defining a model of 3D seismogenic
sources for Seismic Hazard Assessment applications: the case of central
Apennines (Italy), J. Seismol., 8, 407–425, 2004.
Borradaile, G. J.: Magnetic susceptibility,petrofabrics and
strain, Tectonophysics, 156, 1–20, https://doi.org/10.1016/0040-1951(88)90279-X, 1988.
Borradaile, G. J. and Henry, B.: Tectonic applications of magnetic
susceptibility and its anisotropy, Earth Sci. Rev., 4, 49–93, 1997.
Borradaile, G. J. and Jackson, M.: Anisotropy of magnetic susceptibuility
(AMS): magnetic petrofabrics of deformed rocks, in:
Magnetic Fabric: Methods and Applications, edited by: Martîn-Hernåndez, F., Lüneburg, C. M. Aubourg, and Jackson, M.,
Geol. Soc. Spec. Publ., 238,
299–360, 2004.
Borradaile, G. J. and Jackson, M.: Structural geology, petrofabrics and
magnetic fabrics (AMS, AARM, AIRM), J. Struct. Geol., 32, 1519–1551, https://doi.org/10.1016/j.jsg.2009.09.006, 2010.
Borradaile, G. J. and Lagroix, F.: The enhancement of magnetic fabrics un high
grade gneiss, Geophys. Res. Lett., 27, 2413–2416,
https://doi.org/10.1029/2000GL008522, 2000.
Borradaile, G. J. and Tarling, D. H.: The influence of deformation
mechanisms on magnetic fabrics in weakly deformed rocks, Tectonophysics, 77,
151–168, 1981.
Borradaile, G. J. and Werner, T.: Magnetic anisotropy of some
phyllosilicates, Tectonophysics, 225, 223–248, 1994.
Burmeister, K. C., Harrison, M. J., Marshak, S., Ferre, E, C., and
Bannister, R. A.: Comparison of Fry strain ellipse and AMS ellipsoid
trends to tectonic fabric trends in very low-strain sandstone of the
Appalachian fold-thrust belt, J. Struct. Geol., 9, 1028–1038, 2009.
Caporali, A., Barba, S., Carafa, M. M. C., Devoti, R., Pietrantonio, G., and
Riguzzi, F.: Static stress drop as determined from geodetic strain rates and
statistical seismicity, J. Geophys. Res., 116, B02410,
https://doi.org/10.1029/2010JB007671, 2011.
Caricchi, C., Cifelli, F., Kissel, C., Sagnotti, L., and Mattei, M.:
Distinct magnetic fabric in weakly deformed sediments from extensional
basins and fold-and-thrust structures in the Northern Apennine orogenic belt
(Italy), Tectonics, 35, 238–256, https://doi.org/10.1002/2015TC003940, 2016.
Carminati, E. and Doglioni, C.: Alps vs. Apennines: The paradigm of a
tectonically asymmetric Earth, Earth Sci. Rev., 112, 67–96, 2012.
Carrigan, J. H., Anastasio, D. J., Berti, C., and Pazzaglia, F. J.:
Post-Messinian Drainage
Reorganization in an Active Orogen, Betic Cordillera, Spain, Geol. Soc. Am.
Abstract. Prog., 50, ISSN 0016-7592, https://doi.org/10.1130/abs/2018AM-322226, 2018.
Chiaraluce, L., Chiarabba, C., Collettini, C., Piccinini, D., and Cocco, M.:
Architecture and mechanics of an active low-angle normal fault: Alto
Tiberina Fault, northern Apennines, Italy, J. Geophys. Res., 112, B10310,
https://doi.org/10.1029/2007JB005015, 1999.
Chiaraluce, L. Barchi, M. R., Carannante, S., Collettini, C., Mirabella, F.,
Pauselli, C., and Valoroso, L.: The role of rheology, crustal structures and
lithology in the seismicity distribution of the northern Apennines,
Tectonophysics, 694, 280–291, 2017.
Cifelli, F., Mattei, M., Hirt, A. M., and Günther, A.: The origin of
tectonicmfabrics in “undeformed” clays: the early stages of deformation in
extensional sedimentary basins, Geophys. Res. Lett., 31,
L09604, https://doi.org/10.1029/2004GL019609, 2004.
Collettini, C.: The mechanical paradox of low-angle normal faults: Current
understanding and open questions, Tectonophysics, 510, 253–268, 2011.
D'Agostino, N., Jackson, J. A., Dramis, F., and Funiciello, R.: Interactions
between mantle upwelling, drainage evolution and active normal faulting: an
example from the central Apennines (Italy), Geophys. J. Int., 147, 475–497,
2001.
Davis, D., Suppe, J., and Dahlen, F. A.: Mechanics of fold-and-thrust belts
and accretionary
wedges, J. Geophys. Res., 88, 1153–1172, 1983.
Devoti, R., Riguzzi, F., Cuffaro, M., and Doglioni, C.: New GPS constraints
on the kinematics of the Apennines subduction, Earth Planet Sc. Lett.,
273, 163–174, 2008.
Doglioni, C., Harabaglia, P., Merlini, S., Mongelli, F., Peccerillo, A. T.,
and Piromallo, C.: Orogens and slabs vs. their direction of
subduction, Earth Sci. Rev., 45, 167–208, 1999.
Duggen, S., Hoernle, K., van den Bogaard, P., Rüpke, L., and Morgan,
J. P.: Deep roots of the Messinian Salinity Crisis, Nature, 422, 602–606,
https://doi.org/10.1038/nature01553, 2003.
Elter, P., Giglia, G., Tongiorgi, M., and Trevisan, L.: Tensional and
compressional area in the recent (Tortonian to present) evolution of the
Northern Apennines, B. Geofis. Teor. Appl., 17, 3–18, 1975.
Eva, E., Solarino, S., and Boncio, P.: HypoDD relocated seismicity in
northern Apennines (Italy) preceding the 2013 seismic unrest: seismotectonic
implications for the Lunigiana-Garfagnana area, B. Geofis. Teor. Appl., 55,
739–754, 2014.
Fagereng, Å. and Biggs, J.: New perspectives on “geological strain
rates” calculated from both naturally deformed and actively deforming rocks,
J. Struct. Geol., 125, 100–110, https://doi.org/10.1016/j.jsg.2018.10.004, 2018.
Fernández-Ibáñez, F. and Soto., J. I.: Crustal Rheology and
Seismicity in the Gibraltar Arc (western Mediterranean), Tectonics, 27, 18 pp.,
https://doi.org/10.1029/2007TC002192, 2008.
Fernández-Ibañez, F., Soto, J. I., Zoback, M. D., and Morales, J.:
Present-day stress field in the Gibraltar Arc (western Mediterranean), J.
Geophys. Res.-Sol. Ea., 112, B08404, https://doi.org/10.1029/2006JB004683, 2007.
Galadini, F. and Galli, P.: Active tectonics in the central Apennines
(Italy) – input data for seismic hazard assessment, Nat. Hazards, 22,
225–270, 2000.
Ghisetti, F. and Vezzani, L.: Normal faulting, transcrustal permeability and
seismogenesis in the Apennines (Italy), Tectonophysics, 348, 155–168, 2002.
Giaconia, F., Booth-Rea, G., Martínez-Martínez, J. M.,
Azañón, J. M., Storti, F., and Artoni, A.: Heterogeneous Extension
and the Role of Transfer Faults in the Development of the Southeastern Betic
Basins (SE Spain), Tectonics, 33, 2467–89, https://doi.org/10.1002/2014TC003681, 2014.
Giaconia, F., Booth-Rea, G., Ranero, C. R., Gràcia, E., Bartolome, R.,
Calahorrano, A., Lo Iacono, C., Vendrell, M. G., and Cameselle, A. L.:
Compressional tectonic inversion of the Algero-Balearic basin: Latemost
Miocene to present oblique convergence at the Palomares margin (Western
Mediterranean), Tectonics, 34, 1516–1543,
https://doi.org/10.1002/2015TC003861, 2015.
Gutscher, M. A., Dominguez, S., Westbrook, G. K., Le Roy, P., Rosas, F.,
Duarte, J. C., Terrinha, P., Miranda, J. M., Graindorge, D., Gailler, A.,
Sallares, V., and Bartolome, R.: The Gibraltar Subduction: A Decade of New
Geophysical Data, Tectonophysics, 574/575, 72–91,
https://doi.org/10.1016/j.tecto.2012.08.038, 2012.
Heller, F.: Rockmagnetic studies of Upper Jurassic limestones from southern
Germany, J. Geophys., 44, 525–554, 1978.
Henry, B.: The magnetic zone axis: a new element of magnetic fabric for the
interpretation of magnetic lineation, Tectonophysics, 271, 325—331, 1997.
Hill, K. and Hayward, A.: Structural constraints on the Tertiary plate
tectonic evolution of Italy, Mar. Petrol. Geol., 5, 2–16, 1988.
Housen, B. A. Richter, C., and van der, Pluijm, B., A.: Composite magnetic
anisotropy fabrics: experiments, numerical models, and implications for the
quantification of rock fabrics, Tectonophysics, 220, 1–12, 1993.
Hreinsdóttir, S. and Bennett, R. A.: Active aseismic creep on the Alto
Tiberina low-angle normal fault, Italy, Geology, 37, 683–686,
https://doi.org/10.1130/G30194A.1, 2009
Hrouda, F.: Magnetic Anisotropy of Rocks and Its Application in Geology and
Geophysics,
Geophys. Surv., 5, 37–82, https://doi.org/10.1007/BF01450244, 1982.
Jelinek, V.: Characterization of the magnetic fabric of rocks,
Tectonophysics, 79, 63–67, 1981.
Kissel, C., Barrier, E., Laj, C., and Lee, T. Q.: Magnetic fabric in “undeormed”
marine clays from compressional zones, Tectonics, 5, 769–781, https://doi.org/10.1029/TC005i005p00769, 1986.
Kligfield, R., Owens, W. H., and Lowrie, W.: Magnetic susceptibility
anisotropy, strain and progressive deformation in Permian sediments from the
Maritime Alps (France), Earth Pl. Sc. Lett., 55, 181–189, https://doi.org/10.1016/0012-821X(81)90097-2, 1981.
Kodama, K. P. and Sun, W.-W.: Magnetic anisotropy as a correction for
compaction-caused paleomagnetic
inclination shallowing, Geophys. J. Int., 111, 465–469, 1992.
Koulali, A., Ouazar, D., Tahayt, A., King, R. W., Vernant, P., Reilinger, R.
E., McClusky, S.,
Mourabit, T., Davila, J. M., and Amraoui, N.: New GPS constraints on active
deformation along the Africa-Iberia plate boundary, Earth Pl. Sc. Lett.,
308, 211–217, 2011.
Larrasoaña, J. C., Pueyo, E. L., and Parés, J. M.: An integrated
AMS, structural, paleo- and rock-magnetic study of the Eocene marine marls
from the Jaca-Pamplona basin (Pyrenees, N Spain); new insights into the
timing of magnetic fabric acquisition in weakly deformed mudrocks, Magnetic
Fabric: Methods and Applications, edited by: Martín-Hernández, F.,
Lüneburg, C. M., Aubourg, C., and Jackson, M., Geol. Soc. Sp. Publ.,
London, 238, 127–143, 2004.
Latta, D. K. and Anastasio, D. J.: Multiple scales of mechanical
stratification and décollement fold kinematics, Sierra Madre Oriental
foreland, northeast Mexico, Jof. Struct. Geol., 29, 1241–1255, 2007.
Lavecchia, G., Brozzetti, F., Barchi, M., Menichetti, M., and Keller, J.V.:.
Seismotectonic zoning in east-central Italy deduced from an analysis of the
Neogene to present deformations and related stress fields, Geol. Soc. Am. Bull.,
106, 1107–1120, 1994.
Lavecchia, G., Adinolfi, G. M., Nardis, R., Ferrarini, F., Cirillo, D.,
Brozzetti, F., De Matteis, R., Festa, G., and Zollo, A.: Multidisciplinary
inferences on a newly recognized active east dipping extensional system in
Central Italy, Terra Nova, 29, 77–89, 2016.
Le Pichon, X. and Angelier, J.: The Hellenic arc and trench system: a key to
the neotectonic
evolution of the eastern Mediterranean area, Tectonophysics, 60, 1–42, 1979.
Le Pichon, X., Pautot, G., Auzende, J. M., and Olivet, J. L.: La Mediterranee
occidentale depuis l'oligocene; scheme d'evolution: The western
Mediterranean since the Oligocene; evolutionary scheme, Earth Pl. Sc.
Lett., 13, 145–152, 1971.
Lonergan, L.: Timing and kinematics of deformation in the Malaguide Complex,
internal zone of the Betic Cordillera, southeast Spain, Tectonics, 12,
460–476, https://doi.org/10.1029/92TC02507, 1993.
Lonergan, L. and White, N.: Origin of the Betic-Rif Mountain Belt,
Tectonics, 16, 504–22,
https://doi.org/10.1029/96TC03937, 1997.
Magnetics Information Consortium: PmagPy Cookbook, available at: https://earthref.org/PmagPy/cookbook/ (last access: 18 May 2021), 2020.
Mancilla, FdL., Stich, D., Berrocoso, M., Martin, R., Morales, J.,
Fernandez-Ros, A., Paez, R.,
and Perez-Pena, A.: Delamination in the Betic Range: Deep structure,
seismicity, and GPS motion, Geology, 41, 307–310, 2013.
Martín-Hernandez, F. and Hirt, A. M.: Separation of ferrimagnetic and paramagnetic anisotropies using a high-field torsion magnetometer, Tectonophysics, 337, 209-221, 2001.
Martín-Hernandez, F. and Hirt, A. M.: The anisotropy of magnetic susceptibility in biotite, muscovite and chlorite single crystals, Tectonophysics, 367, 13–28, 2003.
Martín-Hernández, F. and Ferré, E. C.: Separation of
paramagnetic and ferrimagnetic anisotropies. A review, J. Geophys. Res.-Sol. Ea.,
112, https://doi.org/10.1029/2006JB004340, 2007.
Martínez-Martínez, J. M., Booth-Rea, G., Azañón, J. M.,
and Torcal, F.: Active transfer fault
zone linking a segmented extensional system (Betics, Southern Spain):
Insight into heterogeneous extension Driven by Edge Delamination,
Tectonophysics, 422, 159–73, https://doi.org/10.1016/j.tecto.2006.06.001, 2006.
Mattei, M., Sagnotti, L., Faccenna, C., and Funiciello, R.: Magnetic fabric
of weakly deformed clay-rich sediments in the Italian peninsula:
Relationship with compressional and extensional tectonics, Tectonophysics,
271, 107–122, 1997.
Mattei, M., D'Agostino, N., Zananiri, I., Kondopoulou, D., Pavlides, S., and
Spatharas, V.: Tectonic evolution of fault-bounded continental blocks:
Comparison of paleomagnetic and GPS data in the Corinth and Megara basins
(Greece), Solid Earth, 109, B02106, https://doi.org/10.1029/2003JB002506, 2004.
Mazzoli, S. and Helman, M.: Neogene patterns of relative plate motion for
Africa-Europe:
some implications for recent central Mediterranean tectonics, Geol. Rund, 83,
464–68, 1994.
Milia, A., Turco, E., Pierantoni, P. P., and Schettino, A.: Four-dimensional
tectono- stratigraphic evolution of the southeastern Peri-Tyrrhenian Basins
(Margin of Calabria, Italy), Tectonophysics, 476, 41–56,
https://doi.org/10.1016/j.tecto.2009.02.030, 2009.
Mitra, G. and Sussman, A. J.: Structural evolution of connecting splay
duplexes and their
implications for critical taper; an example based on geometry and kinematics
of the Canyon Range culmination, Sevier Belt, central Utah, J. Struct. Geol.,
19, 503–521, 1997.
Papazachos, B. C., Karakostas, V. G., Papazachos, C. B., and Scordilis, E.
M.: The geometry of the Wadati-Benioff zone and lithospheric kinematics in
the Hellenic arc, Tectonophysics, 319, 275–300, 2000.
Parés, J. M.: How deformed are weakly deformed mudrocks? Insights from
magnetic anisotropy, Geol. Soc. Sp., 238, 191–203, 2004.
Parés, J. M. and Dinarès, J.: Magnetic fabric in two sedimentary
rock types from the Southern Pyrenees, J. Geomagn. Geoelectr., 45, 193–205, https://doi.org/10.5636/jgg.45.193, 1993.
Parés, J. M. and van der Pluijm, B. A.: Evaluating magnetic lineations
(AMS) in deformed rocks, Tectonophysics, 350, 283–298, 2002.
Parés, J. M., van der Pluijm, B., and Dinares-Turell, J.: Evolution of
magnetic fabrics during incipient deformation of mudrocks (Pyrenees,
northern Spain), Tectonophysics, 307, 1–14, https://doi.org/10.1016/S0040-1951(99)00115-8, 1999.
Parés, J. M., Hassold, N. J. C., Rea, D. K., and van der Pluijm, B. A.:
Paleocurrent directions from paleomagnetic reorientation of magnetic fabrics
in deep-sea sediments at the Antarctic Peninsula Pacific margin (ODP Sites
1095, 1101), Mar. Geol., 242, 261–269, 2007.
Peacock, C. P., Tavernelli, E., and Anderson, M. W.: Interplay between
stress permutations and overpressure to cause strike-slip faulting during
tectonic inversion, Terra Nova, 29, 61–70, https://doi.org/10.1111/ter.12249, 2017.
Pialli, G., Barchi, M., and Minelli, G.: Results of the CROP 03 deep
seismic reflection profile, Mem. Soc. Geol. Ital., 52, 647 pp., 1998.
Picotti, V. and Pazzaglia, F. J.: A new active tectonic model for the
construction of the Northern Apennines mountain front near Bologna (Italy),
J. Geophys. Res., 113, B08412, https://doi.org/10.1029/2007JB005307, 2008.
Platt, J. P., Anczkiewicz, R., Soto, J. I., and Kelley, S. P., and Thirlwall, M.:
Early Miocene continental subduction and rapid exhumation in the western
Mediterranean, Geology, 34, 981–984, 2006.
Platt, J. P., Behr, W. M., Johanesen, K., and Williams, J. R.: The Betic-Rif
Arc and its orogenic hinterland: a review, Annu. Rev. Earth Pl. Sc., 41,
313–357, https://doi.org/10.1146/annurev-earth-050212-123951, 2013.
Pondrelli, S., Salimbeni, S., Ekstrom, G., Morelli, A., Gasperini, P., and
Vannucci, G.: The Italian CMT dataset from 1977 to the present, Phys. Earth
Planet Int., 159, 286–303, https://doi.org/10.1016/j.pepi.2006.07.008, 2006.
Porreca, M. and Mattei, M.: AMS fabric and tectonic evolution of Quaternary
intramontane extensional basins in the Picentini Mountains (southern
Apennines, Italy), Int. J. Earth Sci., 101, 863–877, 2012.
Porreca, M., Minelli, G., Ercoli, M., Brobia A., Mancinelli, P., Cruciani,
F., Giorgetti, C., Carboni, F., Mirabella, F., Cavinato, G., Cannata, A.,
Pauselli, C., and Barchi, M. R.: Seismic Reflection Profiles and Subsurface
Geologyof the Area Interested by the 2016–2017 Earthquake Sequence (Central
Italy), Tectonics, 1116–1137, https://doi.org/10.1002/2017TC004915, 2018.
Ramsay, J. G. and Huber, M. I.: The Techniques of Modern Structural Geology,
Vol. 1, Academic Press, San Diego, 1984.
Roberts, G. P. and Michetti, A. M.: Spatial and temporal variations in growth
rates along active normal fault systems: an example from the Lazio-Abruzzo
Apennines, central Italy, J. Struct. Geol., 26, 339–376, 2004.
Rosenbaum, G., Lister, G. S., and Duboz, C.: Reconstruction of the Tectonic
Evolution of the Western Mediterranean since the Oligocene, Tectonophysics,
359, 117–129, 2002.
Rovida, A., Locati, M., and Camassi, R.: The Italian earthquake catalogue
CPTI15, B. Earthq. Eng., 18, 2953–2984, 2020.
Sagnotti, L. and Speranza, S.: Magnetic fabrics analysis of the Plio-
Pleistocene clayey units of the Sant'Arcangelo basin, Southern
Italy, Phys. Earth Planet. Inter., 77, 165–176, https://doi.org/10.1016/0031-9201(93)90096-R, 1993.
Sagnotti, L., Speranza, F., Winkler, A., Mattei., and Funiciello, R.:
Magnetic fabric of clay sediments from the external northern Apennines
(Italy), Phys. Earth Planet. Int., 105, 73–93, 1998.
Sanz De Galdeano, C.: Geologic evolution of the Betic Cordilleras in the
Western Mediterranean, Miocene to the present, Tectonophysics, 172, 107–119,
https://doi.org/10.1016/0040-1951(90)90062-D, 1990.
Sanz De Galdeano, C. and Vera, J. A.: Stratigraphic record and
palaeogeographical context of the Neogene basins in the Betic Cordillera,
Spain. Basin Res., 4, 21–36, 1992.
Schwehr, K., Tauxe, L., Driscoll, N., and Lee, H.: Detecting compaction
disequilibrium with anisotropy of magnetic susceptibility, Geochem. Geophy.
Geosy., 7, Q11002, https://doi.org/10.1029/2006GC001378, 2006.
Soto, J. I., Fernandez-Ibanez, F., Fernandez, M., and Garcia-Casco, A.:
Thermal structure of the crust in the Gilbralter Arc: Influence on active
tectonicsin the western Mediterranean, Geochem. Geophy. Geosy., 9, 11,
https://doi.org/10.1029/2008GC002061, 2008.
Soto, R., Larrasoaña, J. C., Arlegui, L. E., Beamud, E., Oliva-Urcia, B.,
and Simón, J. L.: Reliability of magnetic fabrics of weakly deformed
mudrocks as a palaeostress indicator in compressive settings, J. Struct. Geol.,
31, 512–522, 2009.
Stich, D., Serpelloni, E., Mancilla, F. d. L., and Morales, J.: Kinematics
of the Iberia – Maghreb plate contact from seismic moment tensors and GPS
observations, Tectonophysics, 426, 295–317,
https://doi.org/10.1016/j.tecto.2006.08.004, 2006.
Tarling, D. H. and Hrouda, F.: The Magnetic Anisotropy of Rocks, Chapman and
Hall, London, UK, 1993.
Tauxe, L., Shaar, R. Jonestrask, L., Swanson-Hysell, N. L., Minnett, R.,
Koppers, A. A. P., Constable, C., G., Jarboe, N., Gaastra, K., and Fairchild,
L.: PmagPy: Software package for paleomagnetic data analysis and a bridge to
the Magnetics Information Consortium (MagIC) Database, Geochem.
Geophy. Geosy., 17, 2450–2463,
https://doi.org/10.1002/2016GC006307, 2016.
Tarquini, S., Vinci, S., Favalli, M., Doumaz, F., Fornaciai, A., and Nannipieri, L.:
Release of a 10-m-resolution DEM for the Italian territory: Comparison with
global-coverage DEMs and anaglyph-mode exploration via the web, Comp.
Geosci., 38, 168–170, https://doi.org/10.1016/j.cageo.2011.04.018, 2012.
Wegmann, K. W. and Pazzaglia, F. J.: Late Quaternary fluvial terraces of the
Romagna and
Marche Apennines, Italy: Climatic, lithologic, and tectonic controls on
terrace genesis in an active orogen, Quaternary Sci. Rev., 28, 137–165, 2009.
Weill, A. B. and Yonkee, A.: Anisotropy of magnetic susceptibility in
weakly deformed red beds from the Wyoming salient, Sevier thrust belt:
Relations to layer-parallel shortening and orogenic curvature, Lithosphere,
1, 235–256, https://doi.org/10.1130/L42.1, 2009.
Valoroso, L., Chiaraluce, L., Di Stefano, R., and Monachesi, G.: Mixed-mode
slip behavior of the Alto Tiberina low-angle normal fault system (Northern
Apennines, Italy) through high-resolution earthquake locations and repeating
events, J. Geophys. Res.-Sol. Ea., 122, 10220–10240, 2017.
Xiao, H.-B., Dahlen, F. A., and Suppe, J.: Mechanics of extensional wedges, J.
Geophys. Res., 96, 10301–10318, 1991.
Short summary
The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to interpret deforming mountain belts. In both the Betics, Spain, and Apennines, Italy, weak but well-organized AMS fabrics were recovered from young unconsolidated and unburied rocks that could not be analyzed with more traditional methods. Collectively, these studies demonstrate the novel ways that AMS can be combined with other data to resolve earthquake hazards in space and time.
The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to interpret...