Articles | Volume 12, issue 6
https://doi.org/10.5194/se-12-1411-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1411-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effect of confinement due to COVID-19 on seismic noise in Mexico
Xyoli Pérez-Campos
CORRESPONDING AUTHOR
Instituto de Geofísica, Universidad Nacional Autónoma de
México, Mexico City, 04510, Mexico
Víctor H. Espíndola
Instituto de Geofísica, Universidad Nacional Autónoma de
México, Mexico City, 04510, Mexico
Daniel González-Ávila
Instituto de Geofísica, Universidad Nacional Autónoma de
México, Mexico City, 04510, Mexico
Betty Zanolli Fabila
Instituto de Geofísica, Universidad Nacional Autónoma de
México, Mexico City, 04510, Mexico
Víctor H. Márquez-Ramírez
Centro de Geociencias, Universidad Nacional Autónoma de
México, Juriquilla, Querétaro, 76230, 04510, Mexico
Raphael S. M. De Plaen
Centro de Geociencias, Universidad Nacional Autónoma de
México, Juriquilla, Querétaro, 76230, 04510, Mexico
Juan Carlos Montalvo-Arrieta
Facultad de Ciencias de la Tierra, Universidad Autónoma de Nuevo
León, Linares, Nuevo León, 67700, Mexico
Luis Quintanar
Instituto de Geofísica, Universidad Nacional Autónoma de
México, Mexico City, 04510, Mexico
Related authors
No articles found.
Alfio Marco Borzì, Vittorio Minio, Raphael De Plaen, Thomas Lecocq, Salvatore Alparone, Salvatore Aronica, Flavio Cannavò, Fulvio Capodici, Giuseppe Ciraolo, Sebastiano D'Amico, Danilo Contrafatto, Giuseppe Di Grazia, Ignazio Fontana, Giovanni Giacalone, Graziano Larocca, Carlo Lo Re, Giorgio Manno, Gabriele Nardone, Arianna Orasi, Marco Picone, Giovanni Scicchitano, and Andrea Cannata
Ocean Sci., 20, 1–20, https://doi.org/10.5194/os-20-1-2024, https://doi.org/10.5194/os-20-1-2024, 2024
Short summary
Short summary
In this work, we study a Mediterranean cyclone that occurred in February 2023 and its relationship with a particular seismic signal called microseism. By integrating the data recorded by seismic stations, satellites, HF radar and wavemeter buoy we are able to obtain information about this event. We show how an innovative monitoring system of the Mediterranean cyclones can be designed by integrating microseism information with other techniques routinely used to study meteorological phenomena.
Laura A. Ermert, Enrique Cabral-Cano, Estelle Chaussard, Darío Solano-Rojas, Luis Quintanar, Diana Morales Padilla, Enrique A. Fernández-Torres, and Marine A. Denolle
Solid Earth, 14, 529–549, https://doi.org/10.5194/se-14-529-2023, https://doi.org/10.5194/se-14-529-2023, 2023
Short summary
Short summary
Mexico City is built on a unique ground containing the clay-rich sediments of the ancient lake Texcoco. Continuous imperceptible shaking of these deposits by city traffic and other sources allows us to monitor changes in the subsurface seismic wave speed. Wave speed varies seasonally, likely due to temperature and rain effects; it temporarily drops after large earthquakes then starts to recover. Throughout the studied period, it increased on average, which may be related to soil compaction.
Velio Coviello, Lucia Capra, Gianluca Norini, Norma Dávila, Dolors Ferrés, Víctor Hugo Márquez-Ramírez, and Eduard Pico
Earth Surf. Dynam., 9, 393–412, https://doi.org/10.5194/esurf-9-393-2021, https://doi.org/10.5194/esurf-9-393-2021, 2021
Short summary
Short summary
The Puebla–Morelos earthquake (19 September 2017) was the most damaging event in central Mexico since 1985. The seismic shaking produced hundreds of shallow landslides on the slopes of Popocatépetl Volcano. The larger landslides transformed into large debris flows that travelled for kilometers. We describe this exceptional mass wasting cascade and its predisposing factors, which have important implications for both the evolution of the volcanic edifice and hazard assessment.
Raphael S. M. De Plaen, Víctor Hugo Márquez-Ramírez, Xyoli Pérez-Campos, F. Ramón Zuñiga, Quetzalcoatl Rodríguez-Pérez, Juan Martín Gómez González, and Lucia Capra
Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, https://doi.org/10.5194/se-12-713-2021, 2021
Short summary
Short summary
COVID-19 pandemic lockdowns in countries with a dominant informal economy have been a greater challenge than in other places. This motivated the monitoring of the mobility of populations with seismic noise throughout the various phases of lockdown and in the city of Querétaro (central Mexico). Our results emphasize the benefit of densifying urban seismic networks, even with low-cost instruments, to observe variations in mobility at the city scale over exclusively relying on mobile technology.
Andrea Cannata, Flavio Cannavò, Giuseppe Di Grazia, Marco Aliotta, Carmelo Cassisi, Raphael S. M. De Plaen, Stefano Gresta, Thomas Lecocq, Placido Montalto, and Mariangela Sciotto
Solid Earth, 12, 299–317, https://doi.org/10.5194/se-12-299-2021, https://doi.org/10.5194/se-12-299-2021, 2021
Short summary
Short summary
During the COVID-19 pandemic, most countries put in place social interventions, aimed at restricting human mobility, which caused a decrease in the seismic noise, generated by human activities and called anthropogenic seismic noise. In densely populated eastern Sicily, we observed a decrease in the seismic noise amplitude reaching 50 %. We found similarities between the temporal patterns of seismic noise and human mobility, as quantified by mobile-phone-derived data and ship traffic data.
Quetzalcoatl Rodríguez-Pérez, Víctor Hugo Márquez-Ramírez, and Francisco Ramón Zúñiga
Solid Earth, 11, 791–806, https://doi.org/10.5194/se-11-791-2020, https://doi.org/10.5194/se-11-791-2020, 2020
Short summary
Short summary
We analyzed reported oceanic earthquakes in Mexico. We used data from different agencies. By analyzing the occurrence of earthquakes, we can extract relevant information such as the level of seismic activity, the size of the earthquakes, hypocenter depths, etc. We also studied the focal mechanisms to classify the different types of earthquakes and calculated the stress in the region. The results will be useful to understand the physics of oceanic earthquakes.
Marisol Monterrubio-Velasco, F. Ramón Zúñiga, José Carlos Carrasco-Jiménez, Víctor Márquez-Ramírez, and Josep de la Puente
Solid Earth, 10, 1519–1540, https://doi.org/10.5194/se-10-1519-2019, https://doi.org/10.5194/se-10-1519-2019, 2019
Short summary
Short summary
Earthquake aftershocks display spatiotemporal correlations arising from their self-organized critical behavior. Stochastical models such as the fiber bundle (FBM) permit the use of an analog of the physical model that produces a statistical behavior with many similarities to real series. In this work, a new model based on FBM that includes geometrical faults systems is proposed. Our analysis focuses on aftershock statistics, and as a study case we modeled the Northridge sequence.
Lucia Capra, Velio Coviello, Lorenzo Borselli, Víctor-Hugo Márquez-Ramírez, and Raul Arámbula-Mendoza
Nat. Hazards Earth Syst. Sci., 18, 781–794, https://doi.org/10.5194/nhess-18-781-2018, https://doi.org/10.5194/nhess-18-781-2018, 2018
Short summary
Short summary
The Volcán de Colima (Mexico) is commonly hit by hurricanes that form over the Pacific Ocean, triggering multiple lahars along main ravines on the volcano. Rainfall-runoff simulations were compared with the arrival time of main lahar fronts, showing that flow pulses can be correlated with rainfall peak intensity and watershed discharge, depending on the watershed area and shape. This outcome can be used to implement an early warning system based on the monitoring of a hydro-meteorological event.
Cited articles
Alyamkin, S. A. and Eremenko, S. I.: Pedestrian Detection Algorithms Based
on an Analysis of the Autocorrelation Function of a Seismic Signal,
Optoelectr. Instrum. Data Process, 47, 124–129,
https://doi.org/10.3103/S8756699011020038, 2011.
Boese, C. M., Wotherspoon, L., Alvarez, M., and Malin, P.: Analysis of
anthropogenic and natural noise from multilevel borehole seismometers in an
urban environment, Auckland, New Zealand, Bull. Seismol. Soc. Am., 105,
285–299, 2015.
Cannata, A., Cannavò, F., Di Grazia, G., Aliotta, M., Cassisi, C., De Plaen, R. S. M., Gresta, S., Lecocq, T., Montalto, P., and Sciotto, M.: Seismic evidence of the COVID-19 lockdown measures: a case study from eastern Sicily (Italy), Solid Earth, 12, 299–317, https://doi.org/10.5194/se-12-299-2021, 2021.
CEDRUS (Centro de Estudios de Desarrollo Regional y Urbano), con base en
INEGI: Censo General de Población y Vivienda 2010, Encuesta Intercensal
2015 y Marco Geoestadístico Nacional 2017, 2019.
De Plaen, R. S. M., Márquez-Ramírez, V. H., Pérez-Campos, X., Zuñiga, F. R., Rodríguez-Pérez, Q., Gómez González, J. M., and Capra, L.: Seismic signature of the COVID-19 lockdown at the city scale: a case study with low-cost seismometers in the city of Querétaro, Mexico, Solid Earth, 12, 713–724, https://doi.org/10.5194/se-12-713-2021, 2021.
Diaz, J., Ruiz, M., and Jara, J.-A.: Seismic monitoring of urban activity in Barcelona during the COVID-19 lockdown, Solid Earth, 12, 725–739, https://doi.org/10.5194/se-12-725-2021, 2021.
Goldstein, P., Dodge, D., Firpo, M., and Minner, L.: SAC2000: Signal processing
and analysis tools for seismologists and engineers, Invited contribution to
“The IASPEI International Handbook of Earthquake and Engineering
Seismology”, edited by: Lee, W. H. K., Kanamori, H., Jennings, P. C., and
Kisslinger, C., Academic Press, London, 2003.
Green, D. N., Bastow, I. D., Dashwood, B., and Nippress, S. E.:
Characterizing Broadband Seismic Noise in Central London, Seismol. Res.
Lett., 88, 113–124, https://doi.org/10.1785/0220160128, 2017.
Groos, J. C. and Ritter, J. R. R.: Time domain classification and
quantification of seismic noise in an urban environment, Geophys. J. Int.,
179, 1213–1231, 2009.
INEGI: Encuesta Nacional de la Dinámica Demográfica, available at: https://www.inegi.org.mx/programas/enadid/2014/
(last access: 14 November 2020), 2014.
Lecocq, T., Hicks, S. P., Van Noten, K., van Wijk, K., Koelemeijer, P., De
Plaen, R. S., Massin, F., Hillers, G., Anthony, R. E., Apoloner, M. T., and
Arroyo-Solórzano, M.: Global quieting of high-frequency seismic noise
due to COVID-19 pandemic lockdown measures, Science, 369, 1338–1343,
https://doi.org/10.1126/science.abd2438, 2020.
Long, L. T.: Investigation of seismic road noise, Georgia Institute of
Technology, Final report, Project No. A-1357, 1971.
McNamara, D. E. and Buland, R. P.: Ambient noise levels in the continental
United States, Bull. Seismol. Soc. Am., 94, 1517–1527, 2004.
Martínez-Domínguez, M. and Mora-Rivera, J.: Internet adoption and
usage patterns in rural Mexico, Technol. Soc., 60,
101226, https://doi.org/10.1016/j.techsoc.2019.101226, 2019.
Montalvo-Arrieta, J. C., Sosa-Ramírez, R. L., and Pérez-Campos, X.:
Evaluation of macroseismic intensities in Mexico from recent earthquakes
using ?`Sintió un sismo? (Did You Feel It?), Geofísica
Int., 56, 27–36,
https://doi.org/10.22201/igeof.00167169p.2017.56.1.1732, 2017.
Montalvo-Arrieta, J. C., Pérez-Campos, X., Ramirez-Guzman, L.,
Sosa-Ramírez, R. L., Contreras Ruiz-Esparza, M., and Leonardo-Suárez,
M.: Macroseismic Intensities from the 19 September 2017 MW 7.1
Puebla–Morelos Earthquake, Seismol. Res. Lett., 90, 2142–2153,
https://doi.org/10.1785/0220190145, 2019.
Ojeda, J. and Ruiz, S.: Seismic noise variability as an indicator of urban mobility during the COVID-19 pandemic in the Santiago metropolitan region, Chile, Solid Earth, 12, 1075–1085, https://doi.org/10.5194/se-12-1075-2021, 2021.
Pérez-Campos, X., Espíndola, V. H., Pérez, J., Estrada, J. A.,
Cárdenas Monroy, C., Bello, D., González-López, A., González
Ávila, D., Contreras Ruiz Esparza, M. G., Maldonado, R., Tan, Y.,
Rodríguez Rasilla, I., Vela Rosas, M. A., Cruz, J. L., Cárdenas, A.,
Navarro Estrada, F., Hurtado, A., Mendoza Carvajal, A. J., Montoya-Quintanar,
E., and Pérez-Velázquez, M. A.: The Mexican National Seismological
Service: An overview, Seismol. Res. Lett., 89, 318–323, https://doi.org/10.1785/0220170186, 2018.
Pérez‐Campos, X., Espíndola, V. H., Pérez, J., Estrada, J. A., Cárdenas Monroy, C., Zanolli, B. Fabila, Bello, D., González‐López, A., González Ávila, D., Maldonado, R., Montoya‐Quintanar, E., Vite, R., Martínez, L. D., Tan, Y., Rodríguez Rasilla, I., Vela Rosas, M. Á., Cruz, J. L., Cárdenas, A., Navarro Estrada, F., Hurtado, A., and Mendoza Carvajal, A. J.: Servicio Sismológico Nacional, México, Summary of the Bulletin of the International Sesimological Centre, 53, 29–40, https://doi.org/10.31905/SZ7RYBTM, 2019.
Pérez-Campos, X., Espíndola, V. H., Pérez, J., Estrada, A.,
Cárdenas Monroy, C., Bello, D., González-López, A., González
Ávila, D., Maldonado, R., Montoya-Quintanar, E., Ramírez Ruiz, J.
E., Rodríguez Rasilla, I., Tan, Y., Vela Rosas, M. A., Sosa, M.Á.,
Cruz, J. L., Cárdenas, A., Navarro Estrada, F., Hurtado, A., Mendoza
Carvajal, A. J., Zanolli Fabila, B., Hurtado Meléndez, H. M.,
Valdés-González, C. M., Ramirez-Guzman, L., and Montalvo-Arrieta, J. C.:
Response of the Mexican National Seismological Service to significant
earthquakes, under normal and COVID-19 pandemic circumstances, Seismol. Res.
Lett., 92, 93–101, https://doi.org/10.1785/0220200301, 2021.
Peterson, J. R.: Observations and modeling of seismic background noise (No.
93-322), US Geological Survey, 1993.
Quintanar, L., Cárdenas-Ramírez, A., Bello-Segura, D. I.,
Espíndola, V. H., Pérez-Santana, J. A., Cárdenas-Monroy, C.,
Carmona‐Gallegos, A. L., and Rodríguez‐Rasilla, I.: A seismic network for the Valley of
Mexico: Present status and perspectives, Seismol. Res. Lett., 89,
356–362, 2018.
Secretaría del Trabajo y Previsión Social: México,
Información Laboral, available at: http://www.stps.gob.mx/gobmx/estadisticas/pdf/perfiles/perfil nacional.pdf
(last access: 14 November 2020), October 2020.
Secretaría de Salud: Lineamiento para la estimación de riesgo del
semáforo por regiones COVID-19, versión 5.1, 14 August 2020, available at:
https://coronavirus.gob.mx/wp-content/uploads/2020/10/SemaforoCOVID_Metodo.pdf, last access: 25 November 2020a.
Secretaría de Salud: Dirección General de Epidemiología, Base de datos abiertos COVID-19, available at: https://datos.covid-19.conacyt.mx/#DOView, last access: 14 November 2020b.
Singh, S. K., Quintanar-Robles, L., Arroyo, D., Cruz-Atienza, V. M.,
Espíndola, V. H., Bello-Segura, D. I., and Ordaz, M.: Lessons from a
small local earthquake (Mw 3.2) that produced the highest acceleration
ever recorded in Mexico City, Seismol. Res. Lett., 91, 3391–3406, https://doi.org/10.1785/0220200123, 2020.
SSN (Servicio Sismológico Nacional): Instituto de Geofísica,
Universidad Nacional Autónoma de México, México: Catálogo de
sismos, available at: http://www2.ssn.unam.mx:8080/catalogo/ (last access: 25 November 2020) and https://doi.org/10.21766/SSNMX/EC/MX, 2020a.
SSN (Servicio Sismológico Nacional): Instituto de Geofísica,
Universidad Nacional Autónoma de México, México: Secuencia
sísmica del 5 de enero al 10 de marzo de 2020, Michoacán (M 4.1),
available at: http://www.ssn.unam.mx (last access: 25 November
2020) and https://doi.org/10.21766/SSNMX/SN/MX, 2020b.
UNAM: Agenda Estadística, available at: https://www.planeacion.unam.mx/Agenda/2020/disco/ (last access: 25
November 2020), 2020.
van Wijk, K., Chamberlain, C. J., Lecocq, T., and Van Noten, K.: Seismic monitoring of the Auckland Volcanic Field during New Zealand's COVID-19 lockdown, Solid Earth, 12, 363–373, https://doi.org/10.5194/se-12-363-2021, 2021.
Wessel, P., Smith, W. H., Scharroo, R., Luis, J., and Wobbe, F.: Generic
mapping tools: improved version released, Eos, Transactions American
Geophysical Union, 94, 409–410, 2013.
Yoon, C. E., O'Reilly, O., Bergen, K. J., and Beroza, G. C.: Earthquake
detection through computationally efficient similarity search, Sci.
Adv., 1, e1501057, https://doi.org/10.1126/sciadv.1501057, 2015.
Short summary
Mexican seismic stations witnessed a reduction in noise level as a result of the COVID-19 lockdown strategies. The largest drop was observed in Hermosillo, which is also the city with the fastest noise-level recovery and a quick increase in confirmed COVID-19 cases. Since 1 June 2020, a traffic-light system has modulated the re-opening of economic activities for each state, which is reflected in noise levels. Noise reduction has allowed the identification and perception of smaller earthquakes.
Mexican seismic stations witnessed a reduction in noise level as a result of the COVID-19...