Articles | Volume 12, issue 7
https://doi.org/10.5194/se-12-1635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1635-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Teleseismic P waves at the AlpArray seismic network: wave fronts, absolute travel times and travel-time residuals
Institut für Geologie, Mineralogie & Geophysik, Ruhr-Universität Bochum, Bochum, Germany
Wolfgang Friederich
CORRESPONDING AUTHOR
Institut für Geologie, Mineralogie & Geophysik, Ruhr-Universität Bochum, Bochum, Germany
For further information regarding the team, please visit the link which appears at the end of the paper.
Related authors
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Mark R. Handy, Stefan M. Schmid, Marcel Paffrath, Wolfgang Friederich, and the AlpArray Working Group
Solid Earth, 12, 2633–2669, https://doi.org/10.5194/se-12-2633-2021, https://doi.org/10.5194/se-12-2633-2021, 2021
Short summary
Short summary
New images from the multi-national AlpArray experiment illuminate the Alps from below. They indicate thick European mantle descending beneath the Alps and forming blobs that are mostly detached from the Alps above. In contrast, the Adriatic mantle in the Alps is much thinner. This difference helps explain the rugged mountains and the abundance of subducted and exhumed units at the core of the Alps. The blobs are stretched remnants of old ocean and its margins that reach down to at least 410 km.
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Marcel Tesch, Johannes Stampa, Thomas Meier, Edi Kissling, György Hetényi, Wolfgang Friederich, Michael Weber, Ben Heit, and the AlpArray Working Group
Solid Earth Discuss., https://doi.org/10.5194/se-2020-122, https://doi.org/10.5194/se-2020-122, 2020
Publication in SE not foreseen
F. Sodoudi, A. Brüstle, T. Meier, R. Kind, W. Friederich, and EGELADOS working group
Solid Earth, 6, 135–151, https://doi.org/10.5194/se-6-135-2015, https://doi.org/10.5194/se-6-135-2015, 2015
A. Brüstle, W. Friederich, T. Meier, and C. Gross
Solid Earth, 5, 1027–1044, https://doi.org/10.5194/se-5-1027-2014, https://doi.org/10.5194/se-5-1027-2014, 2014
W. Friederich, A. Brüstle, L. Küperkoch, T. Meier, S. Lamara, and Egelados Working Group
Solid Earth, 5, 275–297, https://doi.org/10.5194/se-5-275-2014, https://doi.org/10.5194/se-5-275-2014, 2014
W. Friederich, L. Lambrecht, B. Stöckhert, S. Wassmann, and C. Moos
Solid Earth, 5, 141–159, https://doi.org/10.5194/se-5-141-2014, https://doi.org/10.5194/se-5-141-2014, 2014
S. Wehling-Benatelli, D. Becker, M. Bischoff, W. Friederich, and T. Meier
Solid Earth, 4, 405–422, https://doi.org/10.5194/se-4-405-2013, https://doi.org/10.5194/se-4-405-2013, 2013
Related subject area
Subject area: Core and mantle structure and dynamics | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Seismology
Highlights on mantle deformation beneath the Western Alps with seismic anisotropy using CIFALPS2 data
Imaging structure and geometry of slabs in the greater Alpine area – a P-wave travel-time tomography using AlpArray Seismic Network data
Observation and explanation of spurious seismic signals emerging in teleseismic noise correlations
Permian plume beneath Tarim from receiver functions
Silvia Pondrelli, Simone Salimbeni, Judith M. Confal, Marco G. Malusà, Anne Paul, Stephane Guillot, Stefano Solarino, Elena Eva, Coralie Aubert, and Liang Zhao
Solid Earth, 15, 827–835, https://doi.org/10.5194/se-15-827-2024, https://doi.org/10.5194/se-15-827-2024, 2024
Short summary
Short summary
We analyse and interpret seismic anisotropy from CIFALPS2 data that fill the gaps in the Western Alps and support a new hypothesis. Instead of a continuous mantle flow parallel to the belt, here we find a N–S mantle deformation pattern that merges first with a mantle deformed by slab steepening beneath the Central Alps and then merges with an asthenospheric flow sourced beneath the Massif Central. This new sketch supports the extinction of slab retreat beneath the Western Alps.
Marcel Paffrath, Wolfgang Friederich, Stefan M. Schmid, Mark R. Handy, and the AlpArray and AlpArray-Swath D Working Group
Solid Earth, 12, 2671–2702, https://doi.org/10.5194/se-12-2671-2021, https://doi.org/10.5194/se-12-2671-2021, 2021
Short summary
Short summary
The Alpine mountain belt was formed by the collision of the Eurasian and African plates in the geological past, during which parts of the colliding plates sank into the earth's mantle. Using seismological data from distant earthquakes recorded by the AlpArray Seismic Network, we have derived an image of the current location of these subducted parts in the earth's mantle. Their quantity and spatial distribution is key information needed to understand how the Alpine orogen was formed.
Lei Li, Pierre Boué, and Michel Campillo
Solid Earth, 11, 173–184, https://doi.org/10.5194/se-11-173-2020, https://doi.org/10.5194/se-11-173-2020, 2020
Lev Vinnik, Yangfan Deng, Grigoriy Kosarev, Sergey Oreshin, and Larissa Makeyeva
Solid Earth, 9, 1179–1185, https://doi.org/10.5194/se-9-1179-2018, https://doi.org/10.5194/se-9-1179-2018, 2018
Short summary
Short summary
We used seismology data to estimate the thickness of the MTZ and found it thinned beneath Tarim, which is exactly beneath the Permian basalts. This relation can be reconciled with coherent translation of a tectosphere that extends to a depth of 410 km or more. Combined with observations in the Siberian large igneous province and Greenland, these features may confirm the existence of a deep tectosphere. Alternatively, the shift of Tarim is less than predicted by an order of magnitude.
Cited articles
Akaike, H.: Autoregressive model fitting for control, Ann. I. Stat. Math., 23, 163–180, https://doi.org/10.1007/BF02479221, 1971. a
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Aki, K., Christoffersson, A., and Husebye, E. S.: Determination of the three-dimensional seismic structure of the lithosphere, J. Geophys. Res., 82, 277–296, https://doi.org/10.1029/JB082i002p00277, 1977. a, b
Albuquerque Seismological Laboratory (ASL)/USGS: Global Seismograph Network (GSN – IRIS/USGS), https://doi.org/10.7914/SN/IU, 1988. a
Allen, R. V.: Automatic earthquake recognition and timing from single traces, B. Seismol. Soc. Am., 68, 1521–1532, 1978. a
Allen, R.: Automatic phase pickers: Their present use and future prospects, B. Seismol. Soc. Am., 72, S225–S242, 1982. a
AlpArray Working Group: AlpArray Seismic Network (AASN) temporary component, https://doi.org/10.12686/ALPARRAY/Z3_2015, 2015. a
Baer, M. and Kradolfer, U.: An automatic phase picker for local and teleseismic events, B. Seismol. Soc. Am., 77, 1437–1445, 1987. a
Butzer, S., Kurzmann, A., and Bohlen, T.: 3D elastic full-waveform inversion of small-scale heterogeneities in transmission geometry, Geophys. Prospect., 61, 1238–1251, 2013. a
CERN: CERN Seismic Network, 2017. a
Deichmann, N. and Garcia-Fernandez, M.: Rupture geometry from high-precision relative hypocentre locations of microearthquake clusters, Geophys. J. Int., 110, 501–517, https://doi.org/10.1111/j.1365-246X.1992.tb02088.x, 1992. a
Department Of Earth And Environmental Sciences, Geophysical Observatory, University Of München: BayernNetz, https://doi.org/10.7914/SN/BW, 2001. a
Deschamps, A. and Beucler, E.: POSA experiment, https://doi.org/10.15778/RESIF.ZH2016, 2013. a
Diehl, T., Husen, S., Kissling, E., and Deichmann, N.: High-resolution 3-D P-wave model of the Alpine crust, Geophys. J. Int., 179, 1133–1147, https://doi.org/10.1111/j.1365-246X.2009.04331.x, 2009a. a
Diehl, T., Kissling, E., Husen, S., and Aldersons, F.: Consistent phase picking for regional tomography models: application to the greater Alpine region, Geophys. J. Int., 176, 542–554, https://doi.org/10.1111/j.1365-246X.2008.03985.x, 2009b. a, b
Douglas, A., Bowers, D., and Young, J. B.: On the onset of P seismograms, Geophys. J. Int., 129, 681–690, https://doi.org/10.1111/j.1365-246X.1997.tb04503.x, 1997. a
Dziewonski, A. M., Chou, T.-A., and Woodhouse, J. H.: Determination of earthquake source parameters from waveform data for studies of global and regional seismicity, J. Geophys. Res.-Sol. Ea., 86, 2825–2852, https://doi.org/10.1029/JB086iB04p02825, 1981. a
EASI: Eastern Alpine Seismic Investigation, https://doi.org/10.12686/alparray/xt_2014, 2014. a
Ekström, G., Nettles, M., and Dziewonski, A.: The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes, Phys. Earth Planet. In., 200–201, 1–9, https://doi.org/10.1016/j.pepi.2012.04.002, 2012. a
ESI SAS (Earth Science Institute Of The Slovak Academy Of Sciences): National Network of Seismic Stations of Slovakia, https://doi.org/10.14470/FX099882, 2004. a
Federal Institute for Geosciences and Natural Resources: German Regional Seismic Network (GRSN), https://doi.org/10.25928/MBX6-HR74, 1976. a
Fichtner, A., Kennett, B. L. N., Igel, H., and Bunge, H.-P.: Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods, Geophys. J. Int., 179, 1703–1725, https://doi.org/10.1111/j.1365-246X.2009.04368.x, 2009. a
French Landslide Observatory – Seismological Datacenter/RESIF: Observatoire Multi-disciplinaire des Instabilités de Versants (OMIV), https://doi.org/10.15778/RESIF.MT, 2006. a
Friedrich-Schiller-Universität Jena: Thüringer Seismologisches Netz (TSN), https://doi.org/10.7914/SN/TH, 2009. a
GEOFON Data Centre: GEOFON Seismic Network, https://doi.org/10.14470/TR560404, 1993. a
Geological Survey-Provincia Autonoma Di Trento: Trentino Seismic Network, https://doi.org/10.7914/SN/ST, 1981. a
Guéguen, P., Coutant, O., Langlais, M., and RESIF: Maurienne Seismic Swarm 2017–2018, https://doi.org/10.15778/RESIF.YW2017, 2017. a
Heit, B., Weber, M., Tilmann, F., Haberland, C., Jia, Y., Carraro, C., Walcher, G., Franceschini, A., and Pesaresi, D.: The Swath-D Seismic Network in Italy and Austria, https://doi.org/10.14470/MF7562601148, 2017. a
Hetényi, G., Molinari, I., Clinton, J., and the AlpArray Workin Group: The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen, Surv. Geophys., 39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018. a, b
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9, 90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
INGV Seismological Data Centre: Rete Sismica Nazionale (RSN), https://doi.org/10.13127/SD/X0FXNH7QFY, 1997. a
Institut De Physique Du Globe De Paris (IPGP) and Ecole Et Observatoire Des Sciences De La Terre De Strasbourg (EOST): GEOSCOPE, French Global Network of broad band seismic stations, https://doi.org/10.18715/GEOSCOPE.G, 1982. a
Institute Of Geophysics, Academy Of Sciences Of The Czech Republic: Czech Regional Seismic Network, https://doi.org/10.7914/SN/CZ, 1973. a
Kennett, B. L. N., Engdahl, E. R., and Buland, R.: Constraints on seismic velocities in the Earth from traveltimes, Geophys. J. Int., 122, 108–124, https://doi.org/10.1111/j.1365-246X.1995.tb03540.x, 1995. a
Koulakov, I., Tychkov, S., Bushenkova, N., and Vasilevsky, A.: Structure and dynamics of the upper mantle beneath the Alpine – Himalayan orogenic belt, from teleseismic tomography, structure of the continental lithosphere and upper mantle, Tectonophysics, 358, 77–96, https://doi.org/10.1016/S0040-1951(02)00418-3, 2002. a
Kövesligethy Radó Seismological Observatory (Geodetic And Geophysical Institute, Research Centre For Astronomy And Earth Sciences, Hungarian Academy Of Sciences (MTA CSFK GGI KRSZO)): Hungarian National Seismological Network, https://doi.org/10.14470/UH028726, 1992. a
Küperkoch, L., Meier, T., Lee, J., Friederich, W., and the EGELADOS Working Group: Automated determination of P-phase arrival times at regional and local distances using higher order statistics, Geophys. J. Int., 181, 1159–1170, https://doi.org/10.1111/j.1365-246X.2010.04570.x, 2010. a, b, c, d
Leipzig University: SXNET Saxon Seismic Network, https://doi.org/10.7914/SN/SX, 2001. a
Liu, H.-P., Anderson, D. L., and Kanamori, H.: Velocity dispersion due to anelasticity; implications for seismology and mantle composition, Geophys. J. Int., 47, 41–58, https://doi.org/10.1111/j.1365-246X.1976.tb01261.x, 1976. a, b
Malet, J.-P., Hibert, C., Radiguet, M., Gautier, S., Larose, E., Amitrano, D., Jongmans, D., Bièvre, G., and RESIF: French Landslide Observatory – OMIV (Temporary data) (MT-campagne) (RESIF – SISMOB), https://doi.org/10.15778/RESIF.1N2015, 2015. a
McKee, K. F., Roman, D., Fee, D., Ripepe, M., AIUPPA, A., and Waite, G.: Seismo-acoustic Network at Stromboli Volcano, Italy, https://doi.org/10.7914/SN/YI_2018, 2018. a
MedNet Project Partner Institutions: Mediterranean Very Broadband Seismographic Network (MedNet), https://doi.org/10.13127/SD/FBBBTDTD6Q, 1988. a
Mitterbauer, U., Behm, M., Brückl, E., Lippitsch, R., Guterch, A., Keller, G. R., Koslovskaya, E., Rumpfhuber, E.-M., and Šumanovac, F.: Shape and origin of the East-Alpine slab constrained by the ALPASS teleseismic model, Tectonophysics, 510, 195–206, https://doi.org/10.1016/j.tecto.2011.07.001, 2011. a, b, c, d, e, f
Monteiller, V., Chevrot, S., Komatitsch, D., and Fuji, N.: A hybrid method to compute short-period synthetic seismograms of teleseismic body waves in a 3-D regional model, Geophys. J. Int., 192, 230–247, https://doi.org/10.1093/gji/ggs006, 2013. a
Mora, P.: Nonlinear two-dimensional elastic inversion of multioffset seismic data, Geophysics, 52, 1211–1228, https://doi.org/10.1190/1.1442384, 1987. a
OGS (Istituto Nazionale Di Oceanografia E Di Geofisica Sperimentale): North-East Italy Seismic Network, https://doi.org/10.7914/SN/OX, 2016. a
OGS (Istituto Nazionale Di Oceanografia E Di Geofisica Sperimentale) And University Of Trieste: North-East Italy Broadband Network, https://doi.org/10.7914/SN/NI, 2002. a
Piromallo, C. and Morelli, A.: P wave tomography of the mantle under the Alpine-Mediterranean area, J. Geophys. Res.-Sol. Ea., 108, 2065, https://doi.org/10.1029/2002JB001757, 2003. a
Polish Academy of Sciences (PAN) Polskiej Akademii Nauk: Polish Seismological Network, 1990. a
Rawlinson, N. and Kennett, B. L. N.: Rapid estimation of relative and absolute delay times across a network by adaptive stacking, Geophys. J. Int., 157, 332–340, https://doi.org/10.1111/j.1365-246X.2004.02188.x, 2004. a
RESIF: RESIF-RLBP French Broad-band network, RESIF-RAP strong motion network and other seismic stations in metropolitan France, https://doi.org/10.15778/RESIF.FR, 1995. a
RESIF: CEA/DASE broad-band permanent network in metropolitan France, https://doi.org/10.15778/RESIF.RD, 2018. a
Rowe, C. A., Aster, R. C., Borchers, B., and Young, C. J.: An automatic, adaptive algorithm for refining phase picks in large seismic data sets, B. Seismol. Soc. Am., 92, 1660–1674, 2002. a
Sandoval, S., Kissling, E., Ansorge, J., and the SVEKALAPKO Seismic Tomography Working Group: High-resolution body wave tomography beneath the SVEKALAPKO array – II. Anomalous upper mantle structure beneath the central Baltic Shield, Geophys. J. Int., 157, 200–214, https://doi.org/10.1111/j.1365-246X.2004.02131.x, 2004. a
Saragiotis, C., Hadjileontiadis, L., and Panas, S.: PAI-S/K: A robust automatic seismic P phase arrival identification scheme, IEEE T. Geosci. Remote, 40, 1395–1404, https://doi.org/10.1109/TGRS.2002.800438, 2002. a
Schumacher, F., Friederich, W., and Lamara, S.: A flexible, extendable, modular and computationally efficient approach to scattering-integral-based seismic full waveform inversion, Geophys. J. Int., 204, 1100–1119, https://doi.org/10.1093/gji/ggv505, 2016. a
Slovenian Environment Agency: Seismic Network of the Republic of Slovenia, https://doi.org/10.7914/SN/SL, 2001. a
Spada, M., Bianchi, I., Kissling, E., Agostinetti, N. P., and Wiemer, S.: Combining controlled-source seismology and receiver function information to derive 3-D Moho topography for Italy, Geophys. J. Int., 194, 1050–1068, https://doi.org/10.1093/gji/ggt148, 2013. a, b
Swiss Seismological Service (SED) At ETH Zurich: National Seismic Networks of Switzerland, https://doi.org/10.12686/SED/NETWORKS/CH, 1983. a
TRANSALP Working Group: First deep seismic reflection images of the Eastern Alps reveal giant crustal wedges and transcrustal ramps, Geophys. Res. Lett., 29, 92-1–92-4, https://doi.org/10.1029/2002GL014911, 2002. a
Tesauro, M., Kaban, M. K., and Cloetingh, S. A. P. L.: EuCRUST-07: A new reference model for the European crust, Geophys. Res. Lett., 35, L05313, https://doi.org/10.1029/2007GL032244, 2008. a
Tong, P., Chen, C.-W., Komatitsch, D., Basini, P., and Liu, Q.: High-resolution seismic array imaging based on a SEM-FK hybrid method, Geophys. J. Int., 197, 7025–7034, https://doi.org/10.1093/gji/ggt508, 2014a. a
Tong, P., Komatitsch, D., Tseng, T.-L., Hung, S.-H., Chen, C.-W., Basini, P., and Liu, Q.: A 3D spectral-element and frequency-wavenumber (SEM-FK) hybrid method for high-resolution seismic array imaging, Geophys. Res. Lett., 41, 369––395, https://doi.org/10.1002/2014GL061644, 2014b.
a
Tromp, J., Tape, C., and Liu, Q.: Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels, Geophys. J. Int., 160, 195–216, https://doi.org/10.1111/j.1365-246X.2004.02453.x, 2005. a
University Of Genova: Regional Seismic Network of North Western Italy, https://doi.org/10.7914/SN/GU, 1967. a
University Of Trieste: Friuli Venezia Giulia Accelerometric Network, https://doi.org/10.7914/SN/RF, 1993. a
University Of Zagreb: Croatian Seismograph Network, https://doi.org/10.7914/SN/CR, 2001. a
VanDecar, J. and Crosson, R.: Determination of teleseismic relative phase arrival times using multi-channel cross-correlation and least squares, B. Seismol. Soc. Am., 80, 150–169, 1990. a
Waldhauser, F., Lippitsch, R., Kissling, E., and Ansorge, J.: High-resolution teleseismic tomography of upper-mantle structure using an a priori three-dimensional crustal model, Geophys. J. Int., 150, 403–414, https://doi.org/10.1046/j.1365-246X.2002.01690.x, 2002. a
Wielandt, E.: On the validity of the ray approximation for interpreting delay times, 85–98, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-94-009-3899-1_4, 1987. a
ZAMG – Central Institute for Meteorology and Geodynamics: Province Südtirol, 2006. a
ZAMG – Zentralanstalt Für Meterologie Und Geodynamik: Austrian Seismic Network, https://doi.org/10.7914/SN/OE, 1987. a
Zhao, L., Paul, A., Malusà, M. G., Xu, X., Zheng, T., Solarino, S., Guillot, S., Schwartz, S., Dumont, T., Salimbeni, S., Aubert, C., Pondrelli, S., Wang, Q., and Zhu, R.: Continuity of the Alpine slab unraveled by high-resolution P wave tomography, J. Geophys. Res.-Sol. Ea., 121, 8720–8737, https://doi.org/10.1002/2016JB013310, 2016. a, b
Zhu, H., Bozdağ, E., Peter, D., and Tromp, J.: Structure of the European upper mantle revealed by adjoint tomography, Nat. Geosci., 5, 493–498, https://doi.org/10.1038/ngeo1501, 2012. a
Zhu, H., Bozdağ, E., and Tromp, J.: Seismic structure of the European upper mantle based on adjoint tomography, Geophys. J. Int., 201, 18–52, https://doi.org/10.1093/gji/ggu492, 2015. a
Short summary
Using the AlpArray seismic network, we have determined highly accurate travel times of P waves from over 370 major global earthquakes between 2015 and 2019, which shall be used for a tomography of the mantle beneath the greater Alpine region.
Comparing with theoretical travel times of a standard reference earth model, we receive very stable patterns of travel-time differences across the network which provide evidence of varying subduction behaviour along the strike of the Alpine orogen.
Using the AlpArray seismic network, we have determined highly accurate travel times of P waves...