Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1899-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-1899-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Thermal history of the East European Platform margin in Poland based on apatite and zircon low-temperature thermochronology
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
Stanisław Mazur
Institute of Geological Sciences PAS, ul. Senacka 2, 31-002 Kraków, Poland
Aneta A. Anczkiewicz
Institute of Geological Sciences PAS, ul. Senacka 2, 31-002 Kraków, Poland
István Dunkl
Geoscience Centre, University of Göttingen, Goldschmidtstrasse 3, 37077 Göttingen, Germany
Jan Golonka
AGH University of Science and Technology, Faculty of Geology, Geophysics and Environmental Protection, al. Mickiewicza 30, 30-059 Kraków, Poland
Related authors
No articles found.
Quang Nguyen, Michal Malinowski, Stanisław Mazur, Sergiy Stovba, Małgorzata Ponikowska, and Christian Hübscher
Solid Earth, 15, 1029–1046, https://doi.org/10.5194/se-15-1029-2024, https://doi.org/10.5194/se-15-1029-2024, 2024
Short summary
Short summary
Our work demonstrates the following: (1) an efficient seismic data-processing strategy focused on suppressing shallow-water multiple reflections. (2) An improvement in the quality of legacy marine seismic data. (3) A seismic interpretation of sedimentary successions overlying the basement in the transition zone from the Precambrian to Paleozoic platforms. (4) The tectonic evolution of the Koszalin Fault and its relation to the Caledonian Deformation Front offshore Poland.
Kevin Alexander Frings, Elco Luijendijk, István Dunkl, Peter Kukla, Nicolas Villamizar-Escalante, Herfried Madritsch, and Christoph von Hagke
EGUsphere, https://doi.org/10.5194/egusphere-2022-1323, https://doi.org/10.5194/egusphere-2022-1323, 2022
Preprint archived
Short summary
Short summary
We use apatite (U-Th-Sm)/He thermochronologic on detrital grains sampled from a well to unravel the exhumation history of the northern Swiss Molasse Basin and reconcile seemingly contradicting previous studies. With single grain ages and provenance ages, we achieve to narrowly constrain exhumation magnitude and timing and embed previous results into a single consistent thermal history. This includes proof for hydrothermal activity and a contribution to the discussion on exhumation drivers.
Piotr Krzywiec, Mateusz Kufrasa, Paweł Poprawa, Stanisław Mazur, Małgorzata Koperska, and Piotr Ślemp
Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, https://doi.org/10.5194/se-13-639-2022, 2022
Short summary
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Hilmar von Eynatten, Jonas Kley, István Dunkl, Veit-Enno Hoffmann, and Annemarie Simon
Solid Earth, 12, 935–958, https://doi.org/10.5194/se-12-935-2021, https://doi.org/10.5194/se-12-935-2021, 2021
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth, 11, 1823–1847, https://doi.org/10.5194/se-11-1823-2020, https://doi.org/10.5194/se-11-1823-2020, 2020
Short summary
Short summary
Based on thermochronological data, we infer thrusting along-strike the northern rim of the Central Alps between 12–4 Ma. While the lithology influences the pattern of thrusting at the local scale, we observe that thrusting in the foreland is a long-wavelength feature occurring between Lake Geneva and Salzburg. This coincides with the geometry and dynamics of the attached lithospheric slab at depth. Thus, thrusting in the foreland is at least partly linked to changes in slab dynamics.
Samuel Mock, Christoph von Hagke, Fritz Schlunegger, István Dunkl, and Marco Herwegh
Solid Earth Discuss., https://doi.org/10.5194/se-2019-56, https://doi.org/10.5194/se-2019-56, 2019
Revised manuscript not accepted
Short summary
Short summary
Based on own and published age data, we can infer tectonic pulses along-strike the entire northern rim of the Central Alps between 12–4 million years. Although lithologic variations largely influence the local deformation pattern, the tectonic signal is remarkably consistent all the way from Lake Geneva to Salzburg. This might result from a deep-seated tectonic force and marks a change from dominantly vertical to large-scale horizontal tectonics in the late stage of Alpine orogeny.
Arne Grobe, Christoph von Hagke, Ralf Littke, István Dunkl, Franziska Wübbeler, Philippe Muchez, and Janos L. Urai
Solid Earth, 10, 149–175, https://doi.org/10.5194/se-10-149-2019, https://doi.org/10.5194/se-10-149-2019, 2019
Short summary
Short summary
The Mesozoic sequences of the Oman mountains experienced only weak post-obduction overprint and deformation, and thus they offer a unique natural laboratory to study obduction. We present a study of pressure and temperature evolution in the passive continental margin under the Oman Ophiolite using numerical basin models calibrated with thermal maturity data, fluid-inclusion thermometry, and low-temperature thermochronology.
Wenchao Cao, Sabin Zahirovic, Nicolas Flament, Simon Williams, Jan Golonka, and R. Dietmar Müller
Biogeosciences, 14, 5425–5439, https://doi.org/10.5194/bg-14-5425-2017, https://doi.org/10.5194/bg-14-5425-2017, 2017
Short summary
Short summary
We present a workflow to link paleogeographic maps to alternative plate tectonic models, alleviating the problem that published global paleogeographic maps are generally presented as static maps and tied to a particular plate model. We further develop an approach to improve paleogeography using paleobiology. The resulting paleogeographies are consistent with proxies of eustatic sea level change since ~400 Myr ago. We make the digital global paleogeographic maps available as an open resource.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochronology
Uplift and denudation history of the Ellsworth Mountains: insights from low-temperature thermochronology
Tracking geothermal anomalies along a crustal fault using (U − Th)∕He apatite thermochronology and rare-earth element (REE) analyses: the example of the Têt fault (Pyrenees, France)
Joaquín Bastías-Silva, David Chew, Fernando Poblete, Paula Castillo, William Guenthner, Anne Grunow, Ian W. D. Dalziel, Airton N. C. Dias, Cristóbal Ramírez de Arellano, and Rodrigo Fernandez
Solid Earth, 15, 555–566, https://doi.org/10.5194/se-15-555-2024, https://doi.org/10.5194/se-15-555-2024, 2024
Short summary
Short summary
The Ellsworth Mountains, situated in a remote area of Antarctica, span 350 km in length and 50 km in width, encompassing Antarctica's tallest peak. Due to their isolated location, understanding their formation has been challenging and remains incomplete. Our analysis of zircon minerals from the Ellsworth Mountains indicates that the mountain chain formed between 180 and 100 million years ago, contributing to our understanding of their formation.
Gaétan Milesi, Patrick Monié, Philippe Münch, Roger Soliva, Audrey Taillefer, Olivier Bruguier, Mathieu Bellanger, Michaël Bonno, and Céline Martin
Solid Earth, 11, 1747–1771, https://doi.org/10.5194/se-11-1747-2020, https://doi.org/10.5194/se-11-1747-2020, 2020
Short summary
Short summary
This study proposes a new way to highlight hydrothermal fluid circulations and thermal anomalies in the Earth's crust with a combined evaluation of the age of granite and gneiss apatites (< 200 µm) as well as the behaviour of their chemical elements. As an exploration tool, this approach is very promising and complementary to other geothermal exploration techniques based on numerical modelling. Moreover, it is a cost-effective tool as it allows for constraining geothermal models.
Cited articles
Armstrong, P. A.: Thermochronometers in sedimentary basins, Reviews in Mineralogy and Geochemistry, 58, 499–525, https://doi.org/10.2138/rmg.2005.58.19, 2005. a
Barker, C. and Pawlewicz, M. J.: Calculation of vitrinite reflectance from thermal histories: a comparison of methods, in: Vitrinite reflectance as a maturity parameter: applications and limitations, edited by: Mukhopadhyay, P. K. and Dow, W. G., 216–229, American Chemical Society Symposium Series, Washington D.C., 1994. a
Botor, D.: Tectono-thermal Evolution of the Lower Paleozoic Petroleum Source Rocks in the Southern Lublin Trough: Implications for Shale Gas Exploration from Maturity Modelling, E3S Web of Conferences, 35, 02002, https://doi.org/10.1051/e3sconf/20183502002, 2018. a, b
Botor, D., Kotarba, M., and Kosakowski, P.: Petroleum generation in the Carboniferous strata of the Lublin Trough (Poland): an integrated geochemical and numerical modelling approach, Org. Geochem., 33 461–476, https://doi.org/10.1016/S0146-6380(01)00170-X, 2002. a, b, c, d
Botor, D., Anczkiewicz, A. A., Dunkl, I., Golonka, J., Paszkowski, M., and Mazur, S.: Tectonothermal history of the Holy Cross Mountains (Poland) in the light of low-temperature thermochronology, Terra Nova, 30, 270–278, https://doi.org/10.1111/ter.12336, 2018. a
Botor, D., Golonka, J., Anczkiewicz, A. A., Dunkl, I., Papiernik, B., Zając, J., and Guzy, P.: Burial and thermal history of the Lower Paleozoic petroleum source rocks in the SW margin of the East European Craton (Poland), Ann. Soc. Geol. Pol., 89, 31–62, https://doi.org/10.14241/asgp.2019.12, 2019a. a, b, c, d, e, f, g, h, i, j, k, l, m
Dadlez, R., Kowalczewski, Z., and Znosko, J.: Some key problems of the pre-Permian tectonics of Poland, Geol. Q., 38, 169–189, 1994. a
Dadlez, R., Narkiewicz, M., Stephenson, R. A., Visser, M. T. M., and Van Wees, J. D.: Tectonic evolution of the Mid-Polish Trough: modelling implications and significance for central European geology, Tectonophysics, 252, 179–195, https://doi.org/10.1016/0040-1951(95)00104-2, 1995. a, b, c
Demaiffe, D., Wiszniewska, J., Krzemińska, E., Williams, I. S., Stein, H., Brassinnes, S., Ohnenstetter, D., and Deloule, E.: A hidden alkaline and carbonatite province of Early Carboniferous age in Northeast Poland: Zircon U-Pb and pyrrhotite Re-Os geochronology, J. Geol., 121, 91–104, https://doi.org/10.1086/668674, 2013. a
Derkowski, A., Środoń, J., Goryl, M., Marynowski, L., Szczerba, M., and Mazur, S.: Long distance fluid migration defines the diagenetic history of unique Ediacaran sediments in the East European Craton, Basin Res., 33, 570–593, https://doi.org/10.1111/bre.12485, 2021. a, b
Donelick, R. A., O'Sullivan P. B., and Ketcham, R. A.: Apatite fission track analysis, Reviews in Mineralogy and Geochemistry, 58, 49–94, 2005. a
Dumitru, T.: A new computer-automated microscope stage system for fission track analysis, Nucl. Tracks Rad. Meas., 21, 575–580, 1993. a
Epstein, A. G., Epstein, J. B., and Harris, L. D.: Conodont color alteration-an index to organic metamorphism, USGS Professional Paper 995, 1–27, US Geological Survey, Denver, 1977. a
Farley, K. A.: dating: Techniques, calibrations, and applications, Reviews in Mineralogy and Geochemistry, 47, 819–844, https://doi.org/10.2138/rmg.2002.47.18, 2002. a, b
Galbraith, R. F.: The radial plot: graphical assessment of spread in ages, Nucl. Tracks Rad. Meas., 17, 207–214, 1990. a
Gleadow, A. J. W., Duddy, I. R., Green, P. F., and Lovering, J. F.: Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis, Contrib. Mineral. Petr., 94, 405–415, 1986. a
Górecki, W. (Ed.), Szczepański, A., Sadurski, A., Hajto, M., Papiernik, B., Kuźniak, T., Kozdra, T., Soboń, J., Szewczyk, J.,Sokołowski, A., Strzetelski, W., Haładus, A., Kania, J., Kurzydłowski, K., Gonet, A., Capik, M., Śliwa, T., Ney, R., Kępińska, B., Bujakowski, W., Rajchel, L., Banaś, J., Solarski, W., Mazurkiewicz, B., Pawlikowski, M., Nagy, S., Szamałek, K., Feldman-Olszewska, A., Wagner, R., Kozłowski, T., Malenta, Z., Sapińska-Śliwa, A., Sowiżdżał, A., Kotyza, J., Leszczyński, K. P., and Gancarz, M.: Atlas of Geothermal Resources of Mesozoic Formations in the Polish Lowlands, Wydawnictwo AGH, Kraków, 484 pp., 2006a. a, b, c
Górecki, W. (Ed.), Szczepański, A., Sadurski, A., Hajto, M., Papiernik, B., Szewczyk, J., Sokołowski, A., Strzetelski, W., Haładus, A., Kania, J., Rajchel, L., Feldman-Olszewska, A., Wagner, R., Leszczyński, K. P., and Sowiżdżał, A.: Atlas of Geothermal Resources of Paleozoic Formations in the Polish Lowlands. Wydawnictwo AGH, Kraków, 240 pp., 2006b. a, b, c
Grad, M., Guterch, A., and Mazur, S.: Seismic refraction evidence for crustal structure in the central part of the Trans-European Suture Zone in Poland, Geol. Soc. Lond. Spec. Publ., 201, 295–309, https://doi.org/10.1144/GSL.SP.2002.201.01.14, 2002. a, b
Gradstein, F. M., Ogg, J. G., and Hilgen, F. J.: On the geologic time scale, Newsl. Stratigr., 45, 171–188, 2012. a
Green, P. F. and Duddy, I. R.: Interpretation of apatite ages and fission track ages from cratons, Earth Planet. Sc. Lett., 244, 541–547, https://doi.org/10.1016/j.epsl.2006.02.024, 2006. a
Green, P. F. and Duddy, I. R.: Thermal history reconstruction in sedimentary basins using apatite fission-track analysis and related techniques, Analyzing the Thermal History of Sedimentary Basins: Methods and Case Studies SEPM Special Publication No. 103, SEPM (Society for Sedimentary Geology), 65–104, 2012. a, b, c
Green, P. F. and Duddy, I. R.: Apatite (U-Th-Sm)/He thermochronology on the wrong side of the tracks, Chem. Geol., 488, 21–33, https://doi.org/10.1016/j.chemgeo.2018.04.028, 2018. a
Guenthner, W. R., Reiners, P. W., Ketcham, R. A., Nasdala, L., and Giester, G.: Helium diffusion in natural zircon: Radiation damage, anisotropy, and the interpretation of zircon thermochronology, Am. J. Sci., 313, 145–198, https://doi.org/10.2475/03.2013.01, 2013. a, b, c
Guenthner, W.R., Reiners, P., Drake, W., and Tillberg, M.: Zircon, titanite, and apatite ages and age-eU correlations from the Fennoscandian Shield, southern Sweden, Tectonics, 36, 1254–1274, https://doi.org/10.1002/2017TC004525, 2017. a, b, c
Guenthner, W. R.: Implementation of an alpha damage annealing model for zircon thermochronology with comparison to a zircon fission track annealing model, Geochem. Geophy. Geosy., 22, 1525–2027, https://doi.org/10.1029/2019GC008757, 2020. a, b
Guterch, A., Grad, M., Materzok, R., and Perchuć, E.: Deep structure of the Earth's crust in the contact zone of the Palaeozoic and Precambrian platforms in Poland (Tornquist-Teisseyre Zone), Tectonophysics, 128, 251–279, https://doi.org/10.1016/0040-1951(86)90296-9, 1986. a
Guterch, A., Grad, M., Thybo, H., Keller, G. R., and the POLONAISE Working Group: POLONAISE'97-An international seismic experiment between Precambrian and Variscan Europe in Poland, Tectonophysics, 314, 101–121, https://doi.org/10.1016/S0040-1951(99)00239-5, 1999. a
Guterch, A., Wybraniec, S., Grad, M., Chadwick, A., Krawczyk, C. M., Ziegler, P. A., Thybo, H., and De Vos, W.: Chapter 2: Crustal structure and structural framework, in: Petroleum Geological Atlas of the Southern Permian Basin Area, edited by: Doornebal, H. and Stevenson, A., EAGE Publications, Houten, 11–23, 2010. a
Hansen, K.: Fennoscandian Border zone thermal and tectonic history of a tufaceous sandstone and granite from fission track analysis, Bornholm, Denmark, Tectonophysics, 244, 153–160, https://doi.org/10.1016/0040-1951(94)00223-V, 1995. a, b, c
Hendriks, B. W. H. and Redfield, T. F.: Apatite fission track and data from Fennoscandia: An example of underestimation of fission track annealing in apatite, Earth Planet. Sc. Lett., 236, 443–458, https://doi.org/10.1016/j.epsl.2005.05.027, 2005. a
Hendriks, B. W. H., Andriessen, P. A. M., Huigen, Y., Leighton, C., Redfield, T., Murrell, G., Gallagher, K., and Nielsen, S. B.: A fission track data compilation for Fennoscandia, Norw. J. Geol., 87, 143–155, 2007. a
Hourigan, J. K., Reiners, P. W., and Brandon, M. T.: U-Th zonation-dependent alpha-ejection in chronometry, Geochim. Cosmochim. Ac., 69, 3349–3365, 2005. a
Japsen, P., Green, P. F., Bonow, J. M., and Erlström, M.: Episodic burial and exhumation of the southern Baltic Shield: epeirogenic uplifts during and after break-up of Pangaea, Gondwana Res., 35, 357–377, https://doi.org/10.1016/j.gr.2015.06.005, 2016. a, b, c
Japsen, P., Green, P. F., Chalmers, J. A., and Bonow, J. M.: Mountains of southernmost Norway: uplifted Miocene peneplains and re-exposed Mesozoic surfaces, J. Geol. Soc., 175, 721–741, https://doi.org/10.1144/jgs2017-157, 2018. a
Kanev, S., Margulis, L., Bojesen-Koefoed, J. A., Weil, W. A., Merta, H., and Zdanaviciute, O.: Oils and hydrocarbon source rocks of the Baltic syneclise, Oil and Gas Journal, 92, 69–73, 1994. a
Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., and Hurford, A. J.: Improved measurement of fission track annealing in apatite using c-axis projection, Am. Mineral., 92, 789–798, https://doi.org/10.2138/am.2007.2280, 2007a. a
Kosakowski, P., Wróbel, M., and Krzywiec, P.: Modelling hydrocarbon generation in the Palaeozoic and Mesozoic successions in SE Poland and west Ukraine, J. Petrol. Geol., 36, 139–161, https://doi.org/10.1111/jpg.12548, 2013. a
Kowalska, S., Wójtowicz, A., Hałas, S., Wemmer, K., Mikołajewski, Z., and Buniak, A.: Thermal history of Lower Palaeozoic rocks from the East European Platform margin of Poland based on K-Ar age dating and illite-smectite palaeothermometry, Ann. Soc. Geol. Pol., 89, 481–509, https://doi.org/10.14241/asgp.2019.21, 2019. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s
Krzemińska, E., Krzemiński, L., Petecki, Z., Wiszniewska, J., Salwa, S., Żaba, J., Gaidzik, K., Williams, I. S., Rosowiecka, O., Taran, L., Johansson, G.,
Demaiffe, D., Grabowski, J., and Zieliński, G.: Geological Map of Crystalline Basement in the Polish part of the East European Platform 1 : 1 000 000, Państwowy Instytut Geologiczny, Warszawa, 2017. a
Krzywiec, P.: Mid-Polish Trough inversion – seismic examples, main mechanisms and its relationship to the Alpine-Carpathian collision, in: Continental Collision and the Tectonosedimentary Evolution of Forelands, edited by: Berotti, G., Schulmann K., and Cloetingh, S., European Geosciences Union, Stephan Mueller Special Publication Series, 1, 151–165, 2002. a, b, c
Krzywiec, P., Mazur, S., Gągała, Ł., Kufrasa, M., Lewandowski, M., Malinowski, M., and Buffenmyer, V.: Late Carboniferous thin-skinned compressional deformation above the SW edge of the East European craton as revealed by seismic reflection and potential field data – Correlations with the Variscides and the Appalachians, in: Linkages and Feedbacks in Orogenic Systems, edited by: Law, R. D., Thigpen, J. R., Merschat, A. J., and Stowell, H. H., 213, 353–372, Geological Society of America Memoir, New York, 2017a. a, b, c, d, e, f, g
Krzywiec P., Gągała, Ł., Mazur, S., Słonka, Ł., Kufrasa, M., Malinowski, M., Pietsch, K., and Golonka, J.: Variscan deformation along the Teisseyre-Tornquist Zone in SE Poland: Thick-skinned structural inheritance or thin-skinned thrusting?, Tectonophysics, 718, 83–91, https://doi.org/10.1016/j.tecto.2017.06.008, 2017b. a, b, c
Kutek, J.: The Polish Permo-Mesozoic Rift Basin, Mémoires du Muséum National d'histoire Naturelle, 186, 213–236, 2001. a
Kutek, J. and Głazek, J.: The Holy Cross area, central Poland, in the Alpine cycle, Acta Geol. Pol., 22, 603–651, 1972. a
Lamarche, J. and Scheck-Wenderoth, M.: 3D structural model of the Polish Basin, Tectonophysics, 397, 73–91, https://doi.org/10.1016/j.tecto.2004.10.013, 2005. a
Lampe, C., Person, M., Nöth, S., and Ricken, W.: Episodic fluid flow within continental rift basins: some insights from field data and mathematical models of the Rhinegraben, Geofluids, 1, 42–52, 2001. a
Larson, S. A. and Tullborg, E. L.: Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U-Pb concordia, Geology, 26, 919–922, https://doi.org/10.1130/0091-7613(1998)026<0919:WBSZYL>2.3.CO;2, 1998. a
Larson, S. A., Tullborg, E. L., Cederbom, C., and Stiberg, J. P.: Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermochronology, Terra Nova, 11, 210–215, https://doi.org/10.1046/j.1365-3121.1999.00249.x, 1999. a
Larson, S. A., Cederbom, C., Tullborg, E. L., and Stilberg, J. P.: Comment on “Apatite fission track and data from Fennoscandia: An example of underestimation of fission track annealing in apatite” by Hendriks and Redfield [Earth Planet. Sci. Lett. 236 (443–458)], Earth Planet. Sc. Lett., 248, 561–568, https://doi.org/10.1016/j.epsl.2006.06.018, 2006. a
Lidmar-Bergström, K.: Denudation surfaces and tectonics in the southernmost part of the Baltic Shield, Precambrian Res., 64, 337–345, https://doi.org/10.1016/0301-9268(93)90086-H, 1993 a
Lidmar-Bergström, K.: Long term morphotectonic evolution in Sweden, Geomorphology, 16, 33–59, https://doi.org/10.1016/0169-555X(95)00083-H, 1996. a
Łuszczak, K., Wyglądała, M.,Śmigielski, M., Waliczek, M., Matyja, B. A., Konon, A., and Ludwiniak, M.: How to deal with missing overburden – investigating Late Cretaceous exhumation of the Mid-Polish anticlinorium by a multi-proxy approach, Mar. Petrol. Geol., 114, 104229, https://doi.org/10.1016/j.marpetgeo.2020.104229, 2020. a, b
Matyja, H.: Stratigraphy and facies development of Devonian and Carboniferous deposits in the Pomeranian Basin and in the western part of the Baltic Basin and palaeogeography of the northern TESZ during Late Paleozoic times, edited by: Poprawa, P. and Matyja, H., Prace Państwowego Instytutu Geologicznego 186, 79–122, 2006 (in Polish with English summary). a
Maystrenko, Y. P. and Scheck-Wenderoth, M.: 3D lithosphere-scale density model of the Central European Basin System and adjacent areas, Tectonophysics, 601, 53–77, https://doi.org/10.1016/j.tecto.2013.04.023, 2013. a
Mazur, S., Scheck-Wenderoth, M., and Krzywiec, P.: Different modes of the Late Cretaceous-Early Tertiary inversion in the North German and Polish basins, Int. J. Earth Sci., 94, 782–798, https://doi.org/10.1007/s00531-005-0016-z, 2005. a
Mazur, S., Aleksandrowski, P., Turniak, K., Krzemiński, L., Mastalerz, K., Górecka-Nowak, A., Kurowski, L., Krzywiec, P., Żelaźniewicz, A., and Fanning, M. C.: Uplift and late orogenic deformation of the Central European Variscan belt as revealed by sediment provenance and structural record in the Carboniferous foreland basin of western Poland, Int. J. Earth Sci., 99, 47–64, https://doi.org/10.1007/s00531-008-0367-3, 2010. a
Mazur, S., Mikołajczak M., Krzywiec P., Malinowski M., Buffenmyer V., and Lewandowski, M.: Is the Teisseyre-Tornquist Zone an ancient plate boundary of Baltica?, Tectonics, 34, 2465–2477, https://doi.org/10.1002/2015TC003934, 2015. a, b, c, d
Mazur, S., Mikołajczak, M., Krzywiec, P., Malinowski, M., Lewandowski, M., and Buffenmyer, V.: Pomeranian Caledonides, NW Poland – A collisional suture or thin-skinned fold-and-thrust belt?, Tectonophysics, 692, 29–43, https://doi.org/10.1016/j.tecto.2016.06.017, 2016. a
Mazur, S., Krzywiec, P., Malinowski, M., Lewandowski, M., Aleksandrowski, P., and Mikołajczak, M.: On the nature of the Teisseyre-Tornquist Zone, Geol. Geophys. Environ., 44, 17–30, https://doi.org/10.7494/geol.2018.44.1.17, 2018a. a, b
Mazur, S., Porębski, S. J., Kędzior, A., Paszkowski, M., Podhalańska, T., and Poprawa, P.: Refined timing and kinematics for Baltica-Avalonia convergence based on the sedimentary record of a foreland basin, Terra Nova, 30, 8–16, https://doi.org/10.1111/ter.12302, 2018b. a, b, c
Mazur, S., Malinowski, M., Maystrenko, Y. P., and Gągała, Ł.: Pre-existing lithospheric weak zone and its impact on continental rifting – the Mid-Polish Trough, Central European Basin System, Global Planet. Change, 198, 103417, https://doi.org/10.1016/j.gloplacha.2021.103417, 2021. a, b, c, d
McCann, T.: Pre-Permian of the Northeast German Basin, Geol. J., 31, 159–177, https://doi.org/10.1002/(SICI)1099-1034(199606)31:2<159::AID-GJ705>3.0.CO;2-8, 1996. a, b
Middleton, D. W. J., Parnell, J., Green, P. F., Xu, G., and McSherry, M.: Hot fluid flow events in Atlantic margin basins: an example from the Rathlin Basin, Geol. Soc. Lond. Spec. Publ., 188, 91–105, https://doi.org/10.1144/GSL.SP.2001.188.01.05, 2001. a
Mikołajczak, M., Mazur, S., and Gągała, Ł.: Depth-to-basement for the East European Craton and Teisseyre-Tornquist Zone in Poland based on potential field data, Int. J. Earth Sci., 108, 547–567, https://doi.org/10.1007/s00531-018-1668-9, 2019. a, b, c, d
Milesi, G., Monié, P., Münch, P., Soliva, R., Taillefer, A., Bruguier, O., Bellanger, M., Bonno, M., and Martin, C.: Tracking geothermal anomalies along a crustal fault using apatite thermochronology and rare-earth element (REE) analyses: the example of the Têt fault (Pyrenees, France), Solid Earth, 11, 1747–1771, https://doi.org/10.5194/se-11-1747-2020, 2020. a
Młynarski, S.: The structure of deep basement in Poland in the light of refraction seismic surveys, Geol. Q., 26, 285–296, 1982 (In Polish, with English summary). a
Modliński, Z., Jaworowski, K., Miłaczewski, L., Podhalańska, T., Sikorska, M., Szymański, B., and Waksmundzka, M. I.: Paleogeological atlas of the sub-Permian Paleozoic of the East-European craton in Poland and neighbouring areas, 1 : 2 000 000, Polish Geological Institute, Warsaw, 2010. a
Motuza, G., Šliaupa, S., and Timmerman, M. J.: Geochemistry and 40Ar 39Ar age of Early Carboniferous dolerite sills in the southern Baltic Sea, Est. J. Earth Sci., 64, 233–248, https://doi.org/10.3176/earth.2015.30, 2015. a
Papiernik, B., Botor, D., Golonka, J., and Porębski, S. J.: Unconventional hydrocarbon prospects in Ordovician and Silurian mudrocks of the East European Craton (Poland): Insight from three-dimensional modelling of total organic carbon and thermal maturity, Ann. Soc. Geol. Pol., 89, 511–533, https://doi.org/10.14241/asgp.2019.26, 2019. a
Petersen, H. I., Schovsbo, N. H., and Nielsen, A. T.: Reflectance measurements of zooclasts and solid bitumen in Lower Paleozoic shales, southern Scandinavia: Correlation to vitrinite reflectance, Int. J. Coal Geol., 114, 1–18, https://doi.org/10.1016/j.coal.2013.03.013, 2013. a, b
Pharaoh, T. C.: Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): A review, Tectonophysics, 314, 17–41, https://doi.org/10.1016/S0040-1951(99)00235-8, 1999. a
Pletsch, T., Appel, J., Botor, D., Clayton, C. J., Duin, E. J. T., Faber, E., Górecki, W., Kombrink, H., Kosakowski, P., Kuper, G., Kus, J., Lutz, R., Mathiesen, A., Ostertag, C., Papiernik, B., and van Bergen, F.: Petroleum generation and migration, in: Petroleum Geological Atlas of the Southern Permian, Basin Area, edited by: Doornenbal, J. C. and Stevenson, A., EAGE Publications, Houten, 225–253, 2010. a, b
Poprawa, P.: Development of the Caledonian collision zone along the western margin of Baltica and its relation to the foreland basin, Prace Instytutu Geologicznego, 186, 189–214, 2006 (in Polish with English abstract). a
Poprawa, P.: Geological setting and Ediacaran-Palaeozoic evolution of the western slope of the East European Craton and adjacent regions, Ann. Soc. Geol. Pol., 89, 347–380, https://doi.org/10.14241/asgp.2019.23, 2019. a, b, c, d
Poprawa, P. and Żywiecki, M.: Heat transfer during development of the Lublin basin (SE Poland): maturity modelling and fluid inclusion analysis, Mineralogical Society of Poland – Special Papers, 26, 241–250, 2005. a
Poprawa, P., Sliaupa, S., Stephenson, R., and Lazauskiene, J.: Late Vendian-Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis, Tectonophysics, 314, 219–239, https://doi.org/10.1016/S0040-1951(99)00245-0, 1999. a
Poprawa, P., Radkovets, N., and Rauball, J.: Ediacaran-Paleozoic subsidence history of the Volyn-Podillya-Moldavia basin (Western and SW Ukraine, Moldavia, NE Romania), Geol. Q., 62, 459–486, https://doi.org/10.7306/gq.1418, 2018. a
Pożaryski, W. and Brochwicz-Lewiński, W.: On the Polish Trough, Geologie en Mijnbouw, 57, 545–557, 1978. a
Reiners, P. W.: Zircon thermochronometry, Reviews in Mineralogy and Geochemistry, 58, 151–179, https://doi.org/10.2138/rmg.2005.58.6, 2005. a, b, c
Resak, M., Glasmacher, U. A., Narkiewicz, M., and Littke, R.: Maturity modelling integrated with apatite fission-track dating: Implications for the thermal history of the Mid-Polish Trough (Poland), Mar. Petrol. Geol., 27, 108–115, 2010. a
Schito, A., Andreucci, B., Aldega, L., Corrado, S., Di Paolo, L., Zattin, M., Szaniawski, R., Jankowski, L., and Mazzoli, S.: Burial and exhumation of the western border of the Ukrainian Shield (Podolia): a multi-disciplinary approach, Basin Res., 30, 532–549, 2018. a
Senglaub, Y., Brix, M. R., Adriasola, A. C., and Littke, R.: New information on the thermal history of the southwestern Lower Saxony Basin, northern Germany, based on fission track analysis, Int. J. Earth Sci., 94, 876–896, 2005. a
Skręt, U. and Fabiańska, M. J.: Geochemical characteristics of organic matter in the Lower Palaeozoic rocks of the Peribaltic Syneclise (Poland), Geochem. J., 43, 343–369, https://doi.org/10.2343/geochemj.1.0034, 2009.
a, b
Söderlund, P., Juez-Larre, J., Page, L. M., and Dunai, T. J.: Extending the time range of apatite thermochronometry in slowly cooled terranes: Palaeozoic to Cenozoic exhumation history of southeast Sweden, Earth Planet. Sc. Lett., 239, 266–275, https://doi.org/10.1016/j.epsl.2005.09.009, 2005. a
Swadowska, E. and Sikorska, M.: Burial history of Cambrian constrained by vitrinite-like macerals in Polish part of the East European Platform, Przegląd Geologiczny, 46, 699–706, 1998. a
Środoń, J., Clauer, N., Huff, W., Dudek, T., and Banaś, M.: K-Ar dating of Ordovician bentonites from the Baltic Basin and the Baltic Shield: implications for the role of temperature and time in the illitization of smectite, Clay Miner., 44, 361–387, https://doi.org/10.1180/claymin.2009.044.3.361, 2009. a, b
Środoń, J., Paszkowski, M., Drygant, D., Anczkiewicz, A., and Banaś, M.: Thermal History of Lower Paleozoic Rocks on the Peri-Tornquist Margin of the East European Craton (Podolia, Ukraine) inferred from Combined XRD, K-Ar, and AFT Data, Clay. Clay Miner., 61, 107–132,
https://doi.org/10.1346/CCMN.2013.0610209, 2013. a, b, c, d, e
Świdrowska, J., Hakenberg, M., Poluhtovič, B., Seghedi, A., and Višnǎkov, I.: Evolution of the Mesozoic basins on the southwestern edge of the East European Platform (Poland, Ukraine, Moldova, Romania), Studia Geologica Polonica, 130, 3–130, 2008. a
Szewczyk, J. and Gientka, D.: Terrestrial heat flow density in Poland – a new approach, Geol. Q., 53, 125–140, 2009. a
Wauschkuhn, B., Jonckheere, R., and Ratschbacher, L.: The KTB apatite fission-track profiles: Building on a firm foundation?, Geochim. Cosmochim. Ac., 167, 27–62, https://doi.org/10.1016/j.gca.2015.06.015, 2015. a
Więcław, D., Kotarba, M. J., Kosakowski, P., Kowalski, A., and Grotek, I.: Habitat and hydrocarbon potential of the lower Paleozoic source rocks in the Polish part of the Baltic region, Geol. Q., 54, 159–182, 2010. a
Więcław, D., Kosakowski, P., Kotarba, M. J., Koltun, Y. V., and Kowalski, A.: Assessment of hydrocarbon potential of the Lower Palaeozoic strata in the Tarnogród-Stryi area (SE Poland and western Ukraine), Ann. Soc. Geol. Pol., 82, 65–80, 2012. a
Short summary
The thermal evolution of the East European Platform is reconstructed by means of thermal maturity and low-temperature thermochronometry. Results showed that major heating occurred before the Permian, with maximum paleotemperatures in the earliest and latest Carboniferous for Baltic–Podlasie and Lublin basins, respectively. The Mesozoic thermal history was characterized by gradual cooling from peak temperatures at the transition from Triassic to Jurassic due to decreasing heat flow.
The thermal evolution of the East European Platform is reconstructed by means of thermal...