Articles | Volume 12, issue 8
https://doi.org/10.5194/se-12-1931-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-12-1931-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Vectors to ore in replacive volcanogenic massive sulfide (VMS) deposits of the northern Iberian Pyrite Belt: mineral zoning, whole rock geochemistry, and application of portable X-ray fluorescence
Instituto de Geociencias (CSIC-UCM), Madrid, 28040, Spain
Fernando Tornos
Instituto de Geociencias (CSIC-UCM), Madrid, 28040, Spain
Emma Losantos
Instituto de Geociencias (CSIC-UCM), Madrid, 28040, Spain
Juan Manuel Pons
MATSA, Almonaster la Real, Huelva, 21342, Spain
Juan Carlos Videira
MATSA, Almonaster la Real, Huelva, 21342, Spain
Related authors
No articles found.
Juan Alcalde, Ramon Carbonell, Solveig Pospiech, Alba Gil, Liam A. Bullock, and Fernando Tornos
Solid Earth, 13, 1161–1168, https://doi.org/10.5194/se-13-1161-2022, https://doi.org/10.5194/se-13-1161-2022, 2022
Related subject area
Subject area: The evolving Earth surface | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochemistry
Basic chemical compositions combination rules and quantitative criterion of red beds
Rock alteration at the post-Variscan nonconformity: implications for Carboniferous–Permian surface weathering versus burial diagenesis and paleoclimate evaluation
Quartz dissolution associated with magnesium silicate hydrate cement precipitation
Understanding controls on hydrothermal dolomitisation: insights from 3D reactive transport modelling of geothermal convection
Quantifying the buffering of oceanic oxygen isotopes at ancient midocean ridges
Uncertainty in regional estimates of capacity for carbon capture and storage
Guangjun Cui, Jin Liao, Linghua Kong, Cuiying Zhou, Zhen Liu, Lei Yu, and Lihai Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-2590, https://doi.org/10.5194/egusphere-2023-2590, 2024
Short summary
Short summary
A rapid quantitative identification criterion based on the basic chemical compositions combination rules of red beds has been established, taking into account the correlation between red beds geomorphic characteristics, mineral compositions, and chemical compositions. The research results can also be applied to the quantitative identification of red beds in other fields such as resources, ecology, environment, energy, materials, etc.
Fei Liang, Jun Niu, Adrian Linsel, Matthias Hinderer, Dirk Scheuvens, and Rainer Petschick
Solid Earth, 12, 1165–1184, https://doi.org/10.5194/se-12-1165-2021, https://doi.org/10.5194/se-12-1165-2021, 2021
Short summary
Short summary
In this study, we conclude that surface weathering is a primary control on rock characteristics and also guides fluids through the system during deep burial process. We also find that the formation of the rock decomposition zone depends on rock composition, climatic conditions and the duration of the process. Finally and most importantly, we provide a workflow for data reliability analysis for paleoclimate research.
Lisa de Ruiter, Anette Eleonora Gunnæs, Dag Kristian Dysthe, and Håkon Austrheim
Solid Earth, 12, 389–404, https://doi.org/10.5194/se-12-389-2021, https://doi.org/10.5194/se-12-389-2021, 2021
Short summary
Short summary
In this work, the formation of natural magnesium silicate hydrate cement has been studied. The cement forms through the extraordinarily fast dissolution of quartz under high-pH, Mg-rich conditions that occur in south-east Norway where an ultramafic body is exposed. We studied the cemented rocks and the processes that led to the formation of the cement from the field scale to the nanoscale. Magnesium silicate hydrate cement might be a low-CO2 alternative to Portland cement.
Rungroj Benjakul, Cathy Hollis, Hamish A. Robertson, Eric L. Sonnenthal, and Fiona F. Whitaker
Solid Earth, 11, 2439–2461, https://doi.org/10.5194/se-11-2439-2020, https://doi.org/10.5194/se-11-2439-2020, 2020
Short summary
Short summary
Our reactive transport models show that high-temperature fault-controlled dolomite can form from mixed convection and act as a sink for Mg in the circulating seawaters. This provides new perspectives to enhance understanding of mechanisms and controls on dolomitisation, geometry, and spatial distribution of dolomite bodies within faulted and fractured systems, which has important implications for modelling of systems ranging from geothermal resources to ore formation and carbonate diagenesis.
Yoshiki Kanzaki
Solid Earth, 11, 1475–1488, https://doi.org/10.5194/se-11-1475-2020, https://doi.org/10.5194/se-11-1475-2020, 2020
Short summary
Short summary
This study evaluates the buffering of seawater oxygen isotopes at midocean ridges, using a process-based model of hydrothermal circulation and reactive transport of oxygen isotopes. The buffering intensity shown by the model is significantly weaker than previously assumed. Oxygen isotopes of oceanic crust are consistently relatively insensitive to seawater isotopic composition, which explains the ancient oceanic crust without invoking a constant seawater oxygen–isotopic composition through time.
Mark Wilkinson and Debbie Polson
Solid Earth, 10, 1707–1715, https://doi.org/10.5194/se-10-1707-2019, https://doi.org/10.5194/se-10-1707-2019, 2019
Short summary
Short summary
Carbon capture and storage is a technology for the mitigation of industrial CO2 emissions. Most subsurface storage capacity is in rocks for which there is relatively little information. A group of experts estimated the storage capacity of seven units, producing a wide range of estimates for each unit due to a combination of using different published values for some variables and differences in their judgements of average values. Hence, there is significant uncertainty in such estimates.
Cited articles
Almodóvar, G. R., Sáez, R., Pons, J. M., Maestre, A., Toscano, M.,
and Pascual, E.: Geology and genesis of the Aznalcóllar massive sulphide
deposits, Iberian Pyrite Belt, Spain, Miner. Depos., 33, 111–136,
https://doi.org/10.1007/s001260050136, 1998.
Ames, D. E., Galley, A. G., Kjarsgaard, I. M., Tardif, N., and Taylor, B.
T.: Hanging-wall vectoring for buried volcanogenic massive sulfide deposits,
Paleoproterozoic Flin Flon mining camp, Manitoba, Canada, Econ. Geol.,
111, 963–1000, https://doi.org/10.2113/econgeo.111.4.963, 2016.
Ballantyne, G. H.: Chemical and mineralogical variations in propylitic zones
surrounding porphyry copper deposits, PhD, University of Utah, Salt Lake
City, Utah, 208 pp., 1981.
Barrett, T. J., MacLean, W. H., and Årebäck, H.: The
Palaeoproterozoic Kristineberg VMS deposit, Skellefte district, northern
Sweden. Part II: chemostratigraphy and alteration, Miner. Depos., 40,
368–395, https://doi.org/10.1007/s00126-005-0001-2, 2005.
Barrett, T. J., Dawson, G. L., and MacLean, W. H.: Volcanic Stratigraphy,
Alteration, and Sea-Floor Setting of the Paleozoic Feitais Massive Sulfide
Deposit, Aljustrel, Portugal, Econ. Geol., 103, 215–239, https://doi.org/10.2113/gsecongeo.103.1.215, 2008.
Barriga, F. J. A. S.: Hydrothermal metamorphism and ore genesis at
Aljustrel, Portugal, PhD, University of Western Ontario, London, Ontario,
386 pp., 1983.
Barriga, F. J. A. S.: Metallogenesis in the Iberian Pyrite Belt, in:
Pre-Mesozoic Geology of Iberia, edited by: Dallmeyer, R. D. and Martinez
Garcia, E., Springer-Verlag Berlin Heidelberg, Berlin, 369–379, https://doi.org/10.1007/978-3-642-83980-1, 1990.
Barriga, F. J. A. S. and Relvas, J. R. M. S.: Hydrothermal alteration as an
exploration criterion in the IPB: facts, problems, and future, I
Simpósio de Sulfuretos Polimetálicos da Faixa Piritosa Ibérica,
Évora, Portugal, 1993,
Bobrowicz, G. L.: Mineralogy, geochemistry and alteration as exploration
guides at Aguas Teñidas Este, Pyrite Belt, Spain, Doctor of Philosophy,
Faculty of Science and Engineering, University of Birmingham, Birmingham, United Kingdom, 1995.
Boldy, J.: Exploration discoveries, Noranda district, Quebec (Case History
of a Mining Camp), in: Geophysics and geochemistry in the search for
metallic ores, edited by: Hood, P. J., Economic Geology Report 31, Geological Survey of Canada, 593–603, 1979.
Bourke, A. and Ross, P.-S.: Portable X-ray fluorescence measurements on
exploration drill-cores: comparing performance on unprepared cores and
powders for “whole-rock” analysis,
Geochem-Eplor. Env. A., 16, 147–157, https://doi.org/10.1144/geochem2014-326, 2015.
Brauhart, C. W., Huston, D. L., Groves, D. I., Mikucki, E. J., and Gardoll, S. J.: Geochemical Mass-Transfer Patterns as Indicators of the Architecture of a Complete Volcanic-Hosted Massive Sulfide Hydrothermal Alteration System, Panorama District, Pilbara, Western Australia, Econ. Geol., 96, 1263–1278, https://doi.org/10.2113/gsecongeo.96.5.1263, 2001.
Carvalho, D., Barriga, F. J. A. S., and Munhá, J.: Bimodal siliciclastic
systems – The case of the Iberian Pyrite Belt, in: Volcanic-associated
massive sulfide deposits: processes and examples in modern and ancient
settings, edited by: Barrie, C. T. and Hannington, M. D.,
Rev. Econ. Geol., 8, 375–408, 1999.
Cathles, L. M.: Oxygen isotope alteration in the Noranda mining district, Abitibi greenstone belt, Quebec, Econ. Geol., 88, 1483–1511, https://doi.org/10.2113/gsecongeo.88.6.1483, 1993.
Conde Rivas, C.: Geology and hydrothermal evolution of massive sulphides of
the Iberian Pyrite Belt, Spain, Philosophy Doctor, Departamento de
Geología, Universidad de Salamanca, Salamanca, Spain, 2016.
Conde, C. and Tornos, F.: Geochemistry and architecture of the host
sequence of the massive sulfides in the northern Iberian Pyrite Belt, Ore
Geol. Rev., 127, 103042, https://doi.org/10.1016/j.oregeorev.2019.103042, 2020.
Cooke, D. R., Baker, M., Hollings, P., Sweet, G., Chang, Z., Danyushevsky,
L., Gilbert, S., Zhou, T., White, N. C., Gemmell, J. B., and Inglis, S.: New
advances in detecting the distal geochemical footprints of porphyry systems
– Epidote mineral chemistry as a tool for vectoring and fertility
assessments, in: Building exploration capability for the 21st century,
edited by: Kelley, K. D. and Golden, H. C., Special Publication 18, Society
of Economic Geologists, Inc., 127–152, 2014.
Cooke, D. R., Agnew, P., Hollings, P., Baker, M., Chang, Z., Wilkinson, J.
J., White, N. C., Zhang, L., Thompson, J., Gemmell, J. B., Fox, N., Chen,
H., and Wilkinson, C. C.: Porphyry indicator minerals (PIMS) and porphyry
vectoring and fertility tools (PVFTS) – Indicators of mineralization styles
and recorders of hypogene geochemical dispersion halos, in: Proceedings of Exploration 17: Sixth Decennial International Conference on Mineral Exploration, edited by: Tschirhart, V. and Thomas, M. D., 457–470, Toronto, Canada, 22 to 25 October 2017.
Costa, I. M. S. R.: Efeitos mineralogicos e geochimicos de alteraço
mineralizante en rochas vulcanicas felsicas de Rio Tinto (Faixa Piritosa
Iberica, Espanha), Master's Degree, Department of Geology, Universidade de
Lisboa, Lisbon, Portugal, 200 pp., 1996.
de Oliveira, D. P. S., Matos, J. X., Rosa, C. J. P., Rosa, D. R. N.,
Figueiredo, M. O., Silva, T. P., Guimarães, F., Carvalho, J. R. S.,
Pinto, Á. M. M., Relvas, J. R. M. S., and Reiser, F. K. M.: The Lagoa
Salgada Orebody, Iberian Pyrite Belt, Portugal, Econ. Geol., 106,
1111–1128, https://doi.org/10.2113/econgeo.106.7.1111, 2011.
Donaire, T., Pascual, E., Sáez, R., Pin, C., Hamilton, M. A., and
Toscano, M.: Geochemical and Nd isotopic signature of felsic volcanic rocks
as a proxy of volcanic-hosted massive sulphide deposits in the Iberian
Pyrite Belt (SW, Spain): The Paymogo Volcano-Sedimentary Alignment, Ore
Geol. Rev., 120, 103408, https://doi.org/10.1016/j.oregeorev.2020.103408,
2020.
Dong, K., Chen, S., Graham, I., Zhao, J., Fu, P., Xu, Y., Tian, G., Qin, W.,
and Chen, J.: Geochemical behavior during mineralization and alteration
events in the Baiyinchang volcanic-hosted massive sulfide deposits, Gansu
Province, China, Ore Geol. Rev., 91, 559–572,
https://doi.org/10.1016/j.oregeorev.2017.09.002, 2017.
Doyle, M. G. and Allen, R. L.: Subsea-floor replacement in volcanic-hosted
massive sulfide deposits, Ore Geol. Rev., 23, 183–222,
https://doi.org/10.1016/S0169-1368(03)00035-0, 2003.
Duée, C., Orberger, B., Maubec, N., Laperche, V., Capar, L.,
Bourguignon, A., Bourrat, X., El Mendili, Y., Chateigner, D., Gascoin, S.,
Le Guen, M., Rodriguez, C., Trotet, F., Kadar, M., Devaux, K., Ollier, M.,
Pillière, H., Lefèvre, T., Harang, D., Eijkelkamp, F., Nolte, H.,
and Koert, P.: Impact of heterogeneities and surface roughness on pXRF, pIR,
XRD and Raman analyses: Challenges for on-line, real-time combined
mineralogical and chemical analyses on drill cores and implication for
“high speed” Ni-laterite exploration, J. Geochem. Explor., 198, 1–17,
https://doi.org/10.1016/j.gexplo.2018.12.010, 2019.
Floyd, P. A. and Winchester, J. A.: Identification and discrimination of
altered and metamorphosed volcanic-rocks using immobile elements, Chem.
Geol., 21, 291–306, 1978.
Franklin, J. M., Gibson, H. L., Jonasson, I. R., Galley, A. G., Hedenquist,
J. W., Thompson, J. F. H., Goldfarb, R. J., and Richards, J. P.:
Volcanogenic Massive Sulfide Deposits, in: 100th Anniversary Volume, Society
of Economic Geologists, 525–560, 2005.
Gale, G. H.: Vectoring volcanogenic massive sulphide deposits using rare earth elements and other pathfinder elements at the Ruttan mine, Manitoba (NTS 63B5), in: Report of Activities 2003, Manitoba Industry, Economic Development and Mines, Manitoba Geological Survey, 54–73, 2003.
Gale, G. H. and Fedikow, M. A. F.: The application of rare earth element analyses in the exploration for volcanogenic massive sulphide type deposits in Manitoba, in: Report of Activities, 1999, Manitoba Industry, Trade and Mines, Geological Services, 9–12, 1999.
Gazley, M. F., Vry, J. K., du Plessis, E., and Handler, M. R.: Application
of portable X-ray fluorescence analyses to metabasalt stratigraphy, Plutonic
Gold Mine, Western Australia, J. Geochem. Explor., 110, 74–80,
https://doi.org/10.1016/j.gexplo.2011.03.002, 2011.
Ge, L., Lai, W., and Lin, Y.: Influence of and correction for moisture in
rocks, soils and sediments on in situ XRF analysis, X-Ray Spectrom., 34,
28–34, https://doi.org/10.1002/xrs.782, 2005.
Germann, K., Lüders, V., Banks, D. A., Simon, K., and Hoefs, J.: Late
Hercynian polymetallic vein-type base-metal mineralization in the Iberian
Pyrite Belt: fluid-inclusion and stable-isotope geochemistry (S–O–H–Cl),
Miner. Depos., 38, 953–967, https://doi.org/10.1007/s00126-002-0342-z, 2003.
Gibson, H. L., Allen, R. L., Riverin, G., and Lane, T. E.: The VMS model:
advances and application to exploration targeting, in: Proceedings of
Exploration 07: Fifth Decennial International Conference on Mineral
Exploration, edited by: Milkereit, B., 713–730, Toronto, Canada, 9 to 12 September 2007.
Gisbert, G. and Gimeno, D.: Ignimbrite correlation using whole-rock
geochemistry: an example from the Sulcis (SW Sardinia, Italy), Geol. Mag.,
154, 740–756, https://doi.org/10.1017/s0016756816000327, 2017.
Goodfellow, W. D. and Peter, J. M.: Sulphur isotope composition of the Brunswick No. 12 massive sulphide deposit, Bathurst Mining Camp, New Brunswick: implications for ambient environment, sulphur source, and ore genesis, Can. J. Earth Sci., 33, 231–251, https://doi.org/10.1139/e96-020, 1996.
Goodfellow, W. D., McCutcheon, S. R., and Peter, J. M.: Geologic and Genetic
Attributes of Volcanic Sediment-Hosted Massive Sulfide Deposits of the
Bathurst Mining Camp, Northern New Brunswick – A Synthesis, in: Massive
Sulfide Deposits of the Bathurst Mining Camp, New Brunswick, and Northern
Maine, edited by: Goodfellow, W. D., McCutcheon, S. R., and Peter, J. M.,
Econ. Geol. Monograph, 11, 245–301, https://doi.org/10.5382/Mono.11.13, 2003.
Grant, J. A.: The isocon diagram; a simple solution to Gresens' equation for
metasomatic alteration, Econ. Geol., 81, 1976–1982, https://doi.org/10.2113/gsecongeo.81.8.1976, 1986.
Grant, J. A.: Isocon analysis: A brief review of the method and
applications, Phys. Chem. Earth, 30, 997–1004,
https://doi.org/10.1016/j.pce.2004.11.003, 2005.
Hall, G. E. M., Buchar, A., and Bonham-Carter, G. F.: Quality control
assessment of portable XRF analysers: development of standard operating
procedures, performance on variable media and recommended uses, CAMIRO Project 10E01, Phase I, 112, 2013.
Hall, G. E. M., Bonham-Carter, G. F., and Buchar, A.: Evaluation of portable
X-ray fluorescence (pXRF) in exploration and mining: Phase 1, control
reference materials, Geochem-Eplor. Env. A., 14,
99–123, https://doi.org/10.1144/geochem2013-241, 2014.
Hall, G. E. M., McClenaghan, M. B., and Pagé, L.: Application of
portable XRF to the direct analysis of till samples from various deposit
types in Canada, Geochem-Eplor. Env. A., 16,
62–84, https://doi.org/10.1144/geochem2015-371, 2016.
Hannington, M. D.: 13.18 – Volcanogenic Massive Sulfide Deposits, in:
Treatise on Geochemistry, Second Edition, edited by: Holland, H. D. and
Turekian, K. K., Elsevier, Oxford, 463–488, 2014.
Herrington, R. J., Armstrong, R. N., Zaykov, V. V., Maslennikov, V. V.,
Tessalina, S. G., Orgeval, J.-J., and Taylor, R. N. A.: Massive Sulfide
Deposits in the South Urals: Geological Setting within the Framework of the
Uralide Orogen, in: Mountain Building in the Uralides: Pangea to the
Present, 155–182, Geophysical Monograph, 132, American Geophysical Union, https://doi.org/10.1029/132GM09, 2002.
Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N., and
Pontual, S.: Short Wavelength Infrared (SWIR) Spectral Analysis of
Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at
Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland,
Econ. Geol., 96, 939–955, https://doi.org/10.2113/gsecongeo.96.5.939, 2001.
Hidalgo, R., Anderson, I. K., Bobrowicz, G., Ixer, R. A. F., Gaskarth, J.
W., and Kettle, R.: The Aguas Teñidas Este deposit, IV Simposio
Internacional de Sulfuretos Polimetalicos da Faixa Piritosa Iberica, A15,
1–6, Lisbon, 18–21 January 1998.
Hidalgo, R., Guerrero, V., Pons, J. M., and Anderson, I. K.: The Aguas
Teñidas Este mine, Huelva Province, SW Spain, 2000.
Hollis, S. P., Foury, S., Caruso, S., Johnson, S., Barrote, V., and
Pumphrey, A.: Lithogeochemical and Hyperspectral Halos to Ag-Zn-Au
Mineralization at Nimbus in the Eastern Goldfields Superterrane, Western
Australia, Minerals, 11, 254, https://doi.org/10.3390/min11030254, 2021.
IGME: Síntesis Geológica de la Faja Pirítica del SO de
España, Instituto Geológico y Minero de España, Madrid, 1982.
Ishikawa, Y., Sawaguchi, T., Iwaya, S., and Horiuchi, M.: Delineation of
prospecting targets for Kuroko deposits based on modes of volcanism of
underlying dacite and alteration haloes, Mining Geology, 26, 105–117, https://doi.org/10.11456/shigenchishitsu1951.26.105, 1976.
Julivert, M., Fontboté, J. M., Ribeiro, A., and Conde, L.: Mapa
tectónico de la Península Ibérica y Baleares, Instituto
Geológico y Minero de España, Madrid, 1974.
Laperche, V. and Lemière, B.: Possible Pitfalls in the Analysis of
Minerals and Loose Materials by Portable XRF, and How to Overcome Them,
Minerals, 11, 33, Geological Survey of Canada, 2021.
Large, R. R., McPhie, J., Gemmell, B., Herrmann, W., and Davidson, G. J.:
The spectrum of ore deposit types, volcanic environments, alteration halos,
and related exploration vectors in submarine volcanic successions: some
examples from Australia, Econ. Geol., 96, 913–938, https://doi.org/10.2113/gsecongeo.96.5.913, 2001a.
Large, R. R., Allen, R. L., Blake, M. D., and Herrmann, W.: Hydrothermal
Alteration and Volatile Element Halos for the Rosebery K Lens
Volcanic-Hosted Massive Sulfide Deposit, Western Tasmania, Econ. Geol.,
96, 1055–1072, https://doi.org/10.2113/gsecongeo.96.5.1055, 2001b.
Large, R. R., Gemmell, J. B., Paulick, H., and Huston, D. L.: The alteration
box plot: a simple approach to understanding the relationship between
alteration mineralogy and lithogeochemistry associated with volcanic-hosted
massive sulfide deposits, Econ. Geol., 96, 957–971, https://doi.org/10.2113/gsecongeo.96.5.957, 2001c.
Laznicka, P.: Quantitative relationships among giant deposits of metals,
Econ. Geol., 94, 455–473, https://doi.org/10.2113/gsecongeo.94.4.455, 1999.
Le Vaillant, M., Barnes, S. J., Fisher, L., Fiorentini, M. L., and Caruso,
S.: Use and calibration of portable X-Ray fluorescence analysers:
application to lithogeochemical exploration for komatiite-hosted nickel
sulphide deposits, Geochem-Eplor. Env. A., 14,
199–209, https://doi.org/10.1144/geochem2012-166, 2014.
Leistel, J. M., Marcoux, E., Thieblemont, D., Quesada, C., Sanchez, A.,
Almodovar, G. R., Pascual, E., and Saez, R.: The volcanic-hosted massive
sulphide deposits of the Iberian Pyrite Belt – Review and preface to the
Thematic Issue, Miner. Depos., 33, 2–30, 1998.
Lentz, D. R. and Goodfellow, W. D.: Geochemistry of the stringer sulfide
zone in the discovery hole at the Brunswick No. 12 massive sulfide deposit,
Bathurst, New Brunswick, Geological Survey of Canada, Paper 93-1E, 259–269,
1993.
Lydon, J. W.: Ore Deposit Models #14, Volcanogenic Massive Sulphide Deposits Part 2: Genetic Models, Geoscience Canada, 15, 1988.
MacLean, W. H. and Kranidiotis, P.: Immobile elements as monitors of mass
transfer in hydrothermal alteration; Phelps Dodge massive sulfide deposit,
Matagami, Quebec, Econ. Geol., 82, 951–962, https://doi.org/10.2113/gsecongeo.82.4.951,
1987.
Madeisky, H. E. and Stanley, C. R.: Lithogeochemical exploration of
metasomatic zones associated with volcanic-hosted massive sulfide deposits
using Pearce element ratio analysis, Int. Geol. Rev., 35, 1121–1148, https://doi.org/10.1080/00206819309465580, 1993.
Mantero, E. M., Alonso-Chaves, F. M., García-Navarro, E., and Azor, A.:
Tectonic style and structural analysis of the Puebla de Guzmán Antiform
(Iberian Pyrite Belt, South Portuguese Zone, SW Spain), Geological Society,
London, Special Publications, 349, 203–222, https://doi.org/10.1144/sp349.11, 2011.
Martin-Izard, A., Arias, D., Arias, M., Gumiel, P., Sanderson, D. J., Castañon, C., Lavandeira, A., and Sanchez, J.: A new 3D geological model and interpretation of structural evolution of the world-class Rio Tinto VMS deposit, Iberian Pyrite Belt (Spain), Ore Geol. Rev., 71, 457–476, https://doi.org/10.1016/j.oregeorev.2015.06.006, 2015.
McKee, G. S.: Genesis and deformation of the Aguas Teñidas Este massive
sulphide deposit and implications for the formation, structural evolution
and exploration of the Iberian Pyrite Belt, Doctor of Philosophy, University
of Birmingham, Birmingham, UK, 2003.
McKee, G. S., Hidalgo, R., Ixer, R. A., Boyce, A., Guerrero, V., and Pons,
J. M.: Deposit formation and structural evolution at Aguas Teñidas Este,
in: GEODE workshop massive sulfide deposits in the Iberian Pyrite Belt: new
advances and comparison with equivalent systems, edited by: Tornos, F.,
Pascual, E., Sáez, R., and Hidalgo, R., 38–39, Aracena, Spain, 2001.
McNulty, B. A., Fox, N., Berry, R. F., and Gemmell, J. B.: Lithological
discrimination of altered volcanic rocks based on systematic portable X-ray
fluorescence analysis of drill core at the Myra Falls VHMS deposit, Canada,
J. Geochem. Explor., 193, 1–21,
https://doi.org/10.1016/j.gexplo.2018.06.005, 2018.
McNulty, B. A., Fox, N., and Gemmell, J. B.: Assessing hydrothermal
alteration intensity in volcanic-hosted massive sulfide systems using
portable x-ray fluorescence analysis of drill core: an example from Myra
Falls, Canada, Econ. Geol., 115, 443–453, https://doi.org/10.5382/econgeo.4714, 2020.
Mitjavila, J., Martí, J., and Soriano, C.: Magmatic Evolution and
Tectonic Setting of the Iberian Pyrite Belt Volcanism, J. Petrol., 38,
727–755, https://doi.org/10.1093/petroj/38.6.727, 1997.
Mukherjee, I. and Large, R.: Application of pyrite trace element chemistry
to exploration for SEDEX style Zn-Pb deposits: McArthur Basin, Northern
Territory, Australia, Ore Geol. Rev., 81, 1249–1270,
https://doi.org/10.1016/j.oregeorev.2016.08.004, 2017.
Munhá, J.: Blue amphiboles, metamorphic regime and plate tectonic
modelling in the Iberian Pyrite Belt, Contrib. Mineral. Petrol., 69,
279–289, https://doi.org/10.1007/bf00372330, 1979.
Munhá, J.: Hercynian magmatism in the Iberian Pyrite Belt, Memórias
dos Serviços Geológicos de Portugal, 29, 39–81, 1983.
Munhá, J. and Kerrich, R.: Sea water basalt interaction in spilites
from the Iberian Pyrite Belt, Contrib. Mineral. Petrol., 73, 191–200, https://doi.org/10.1007/bf00371394, 1980.
Munha, J.: Metamorphic Evolution of the South Portuguese/Pulo Do Lobo Zone,
in: Pre-Mesozoic Geology of Iberia, edited by: Dallmeyer, R. D. and Garcia,
E. M., Springer Berlin Heidelberg, Berlin, Heidelberg, 363–368, 1990.
Ohmoto, H.: Formation of volcanogenic massive sulfide deposits: The Kuroko
perspective, Ore Geol. Rev., 10, 135–177,
https://doi.org/10.1016/0169-1368(95)00021-6, 1996.
Oliveira, J. T.: South Portuguese Zone: introduction. Stratigraphy and
synsedimentary tectonism, in: PreMesozoic Geology of Iberia, edited by:
Dallmeyer, R. D. and Martínez García, E., Springer Verlag, Berlin, Heidelberg, Germany, 333–347, 1990.
Oliveira, J. T., Horn, M., and Paproth, E.: Preliminary note on the
stratigraphy of the Baixo Alentejo Flysch Group, Carboniferous of Southern
Portugal and on the palaeogeographic development, compared to corresponding
units in Northwest Germany, Comunicações dos Serviços
Geológicos de Portugal, 65, 151–198, 1979.
Oliveira, J. T., Pereira, Z., Carvalho, P., Pacheco, N., and Korn, D.:
Stratigraphy of the tectonically imbricated lithological succession of the
Neves Corvo mine area, Iberian Pyrite Belt, Portugal, Miner. Depos., 39,
422–436, https://doi.org/10.1007/s00126-004-0415-2, 2004.
Pearce, T. H.: A contribution to the theory of variation diagrams, Contrib.
Mineral. Petrol., 19, 142–157, https://doi.org/10.1007/bf00635485, 1968.
Pearce, J. A.: A User's Guide to Basalt Discrimination Diagrams, in: Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration, edited by: Wyman, D. A., Short Course Notes, Vol. 12, Geological Association of Canada, 79–113, 1996.
Pereira, Z., Matos, J. X., Fernandes, P., and Oliveira, J. T.:
Palynostratigraphy and systematic palynology of the Devonian and
Carboniferous sucessions of the South Portuguese Zone, Portugal,
Memórias do Instituto Nacional de Engenharia, Tecnologia e
Inovação Instituto Nacional de Engenharia, Tecnologia e
Inovação, Lisboa, 181 pp., 2008.
Piantone, P., Freyssenet, P., Sobol, F., and Leistel, J.: Distribution of
selected major and trace elements in volcanic host of Rio Tinto massive
sulfide deposits, in: Current research in geology applied to ore deposits, edited by: Fenoll Hach-Alí, P. F., Torres-Ruiz, J., and Gervilla, F., Proceedings of the 2nd Biennal SGA Meeting, Granada, 9–11 September 1993,
365–368, 1993.
Piantone, P., Freyssenet, P., and Sobol, F.: Geochemical and mineralogical
signatures of hydrothermal alteration in the Río Tinto anticline: the
massive sulfide deposits of the south Iberian Pyrite Province: geological
setting and exploration criteria, in: Substances Minérales et
Énergiques, Documents du BRGM 234, edited by: Leistel, J. and Leca, X.,
Ed. BRGM., 139–161, 1994.
Piercey, S. J., Peter, J. M., Mortensen, J. K., Paradis, S., Murphy, D. C.,
and Tucker, T. L.: Petrology and U-Pb Geochronology of Footwall Porphyritic
Rhyolites from the Wolverine Volcanogenic Massive Sulfide Deposit, Yukon,
Canada: Implications for the Genesis of Massive Sulfide Deposits in
Continental Margin Environments, Econ. Geol., 103, 5–33, https://doi.org/10.2113/gsecongeo.103.1.5, 2008.
Quesada, C.: Geological constraints on the Paleozoic tectonic evolution of
tectonostratigraphic terranes in the Iberian Massif, Tectonophysics, 185,
225–245, https://doi.org/10.1016/0040-1951(91)90446-Y, 1991.
Quesada, C.: Estructura del sector español de la Faja Pirítica:
implicaciones para la exploración de yacimientos, Boletín
Geológico y Minero, 107, 65–78, 1996.
Quesada, C.: A reappraisal of the structure of the Spanish segment of the
Iberian Pyrite Belt, Miner. Depos., 33, 31–44, 1998.
Relvas, J. M. R. S.: Estudo geológico e metalogenético da área
do Gavião, Baixo Alentejo, MsC, Universidade de Lisboa, Lisbon, Portugal, 248 pp., 1991.
Relvas, J. R. M. S., Massano, C. M. R., and Barriga, F. J. A. S.: Ore zone
hydrothermal alteration around the Gaviäo orebodies: implications for
exploration in the Iberian Pyrite Belt, VIII Semana de Geoquimica, Lisboa, 3, 1990.
Relvas, J. M., Tassinari, C. C., Munhá, J., and Barriga, F. J.: Multiple
sources for ore-forming fluids in the Neves Corvo VHMS Deposit of the
Iberian Pyrite Belt (Portugal): strontium, neodymium and lead isotope
evidence, Miner. Depos., 36, 416–427, https://doi.org/10.1007/s001260100168, 2001.
Relvas, J. M. R. S., Barriga, F. J. A. S., Pinto, Á., Ferreira, A.,
Pacheco, N., Noiva, P., Barriga, G., Baptista, R., de Carvalho, D.,
Oliveira, V., Munhá, J., Richard, W. H., Goldfarb, R. J., and Nielsen,
R. L.: The Neves-Corvo Deposit, Iberian Pyrite Belt, Portugal: Impacts and
Future, 25 Years after the Discovery, in: Integrated Methods for Discovery:
Global Exploration in the Twenty-First Century, edited by: Goldfarb, R. J.
and Nielsen, R. L., Society of Economic Geologists, 9, 155–176, https://doi.org/10.5382/sp.09.08, 2002.
Relvas, J. M. R. S., Barriga, F. J. A. S., Ferreira, A., Noiva, P. C.,
Pacheco, N., and Barriga, G.: Hydrothermal Alteration and Mineralization
in the Neves-Corvo Volcanic-Hosted Massive Sulfide Deposit, Portugal. I.
Geology, Mineralogy, and Geochemistry, Econ. Geol., 101, 753–790, https://doi.org/10.2113/gsecongeo.101.4.753, 2006.
Ribeiro, A. and Silva, J. B.: Structure of South Portuguese Zone,
Memórias dos Serviços Geológicos de Portugal, 39, 83–90, 1983.
Rieger, P., Magnall, J. M., Gleeson, S. A., Schleicher, A. M., Bonitz, M.,
and Lilly, R.: The mineralogical and lithogeochemical footprint of the
George Fisher Zn-Pb-Ag massive sulphide deposit in the Proterozoic Urquhart
Shale Formation, Queensland, Australia, Chem. Geol., 560, 119975,
https://doi.org/10.1016/j.chemgeo.2020.119975, 2021.
Rosa, D. R. N., Inverno, C. M. C., Oliveira, V. M. J., and Rosa, C. J. P.:
Geochemistry of volcanic rocks, Albernoa Area, Iberian Pyrite Belt,
Portugal, Int. Geol. Rev., 46, 366–383, https://doi.org/10.2747/0020-6814.46.4.366, 2004.
Rosa, D. R. N., Inverno, C. M. C., Oliveira, V. M. J., and Rosa, C. J. P.:
Geochemistry and geothermometry of volcanic rocks from Serra Branca, Iberian
Pyrite Belt, Portugal, Gondwana Res., 10, 328–339,
https://doi.org/10.1016/j.gr.2006.03.008, 2006.
Ross, P.-S., Bourke, A., and Fresia, B.: Improving lithological
discrimination in exploration drill-cores using portable X-ray fluorescence
measurements: (2) applications to the Zn-Cu Matagami mining camp, Canada,
Geochem-Eplor. Env. A., 14, 187–196, https://doi.org/10.1144/geochem2012-164, 2014.
Ross, P.-S., Bourke, A., Mercier-Langevin, P., Lépine, S., Leclerc, F.,
and Boulerice, A.: High-Resolution Physical Properties, Geochemistry, and
Alteration Mineralogy for the Host Rocks of the Archean Lemoine Auriferous
Volcanogenic Massive Sulfide Deposit, Canada, Econ. Geol., 111,
1561–1574, https://doi.org/10.2113/econgeo.111.7.1561, 2016.
Ross, P.-S., Bourke, A., Schnitzler, N., and Conly, A.: Exploration Vectors
from Near Infrared Spectrometry near the McLeod Volcanogenic Massive Sulfide
Deposit, Matagami District, Québec, Econ. Geol., 114, 613–638, https://doi.org/10.5382/econgeo.4656, 2019.
Ruiz, C., Arribas, A., and Arribas Jr., A.: Mineralogy and geochemistry of
the Masa Valverde blind massive sulphide deposit, Iberian Pyrite Belt
(Spain), Ore Geol. Rev., 19, 1–22,
https://doi.org/10.1016/S0169-1368(01)00037-3, 2002.
Sáez, R., Pascual, E., Toscano, M., and Almodóvar, G. R.: The
Iberian type of volcano-sedimentary massive sulphide deposits, Miner.
Depos., 34, 549–570, https://doi.org/10.1007/s001260050220, 1999.
Sáez, R., Moreno, C., González, F., and Almodóvar, G. R.: Black
shales and massive sulfide deposits: causal or casual relationships?
Insights from Rammelsberg, Tharsis, and Draa Sfar, Miner. Depos., 46,
585–614, https://doi.org/10.1007/s00126-010-0311-x, 2011.
Sánchez España, J.: Mineralogía y geoquímica de
yacimientos de sulfuros masivos en el área nor-oriental de la Faja
Pirítica Ibérica (San Telmo – San Miguel – Peña del Hierro),
norte de Huelva, España, Doctor of Philosophy, Departamento de
Mineralogía y Petrología, Universidad del País Vasco, Leioa, Spain, 2000.
Sánchez-España, J., Velasco, F., and Yusta, I.: Hydrothermal
alteration of felsic volcanic rocks associated with massive sulphide
deposition in the northern Iberian Pyrite Belt (SW Spain), Appl. Geochem.,
15, 1265–1290, https://doi.org/10.1016/S0883-2927(99)00119-5, 2000.
Sánchez-España, J., Velasco, F., Boyce, A. J., and Fallick, A. E.: Source and evolution of ore-forming hydrothermal fluids in the northern Iberian Pyrite Belt massive sulphide deposits (SW Spain): evidence from fluid inclusions and stable isotopes, Miner. Depos., 38, 519–537, https://doi.org/10.1007/s00126-002-0326-z, 2003.
Schermerhorn, L. J. G.: An outline stratigraphy of the Iberian Pyrite Belt,
Boletín Geológico y Minero, 82, 23–52, 1971.
Schermerhorn, L. J. G.: Spilites, regional metamorphism and subduction in
the Iberian Pyrite Belt: some comments, Geologie en Mijnbouw, 54, 23–35,
1975.
Schlatter, D. M.: Volcanic stratigraphy and hydrothermal alteration of the
Petiknäs South Zn-Pb-Cu-Au-Ag volcanic-hosted massive sulfide deposit,
Sweden, PhD, Department of Chemical Engineering and Geosciences, Luleå
University of Technology, Luleå, Sweden, 2007.
Silva, J. B., Oliveira, J. T., and Ribeiro, A.: Structural Outline, in:
Pre-Mesozoic Geology of Iberia, edited by: Dallmeyer, R. D., and Garcia, E.
M., Springer Berlin Heidelberg, Berlin, Heidelberg, 348–362, 1990.
Soltani Dehnavi, A., Lentz, D. R., McFarlane, C. R. M., and Walker, J. A.:
Quantification of fluid-mobile elements in white mica by LA-ICP-MS: From
chemical composition to a potential micro-chemical vectoring tool in VMS
exploration, J. Geochem. Explor., 188, 290–307,
https://doi.org/10.1016/j.gexplo.2018.01.017, 2018a.
Soltani Dehnavi, A., McFarlane, C. R. M., Lentz, D. R., and Walker, J. A.:
Assessment of pyrite composition by LA-ICP-MS techniques from massive
sulfide deposits of the Bathurst Mining Camp, Canada: From textural and
chemical evolution to its application as a vectoring tool for the
exploration of VMS deposits, Ore Geol. Rev., 92, 656–671,
https://doi.org/10.1016/j.oregeorev.2017.10.010, 2018b.
Soltani Dehnavi, A., McFarlane, C. R. M., Lentz, D. R., McClenaghan, S. H.,
and Walker, J. A.: Chlorite-white mica pairs' composition as a
micro-chemical guide to fingerprint massive sulfide deposits of the Bathurst
Mining Camp, Canada, Minerals, 9, 125, https://doi.org/10.3390/min9020125, 2019.
Strauss, G. K., Roger, G., Lecolle, M., and Lopera, E.: Geochemical and
geologic study of the volcano-sedimentary sulfide orebody of La Zarza,
Province of Huelva, Spain, Econ. Geol., 76, 1975–2000, https://doi.org/10.2113/gsecongeo.76.7.1975, 1981.
Thiéblemont, D., Pascual, E., and Stein, G.: Magmatism in the Iberian
Pyrite Belt: petrological constraints on a metallogenic model, Miner.
Depos., 33, 98–110, https://doi.org/10.1007/s001260050135, 1997.
Tornos, F.: Environment of formation and styles of volcanogenic massive
sulfides: The Iberian Pyrite Belt, Ore Geol. Rev., 28, 259–307,
https://doi.org/10.1016/j.oregeorev.2004.12.005, 2006.
Tornos, F. and Heinrich, C. A.: Shale basins, sulfur-deficient ore brines
and the formation of exhalative base metal deposits, Chem. Geol., 247,
195–207, https://doi.org/10.1016/j.chemgeo.2007.10.011, 2008.
Tornos, F., González Clavijo, E., and Spiro, B.: The Filon Norte orebody
(Tharsis, Iberian Pyrite Belt): a proximal low-temperature shale-hosted
massive sulphide in a thin-skinned tectonic belt, Miner. Depos., 33,
150–169, https://doi.org/10.1007/s001260050138, 1998.
Tornos, F., Solomon, M., Conde, C., and Spiro, B. F.: Formation of the Tharsis massive sulfide deposit, Iberian Pyrite Belt: Geological, lithogeochemical, and stable isotope evidence for deposition in a brine pool, Econ. Geol., 103, 185–214, https://doi.org/10.2113/gsecongeo.103.1.185, 2008.
Tornos, F., Peter, J. M., Allen, R., and Conde, C.: Controls on the siting
and style of volcanogenic massive sulphide deposits, Ore Geol. Rev., 68,
142–163, https://doi.org/10.1016/j.oregeorev.2015.01.003, 2015.
Toscano, M., Almodóvar, G. R., Pascual, E., and Sáez, R.:
Hydrothermal alteration related to the ”Masa Valverde” massive sulphide
deposit, Iberian Pyrite Belt, Spain, in: Current research in geology applied
to ore deposits, edited by: Fenoll Hach-Alí, P. F., Torres-Ruiz, J., and
Gervilla, F., Proceedings of the 2nd biennal SGA meeting, Granada, 9–11
September 1993, 389–392, 1993.
Toscano, M., Ruiz de Almodóvar, G., and Sáez, R.: Variación
composicional de las sericitas de alteración hidrotermal en sulfuros
masivos: ”Masa Valverde” (Huelva), Boletín de la Sociedad Española
de Mineralogía, 17, 161–162, 1994.
Valenzuela, A., Donaire, T., Pin, C., Toscano, M., Hamilton, M. A., and
Pascual, E.: Geochemistry and U–Pb dating of felsic volcanic rocks in the
Riotinto–Nerva unit, Iberian Pyrite Belt, Spain: crustal thinning,
progressive crustal melting and massive sulphide genesis, J. Geol. Soc.,
168, 717–732, https://doi.org/10.1144/0016-76492010-081, 2011.
Velasco-Acebes, J., Tornos, F., Kidane, A. T., Wiedenbeck, M., Velasco, F.,
and Delgado, A.: Isotope geochemistry tracks the maturation of submarine
massive sulfide mounds (Iberian Pyrite Belt), Miner. Depos., 54, 913–934, https://doi.org/10.1007/s00126-018-0853-x, 2019.
Williams, D., Stanton, R. L., and Rambaud, F.: The Planes–San Antonio
pyritic deposit of Rio Tinto, Spain: its nature, environment and genesis,
Transactions-Institution of Mining and Metallurgy. Section B: Applied Earth
Science, United Kingdom, 84, 73–82, 1975.
Winchester, J. A., and Floyd, P. A.: Geochemical discrimination of different
magma series and their differentiation products using immobile elements,
Chem. Geol., 20, 325–343, 1977.
Winter, L. S., Tosdal, R. M., Mortensen, J. K., and Franklin, J. M.:
Volcanic Stratigraphy and Geochronology of the Cretaceous Lancones Basin,
Northwestern Peru: Position and Timing of Giant VMS Deposits, Econ. Geol., 105, 713–742, https://doi.org/10.2113/gsecongeo.105.4.713, 2010.
Short summary
We performed a detailed study of the rocks surrounding a major Zn–Pb–Cu ore deposit in southwestern Spain in order to characterize the behaviour of chemical elements in the influence area of the hydrothermal system that produced the deposit. Based on this information we propose new ways of detecting the nearby presence of ore deposits of this kind during exploration, thus improving our ability to detect new resources and contributing to securing the future supply of metals for our society.
We performed a detailed study of the rocks surrounding a major Zn–Pb–Cu ore deposit in...
Special issue