Articles | Volume 12, issue 3
https://doi.org/10.5194/se-12-665-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-12-665-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Benchmark study using a multi-scale, multi-methodological approach for the petrophysical characterization of reservoir sandstones
Peleg Haruzi
The Dr. Moses Strauss Department of Marine Geosciences, Leon H.
Charney School of Marine Sciences, The University of Haifa, Haifa, Israel
Agrosphere Institute, IBG-3, Institute of Bio- and Geosciences,
Forschungszentrum Jülich GmbH, Jülich, Germany
Regina Katsman
CORRESPONDING AUTHOR
The Dr. Moses Strauss Department of Marine Geosciences, Leon H.
Charney School of Marine Sciences, The University of Haifa, Haifa, Israel
Matthias Halisch
CORRESPONDING AUTHOR
Leibniz Institute for Applied Geophysics, Dept. 5 – Petrophysics
& Borehole Geophysics, Stilleweg 2, Hanover, Germany
Nicolas Waldmann
The Dr. Moses Strauss Department of Marine Geosciences, Leon H.
Charney School of Marine Sciences, The University of Haifa, Haifa, Israel
Baruch Spiro
The Dr. Moses Strauss Department of Marine Geosciences, Leon H.
Charney School of Marine Sciences, The University of Haifa, Haifa, Israel
Department of Earth Sciences, Natural History Museum, Cromwell
Road, London, UK
Related authors
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Peleg Haruzi, Regina Katsman, Baruch Spiro, Matthias Halisch, and Nicolas Waldmann
Solid Earth Discuss., https://doi.org/10.5194/se-2019-21, https://doi.org/10.5194/se-2019-21, 2019
Revised manuscript not accepted
Short summary
Short summary
We studied petrophysical characteristics of three consecutive sandstone layers of the Lower Cretaceous Hatira Formation from Israel. Evaluated micro- and macro-scale petrophysical properties predetermined the permeability of the layers, measured in turn in the lab and upscaled from pore-scale velocities. Two scales of porosity variations were found: at 300 μm scale due to pores size variability, and at 2 mm scale due to high and low porosity occlusions, suggested to control the permeability.
Allix J. Baxter, Francien Peterse, Dirk Verschuren, Aihemaiti Maitituerdi, Nicolas Waldmann, and Jaap S. Sinninghe Damsté
Biogeosciences, 21, 2877–2908, https://doi.org/10.5194/bg-21-2877-2024, https://doi.org/10.5194/bg-21-2877-2024, 2024
Short summary
Short summary
This study investigates the impact of long-term lake-system evolution on the climate signal recorded by glycerol dialkyl glycerol tetraethers (GDGTs), a popular biomarker in paleoclimate research. It compares downcore changes in GDGTs in the 250 000 year sediment sequence of Lake Chala (Kenya/Tanzania) to independent data for lake mixing and water-column chemistry. These factors influence the GDGT proxies in the earliest depositional phases (before ~180 ka), confounding the climate signal.
Sven Nordsiek and Matthias Halisch
Geosci. Instrum. Method. Data Syst., 13, 63–73, https://doi.org/10.5194/gi-13-63-2024, https://doi.org/10.5194/gi-13-63-2024, 2024
Short summary
Short summary
Research data resulting from geoscientific laboratory methods comprise multiple types and formats. A diversity of Earth system science fuels are needed to make research data available to scientists beyond a particular discipline. Global working groups define standards and create tools to improve research data handling in general. Adaption of these solutions to the needs of the geoscientific disciplines is vital to enable the development of a widely applicable geoscientific laboratory database.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Mariana Belferman, Amotz Agnon, Regina Katsman, and Zvi Ben-Avraham
Nat. Hazards Earth Syst. Sci., 22, 2553–2565, https://doi.org/10.5194/nhess-22-2553-2022, https://doi.org/10.5194/nhess-22-2553-2022, 2022
Short summary
Short summary
Internal fluid pressure in pores leads to breaking. With this mechanical principle and a correlation between historical water level changes and seismicity, we explore possible variants for water level reconstruction in the Dead Sea basin. Using the best-correlated variant, an additional indication is established regarding the location of historical earthquakes. This leads us to propose a certain forecast for the next earthquake in view of the fast and persistent dropping level of the Dead Sea.
Peleg Haruzi, Regina Katsman, Baruch Spiro, Matthias Halisch, and Nicolas Waldmann
Solid Earth Discuss., https://doi.org/10.5194/se-2019-21, https://doi.org/10.5194/se-2019-21, 2019
Revised manuscript not accepted
Short summary
Short summary
We studied petrophysical characteristics of three consecutive sandstone layers of the Lower Cretaceous Hatira Formation from Israel. Evaluated micro- and macro-scale petrophysical properties predetermined the permeability of the layers, measured in turn in the lab and upscaled from pore-scale velocities. Two scales of porosity variations were found: at 300 μm scale due to pores size variability, and at 2 mm scale due to high and low porosity occlusions, suggested to control the permeability.
Zeyu Zhang, Sabine Kruschwitz, Andreas Weller, and Matthias Halisch
Solid Earth, 9, 1225–1238, https://doi.org/10.5194/se-9-1225-2018, https://doi.org/10.5194/se-9-1225-2018, 2018
Short summary
Short summary
We investigate the pore space of rock samples with respect to different petrophysical parameters using various methods, which provide data on pore size distributions. The resulting cumulative distributions of pore volume as a function of pore size are compared. Considering that the methods differ with regard to their limits of resolution, a multiple-length-scale characterization of the pore space geometry is proposed that is based on a combination of the results from all of these methods.
Florence Sylvestre, Mathieu Schuster, Hendrik Vogel, Moussa Abdheramane, Daniel Ariztegui, Ulrich Salzmann, Antje Schwalb, Nicolas Waldmann, and the ICDP CHADRILL Consortium
Sci. Dril., 24, 71–78, https://doi.org/10.5194/sd-24-71-2018, https://doi.org/10.5194/sd-24-71-2018, 2018
Short summary
Short summary
CHADRILL aims to recover a sedimentary core spanning the Miocene–Pleistocene sediment succession of Lake Chad through deep drilling. This record will provide significant insights into the modulation of orbitally forced changes in northern African hydroclimate under different climate boundary conditions and the most continuous climatic and environmental record to be compared with hominid migrations across northern Africa and the implications for understanding human evolution.
Annette Kaufhold, Matthias Halisch, Gerhard Zacher, and Stephan Kaufhold
Solid Earth, 7, 1171–1183, https://doi.org/10.5194/se-7-1171-2016, https://doi.org/10.5194/se-7-1171-2016, 2016
Short summary
Short summary
The OPA material has been intensively studied by a variety of multiple scale and non-destructive 3-D X-ray CT investigations, following a consequent top-down approach to identify specific regions of interest. According to the mechanical experiment, it has been observed that the shear failure is located in a clay-rich area. Within the intersecting area of the two main fractures, a so called mylonitic zone with a particle reduction was observed on the open shear failure using CT and SEM techniques.
Matthias Halisch, Holger Steeb, Steven Henkel, and Charlotte M. Krawczyk
Solid Earth, 7, 1141–1143, https://doi.org/10.5194/se-7-1141-2016, https://doi.org/10.5194/se-7-1141-2016, 2016
Aaron Peche, Matthias Halisch, Alexandru Bogdan Tatomir, and Martin Sauter
Solid Earth, 7, 727–739, https://doi.org/10.5194/se-7-727-2016, https://doi.org/10.5194/se-7-727-2016, 2016
Short summary
Short summary
In this case study, we compute georeservoir specific capillary pressure-saturation- interfacial area relationships by implementing a FEM-based two-phase flow model on μ-CT-based modelling domains. We propose a recommended practice for deriving a model and model setup for the successful modelling of such types of problems on micro-CT obtained geometries.
Britta Schoesser, Atefeh Ghorbanpour, Matthias Halisch, and Markus Thewes
Solid Earth Discuss., https://doi.org/10.5194/se-2016-42, https://doi.org/10.5194/se-2016-42, 2016
Revised manuscript not accepted
Short summary
Short summary
In summary, the µ-CT technique delivers a valuable contribution for the research on the interaction of bentonite suspensions penetration the pore space of non-cohesive media. This study shows the missing visual evidence concerning the theoretical interaction models of the bentonite suspension in the pore space on microscale. The Imaging results have been cross-validated with laboratory experiments and are in good agreement with each other.
Mayka Schmitt, Matthias Halisch, Cornelia Müller, and Celso Peres Fernandes
Solid Earth, 7, 285–300, https://doi.org/10.5194/se-7-285-2016, https://doi.org/10.5194/se-7-285-2016, 2016
Short summary
Short summary
In this paper we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs.
I. Neugebauer, M. J. Schwab, N. D. Waldmann, R. Tjallingii, U. Frank, E. Hadzhiivanova, R. Naumann, N. Taha, A. Agnon, Y. Enzel, and A. Brauer
Clim. Past, 12, 75–90, https://doi.org/10.5194/cp-12-75-2016, https://doi.org/10.5194/cp-12-75-2016, 2016
Short summary
Short summary
Micro-facies changes and elemental variations in deep Dead Sea sediments are used to reconstruct relative lake level changes for the early last glacial period. The results indicate a close link of hydroclimatic variability in the Levant to North Atlantic-Mediterranean climates during the time of the build-up of Northern Hemisphere ice shields. First petrographic analyses of gravels in the deep core question the recent hypothesis of a Dead Sea dry-down at the end of the last interglacial.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Petrology
Interdisciplinary fracture network characterization in the crystalline basement: a case study from the Southern Odenwald, SW Germany
Matrix gas flow through “impermeable” rocks – shales and tight sandstone
First report of ultra-high pressure metamorphism in the Paleozoic Dunhuang orogenic belt (NW China): Constrains from P-T paths of garnet clinopyroxenite and SIMS U-Pb dating of titanite
Matthis Frey, Claire Bossennec, Lukas Seib, Kristian Bär, Eva Schill, and Ingo Sass
Solid Earth, 13, 935–955, https://doi.org/10.5194/se-13-935-2022, https://doi.org/10.5194/se-13-935-2022, 2022
Short summary
Short summary
The crystalline basement is considered a ubiquitous and almost inexhaustible source of geothermal energy in the Upper Rhine Graben. Interdisciplinary investigations of relevant reservoir properties were carried out on analogous rocks in the Odenwald. The highest hydraulic conductivities are expected near large-scale fault zones. In addition, the combination of structural geological and geophysical methods allows a refined mapping of potentially permeable zones.
Ernest Rutter, Julian Mecklenburgh, and Yusuf Bashir
Solid Earth, 13, 725–743, https://doi.org/10.5194/se-13-725-2022, https://doi.org/10.5194/se-13-725-2022, 2022
Short summary
Short summary
Underground energy and waste storage require repurposing of existing oil and gas wells for gas storage, compressed air, hydrogen, methane, and CO2 disposal, requiring an impermeable cap rock (e.g. shales) over the porous reservoir. We measured shale permeability over a range of burial pressures and gas pore pressures. Permeability decreases markedly as effective pressure on the rocks is increased. Knowing these relationships is essential to the safe design of engineered gas reservoirs.
Zhen M. G. Li, Hao Y. C. Wang, Qian W. L. Zhang, Meng-Yan Shi, Jun-Sheng Lu, Jia-Hui Liu, and Chun-Ming Wu
Solid Earth Discuss., https://doi.org/10.5194/se-2020-95, https://doi.org/10.5194/se-2020-95, 2020
Preprint withdrawn
Short summary
Short summary
This manuscript provides the first evidence of ultra-high metamorphism in the Paleozoic Dunhuang orogenic belt (NW China). Though no coesite or diamond was found in the samples or in this orogen, the geothermobarometric computation results and petrographic textures all suggest that the garnet clinopyroxenite experienced ultra-high pressure metamorphism, and SIMS U-Pb dating of titanite indicates that the post peak, subsequent tectonic exhumation of the UHP rocks occurred in the Devonian.
Cited articles
Abed, A. M.: Depositional environments of the early cretaceous Kurnub (Hatira) sandstones, North Jordan, Sediment. Geol., 31, 267–279, 1982.
Akinlotan, O.: Porosity and permeability of the English (Lower Cretaceous) sandstones, P. Geologist. Assoc., 127, 681–690, 2016.
Akinlotan, O.: Mineralogy and palaeoenvironments: the Weald Basin (Early
Cretaceous), Southeast England, The Depositional Record, 3, 187–200,
2017.
Akinlotan, O.: Multi-proxy approach to palaeoenvironmental modelling: the English Lower Cretaceous Weald Basin, Geol. J., 53, 316–335, 2018.
Ambegaokar, V., Halperin, B. I., and Langer, J. S.: Hopping conductivity in
disordered systems, Phys. Rev. B, 4, 2612, https://doi.org/10.1103/PhysRevB.4.2612, 1971.
American Petroleum Institute, API: Recommended Practices for Core Analysis, RP
40, 2nd edn., API Publishing Services, Washington, D.C., 1998.
Amireh, B. S.: Sedimentology and palaeogeography of the regressive-transgressive Kurnub Group (Early Cretaceous) of Jordan, Sediment. Geol., 112, 69–88, 1997.
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm. Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks-Part I: Imaging and segmentation, Comput. Geosci., 50, 25–32, 2013a.
Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm. Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., and Zhan, X.: Digital rock physics benchmarks-Part II: Computing effective properties, Comput. Geosci., 50, 33–43, 2013b.
Arns, J. Y., Sheppard, A. P., Arns, C. H., Knackstedt, M. A., Yelkhovsky, A.,
and Pinczewski, W. V.: Pore-level validation of representative pore networks
obtained from micro-CT images, in: Proceedings of the annual symposium of the
society of core analysis, September 2007, SCA2007-A26, Calgary, Canada, 2007.
Asakawa, S., Watanabe, T., Lyu, H., Funakawa, S., and Toyohara, H.: Mineralogical composition of tidal flat sediments in Japan, Soil Sci. Plant Nutr., 66, 615–623, 2020.
Avigad, D., Kolodner, K., McWilliams, M., Persing, H., and Weissbrod, T.: Origin of northern Gondwana Cambrian sandstone revealed by detrital zircon SHRIMP dating, Geology, 31, 227–230, 2003.
Avigad, D., Sandler, A., Kolodner, K., Stern, R. J., McWilliams, M., Miller, N., and Beyth, M.: Mass-production of Cambro-Ordovician quartz-rich sandstone as a consequence of chemical weathering of Pan-African terranes: Environmental implications, Earth Planet. Sc. Lett., 240, 818–826, 2005.
Bachman, M. and Hirsch, F.: Lower Cretaceous carbonate platform of the Eastern Levant (Galilee and the Golan Heights) stratigraphic and second-order change, Cretaceous Res., 27, 487–512, 2006.
Bear, J.: Dynamics of fluids in porous media, Courier Corporation, Elsevier Publishing, New York, USA,
2013.
Blunt, M. J., Bijeljic, B., Dong, H., Gharbi, O., Iglauer, S., Mostaghimi, P., Paluszny, A., and Pentland, C.: Pore-scale imaging and modelling, Adv. Water Resour., 51, 197–216, 2013.
Boek, E. S. and Venturoli, M.: Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries, Comput. Math. Appl., 59, 2305–2314, 2010.
Bogdanov, I. I., Guerton, F., Kpahou, J., and Kamp, A. M.: Direct pore-scale
modeling of two-phase flow through natural media, in: Proceedings of the 2011
COMSOL Conference in Stuttgart, October 2011, 2011.
Bogdanov, I. I., Kpahou, J., and Guerton, F.: Pore-scale single and two-phase
transport in real porous medium, in: Proceedings of ECMOR XIII-13th European
Conference on the Mathematics of Oil Recovery, 10–13 September 2012, Biarritz, France,
2012.
Boudreau, B. P.: The diffusive tortuosity of fine-grained unlithified sediments, Geochim. Cosmochim. Ac., 60, 3139–3142, 1996.
Brabant, L., Vlassenbroeck, J., De Witte, Y., Cnudde, V., Boone, M. N., Dewanckele, J., and Van Hoorebeke, L.: Three-dimensional analysis of high-resolution X-ray computed tomography data with Morpho+, Microsc. Microanal., 17, 252–263, 2011.
Brunke, O., Brockdorf, K., Drews, S., Müller, B., Donath, T., Herzen, J., and Beckmann, F.: Comparison between X-ray tube based and synchrotron radiation based μCT, in: Developments in X-ray Tomography VI, edited by: Stock, S. R., SPIE, San Diego, 7078, 2008.
Callow, B., Falcon-Suarez, I., Marin-Moreno, H., Bull, J. M., and Ahmed, S.: Optimal X-ray micro-CT image based methods for porosity and permeability quantification in heterogeneous sandstones, Geophys. J. Int., 223, 1210–1229, 2020.
Calvo, R.: The diagenetic history of Heletz Formation and the timing of
hydrocarbons accumulation in Heletz-Kokhav oil field, MSc thesis, The Hebrew
University of Jerusalem, 72 pp., 1992 (in Hebrew, with English abstract).
Calvo, R., Ayalon, A., Bein, A., and Sass, E.: Chemical and isotopic composition of diagenetic carbonate cements and its relation to hydrocarbon accumulation in the Heletz-Kokhav oil field (Israel), J. Geochem. Explor., 108, 88–98, 2011.
Carman, P. C.: Fluid flow through granular beds, Trans. Inst. Chem. Eng., 15, 150–166, 1937.
Cerepi, A., Durand, C., and Brosse, E.: Pore microgeometry analysis in low-resistivity sandstone reservoirs, J. Petrol. Sci. Eng., 35, 205–232, 2002.
Clavaud, J. B., Maineult, A., Zamora, M., Rasolofosaon, P., and Schlitter, C.: Permeability anisotropy and its relations with porous medium structure, J. Geophys. Res.-Sol. Ea., 113, B01202, https://doi.org/10.1029/2007JB005004, 2008.
Cnudde, V. and Boone, M. N.: High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Sci. Rev., 123, 1–17, 2013.
Cohen, A. and Boehm, S.: Lithofacies and environments of deposition of the
Lower Cretaceous Helez and Telamim Formations, Geological Survey of Israel Report, Jerusalem, Israel, 1983.
Cohen, Z.: The geology of the Lower Cretaceous in Southern Coastal Plain, PhD thesis, The Hebrew University of Jerusalem, 98 pp., 1971 (in Hebrew, with English abstract).
Du, S., Pang, S., and Shi, Y.: Quantitative characterization on the microscopic pore heterogeneity of tight oil sandstone reservoir by considering both the resolution and representativeness, J. Petrol. Sci. Eng., 169, 388–392, 2018.
Dullien, F. A.: Porous media: fluid transport and pore structure, Academic press, Cambridge, Massachusetts, United States, 2012.
Farrel, N. J. C., Healy, D., and Taylor, C. W.: Anisotropy of permeability in faulted porous sandstones, J. Struct. Geol., 63, 50–67, 2014.
Ferreira, N. N., Ferreira, E. P., Ramos, R. R., and Carvalho, I. S.: Palynological and sedimentary analysis of the Igarapé Ipiranga and Querru 1 outcrops of the Itapecuru Formation (Lower Cretaceous, Parnaíba Basin), Brazil, J. S. Am. Earth Sci., 66, 15–31, 2016.
Folk, R. L. and Ward, W. C.: Brazos River bar [Texas]; a study in the significance of grain size parameters, J. Sediment. Res., 27, 3–26, 1957.
Gardosh, M. A. and Tannenbaum, E.: The petroleum systems of Israel, in:
Petroleum systems of the Tethyan region: AAPG Memoir, edited by: Marlow, L.,
Kendall, C., and Yose, L., The American Association of Petroleum Geologists,
106, 179–216, 2014.
Garfunkel, Z.: The pre-quaternary geology in Israel, in: The zoogeography of Israel, edited by: Tchernov, E. and Yom-Tov, Y., Dr W. Junk Publishers, Dordrecht, the Netherlands, 7–34, 1988.
Garfunkel, Z.: History and paleogeography during the Pan-African orogen to stable platform transition: reappraisal of the evidence from the Elat area and the northern Arabian-Nubian Shield, Israel J. Earth Sci., 48, 135–157, 1999.
Gerke, K. M., Karsanina, M. V., and Katsman, R.: Calculation of tensorial flow properties on pore level: Exploring the influence of boundary conditions on the permeability of three-dimensional stochastic reconstructions, Phys. Rev. E, 100, 053312, https://doi.org/10.1103/PhysRevE.100.053312, 2019.
Giesche, H.: Mercury porosimetry: a general (practical) overview, Part. Part. Syst. Char., 23, 9–19, 2006.
Grader, P.: The geology of the Heletz oil field, PhD thesis, The Hebrew University of Jerusalem, 81 pp., 1959 (in Hebrew, with English abstract).
Grader, P. and Reiss, Z.: On the Lower Cretaceous of the Heletz area,
Geological Survey of Israel Report, Jerusalem, Israel, Bull No. 16, 14 pp., 1958.
Guibert, R., Horgue, P., Debenest, G., and Quintard, M.: A comparison of various methods for the numerical evaluation of porous media permeability tensors from pore-scale geometry, Math. Geosci., 48, 329–347, 2016.
Haldorsen, H. H. and Lake, L. W.: A new approach to shale management in field-scale models, Soc. Petrol. Eng. J., 24, 447–457, 1984.
Halisch, M.: Application and assessment of the lattice boltzmann method for fluid flow modeling in porous rocks, PhD thesis, Technical University of Berlin, 182 pp., 2013a.
Halisch, M.: The REV Challenge – estimating representative elementary volumes
and porous rock inhomogeneity from high resolution micro-CT data sets,
International Symposium of the Society of Core Analysts, 16–19 September 2013, Napa Valley, California, SCA2013-069, 2013b.
Halisch, M., Weller, A., Debschütz, W., Sattler, C. D., and El-Sayed, A. M.: A complex core-log case study of an anisotropic sandstone, originating from Bahariya Formation, Abu Gharadig Basin, Egypt, Petrophysics, 50, 478–497, 2009.
Harding, T. G., Norris, B., and Smith, K. H.: Horizontal Water Disposal Well
Performance in a High Porosity and Permeability Reservoir Conference: SPE
International Thermal Operations and Heavy Oil Symposium and International
Horizontal Well Technology Conference, November 2002, Calgary, Alberta, Canada, SPE-18153-MS, https://doi.org/10.2118/79007-MS,
2002.
Harter, T.: Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields, Phys. Rev. E, 72, 026120, https://doi.org/10.1103/PhysRevE.72.026120, 2005.
Haruzi, P., Katsman, R., Halisch, M., Waldmann, N., and Spiro, B.: Petrophysical measurements of sandstone samples extracted from an outcrop, PANGAEA, https://doi.org/10.1594/PANGAEA.907552, 2019.
Hurst, A. and Nadeau, P. H.: Clay microporosity in reservoir sandstones: an application of quantitative electron microscopy in petrophysical evaluation, AAPG Bull., 79, 563–573, 1995.
Iassonov, P., Gebrenegus, T., and Tuller, M.: Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures, Water Resour. Res., 45, W09415, https://doi.org/10.1029/2009WR008087, 2009.
Jackson, M. D., Muggeridge, A. H., Yoshida, S., and Johnson, H. D.: Upscaling permeability measurements within complex heterolithic tidal sandstones, Math. Geol., 35, 499–520, 2003.
Kalaydjian, F.: Origin and quantification of coupling between relative permeabilities for two-phase flows in porous media, Transport Porous Med., 5, 215–229, 1990.
Kass, M., Witkin, A., and Terzopoulos, D.: Snakes: Active contour models, Int. J. Comput. Vision, 1, 321–331, 1988.
Katz, A. J. and Thompson, A. H.: Prediction of rock electrical conductivity from mercury injection measurements, J. Geophys. Res.-Sol. Ea., 92, 599–607, 1987.
Kerckhofs, G., Schrooten, J., Van Cleynenbreugel, T., Lomov, S. V., and Wevers, M.: Validation of x-ray micro-focus computed tomography as an imaging tool for porous structures, Rev. Sci. Instrum., 79, 013711, https://doi.org/10.1063/1.2838584, 2008.
Khan, F., Enzmann, F., and Kersten, M.: Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples, Solid Earth, 7, 481–492, https://doi.org/10.5194/se-7-481-2016, 2016.
Knackstedt, M., Jaime, P., Butcher, A. R., Botha, P. W. S. K., Middleton, J., and Sok, R.: Integrating reservoir characterization: 3D dynamic, petrophysical and geological description of reservoir facies, in: Proceedings of the SPE Asia Pacific oil and gas conference and exhibition, 18–20 October, 2010, Brisbane, Queensland, Australia, SPE 133981, 2010.
Kolodner, K., Avigad, D., Ireland, T. R., and Garfunkel, Z.: Origin of Lower Cretaceous (“Nubian”) sandstones of North-east Africa and Arabia from detrital zircon U-Pb SHRIMP dating, Sedimentology, 56, 2010–2023, 2009.
Kozeny, J.: Uber kapillare leitung der wasser in boden, Royal Academy of Science, Vienna, Proceedings Class I, 136, 271–306, 1927.
Krinsley, D. H., Pye, K., Boggs Jr., S., and Tovey, N. K.: Backscattered scanning electron microscopy and image analysis of sediments and sedimentary rocks, Cambridge University Press, 2005.
Legland, D., Arganda-Carreras, I., and Andrey, P.: MorphoLibJ: integrated
library and plugins for mathematical morphology with ImageJ, Bioinformatics,
32, 3532–3534, 2016.
Lenormand, R.: Sca2003-52: Interpretation of mercury injection curves to
derive pore size distribution, in: Proceedings of 2003 International Symposium
of SCA, International Symposium of the Society of
Core Analysts, 21–24 September 2003, Pau, France, 2003.
Li, Y., He, D., Chen, L., Mei, Q., Li, C., and Zhang, L.: Cretaceous sedimentary basins in Sichuan, SW China: Restoration of tectonic and depositional environments, Cretaceous Res., 57, 50–65, 2016.
Linden, S., Wiegmann, A., and Hagen, H.: The LIR space partitioning system applied to the Stokes equations, Graph. Models 82, 58–66, 2015.
Linden S., Cheng L., and Wiegmann A.: Specialized methods for direct numerical
simulations in porous media, technical report, Math2Market GmbH, Kaiserslautern
Germany,
https://doi.org/10.30423/report.m2m-2018-01, 2018.
Liu, X., Wang, J., Ge, L., Hu, F., Li, C., Li, X., Yu, J., Xu, H., Lu, S., and Xue, Q.: Porescale characterization of tight sandstone in Yanchang Formation Ordos Basin China using micro-CT and SEM imaging from nm- to cm-scale, Fuel, 209, 254–264, 2017.
Lewis, J. J. M.: Outcrop-derived quantitative models of permeability heterogeneity for genetically different sand bodies, in: SPE Annual Technical Conference and Exhibition, 2–5 October 1988, Houston, Texas, 1988.
Louis, L., David, C., Metz, V., Robion, P., Menendez, B., and Kissel, C.: Microstructural control on the anisotropy of elastic and transport properties in undeformed sandstones, Int. J. Rock Mech. Min., 42, 911–923, 2005.
Massaad, M.: Origin and environment of deposition of Lebanon basal sandstones, Eclogae Geol. Helv., 69, 85–91, 1976.
McKay, G.: Use of Adsorbents for the Removal of Pollutants from
Wastewater, CRC press, 208 pp., ISBN 978-0-8493-6920-9, 1995.
MacKenzie, W. S., Adams, A. E., and Brodie, K. H.: Rocks and Minerals in Thin Section: A Colour Atlas, CRC Press, ISBN 9-781-1380-2806-7, 2017.
Meyer, R.: Anisotropy of Sandstone Permeability, CREWES Research Report,
Vol. 14, available at: https://www.researchgate.net/publication/242181236_Anisotropy_of_sandstone_permeability (last access: 9 March 2021), 2002.
Meyer, R. and Krause, F. F.: A comparison of plug-derived and probe-derived permeability in cross-bedded sandstones of the Virgelle Member, Alberta, Canada: The influence of flow directions on probe permeametry, AAPG Bull., 85, 477–489, 2001.
Mostaghimi, P., Blunt, M. J., and Bijeljic, B.: Computations of absolute permeability on micro-CT images, Math. Geosci., 45, 103–125, 2012.
Moussavi-Harami, R. and Brenner, R. L.: Diagenesis of non-marine petroleum reservoirs: the Neocomian (Lower Cretaceous) Shurijeh Formation, Kopet-Dagh basin, NE Iran, J. Petrol. Geol., 16, 55–72, 1993.
Munawar, M. J., Lin, C., Cnudde, V., Bultreys, T., Dong, C., Zhang, X., De Boever, W., Zahid, M. A., and Wu, Y.: Petrographic characterization to build an accurate rock model using micro-CT: case study on low-permeable to tight turbidite sandstone from Eocene Shahejie Formation, Micron, 109, 22–33, 2018.
Narsilio, G. A., Buzzi, O., Fityus, S., Yun, T. S., and Smith, D. W.: Upscaling of Navier–Stokes equations in porous media: Theoretical, numerical and experimental approach, Comput. Geotech., 36, 1200–1206, 2009.
Nelson, P. H.: Pore-throat sizes in sandstones, tight sandstones, and shales, AAPG Bull., 93, 329–340, 2009.
Neuzil, C. E.: Permeability of Clays and Shales, Annu. Rev. Earth Pl. Sc., 47, 247–273, 2019.
Nordahl, K. and Ringrose, P. S.: Identifying the representative elementary volume for permeability in heterolithic deposits using numerical rock models, Math. Geosci., 40, 753–771, https://doi.org/10.1007/s11004-008-9182-4, 2008.
Nordahl, K., Ringrose, P. S., and Wen, R.: Petrophysical characterisation of a heterolithic tidal reservoir interval using a process-based modelling tool, Petrol. Geosci., 11, 17–28, 2005.
Norris, R. J. and Lewis, J. J. M.: The geological modeling of effective
permeability in complex heterolithic facies, in: SPE Annual Technical
Conference and Exhibition, Society of Petroleum Engineers, 6–9 October 1991, Dallas,
1991.
Okabe, H. and Oseto, K.: Pore-scale heterogeneity assessed by the lattice-Boltzmann method, Society of Core Analysts (SCA2006-44), 12–16 September 2006, Trondheim, Norway, 2006.
Ovaysi, S. and Piri, M.: Direct pore-level modeling of incompressible fluid flow in porous media, J. Comput. Phys., 229, 7456–7476, 2010.
Pettijohn, F. J., Potter, P. E., and Siever, R.: Sand and Sandstone, 2nd edn., Springer Verlag, New York, 1987.
Renard, P., Genty, A., and Stauffer, F.: Laboratory determination of the full permeability tensor, J. Geophys. Res.-Sol. Ea., 106, 26443–26452, 2001.
Říha, J., Petrula, L., Hala, M., and Alhasan, Z.: Assessment of
empirical formulae for determining the hydraulic conductivity of glass beads, J. Hydrol. Hydromech., 66, 337–347, 2018.
Ringrose, P. and Bentley, M.: Reservoir Model Design: A Practitioner's Guide,
Springer, New York, 249 pp., 2015.
Rootare, H. M. and Prenzlow, C. F.: Surface areas from mercury porosimeter measurements, J. Phys. Chem., 71, 2733–2736, 1967.
Rustad, A. B., Theting, T. G., and Held, R. J.: Pore space estimation,
upscaling and uncertainty modelling for multiphase properties, in: SPE
Symposium on Improved Oil Recovery, Society of Petroleum Engineers, 19–23 April 2008, Tulsa, OK, UK,
2008.
Saltzman, U.: Survey of the southeastern flanks of Mount Hermon, Tahal report,
1968 (in Hebrew).
Sato, M., Panaghi, K., Takada, N., and Takeda, M.: Effect of Bedding Planes on the Permeability and Diffusivity Anisotropies of Berea Sandstone, Transport Porous Med., 127, 587–603, 2019.
Saxena, N., Hows, A., Hofmann, R., Alpak, F. O., Freeman, J., Hunter, S., and Appel, M.: Imaging and computational considerations for image computed permeability: operating envelope of digital rock physics, Adv. Water Resour., 116, 127–144, 2018.
Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J., White, D., Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A.: Fiji: an open-source platform for biological-image analysis, Nat. Methods, 9, 676–682, https://doi.org/10.1038/nmeth.2019, 2012.
Schlüter, S., Sheppard, A., Brown, K., and Wildenschild, D.: Image processing of multiphase images obtained via X-ray microtomography: a review, Water Resour. Res., 50, 3615–3639, 2014.
Schmitt, M., Halisch, M., Müller, C., and Fernandes, C. P.: Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography, Solid Earth, 7, 285–300, https://doi.org/10.5194/se-7-285-2016, 2016.
Scholz, C., Wirner, F., Götz, J., Rüde, U., Schröder-Turk, G. E., Mecke, K., and Bechinger, C.: Permeability of porous materials determined from the Euler characteristic, Phys. Rev. Lett., 109, 264504, https://doi.org/10.1103/PhysRevLett.109.264504, 2012.
Sethian, J. A.: A fast marching level set method for monotonically advancing
fronts, P. Natl. Acad. Sci. USA, 93, 1591–1595, 1996.
Shaw, S. M.: Southern Palestine geological map on a Scale 1:250,000 with explanatory notes, Palestine Geol. Soc. Publ., Jerusalem, 1947.
Shenhav, H.: Lower Cretaceous sandstone reservoirs, Israel: petrography, porosity, permeability, AAPG Bull., 55, 2194–2224, 1971.
Sheppard, A. P., Sok, R. M., and Averdunk, H.: Techniques for image enhancement and segmentation of tomographic images of porous materials, Physica A, 339, 145–151, 2004.
Shimron, A. E.: Tectonic evolution of the southern Mount Hermon, Geological
Survey of Israel Report, Jerusalem, Israel, GSI/10/98, 1998.
Sneh, A. and Weinberger, R.: Geology of the Metula quadrangle, northern Israel: Implications for the offset along the Dead Sea Rift, Israel J. Earth Sci., 52, 123–138, 2003.
Sneh, A. and Weinberger, R.: Metula sheet 2-11, Geology Survey of Israel, Ministry of Energy, 2014.
Tatomir, A. B., Halisch, M., Duschl, F., Peche, A., Wiegand, B., Schaffer, M., Licha, T., Niemi, A., Bensabat, J., and Sauter, M.: An integrated core-based analysis for the characterization of flow, transport and mineralogical parameters of the Heletz pilot CO2 storage site reservoir, Int. J. Greenh. Gas Con., 48, 24–43, 2016.
Tiab, D. and Donaldson, E. C.: Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, Elsevier, Gulf Professional Publishing, Oxford, 2004.
Tidwell, V. C. and Wilson, J. L.: Permeability upscaling measured on a block
of Berea Sandstone: Results and interpretation, Math. Geol., 31, 749–769,
1999.
Vincent, L. and Soille, P.: Watersheds in digital spaces: an efficient
algorithm based on immersion simulations, IEEE T. Pattern Anal., 6, 583–598,
1991.
Viswanathan, J., Konwar, D., and Jagatheesan, K.: Laboratory Characterization
of Reservoir Rock and Fluids of Upper Assam Basin, India, in: Novel Issues on
Unsaturated Soil Mechanics and Rock Engineering: Proceedings of the 2nd
GeoMEast International Congress and Exhibition on Sustainable Civil
Infrastructures, Egypt 2018 – The Official International Congress of the Soil-Structure Interaction Group in Egypt (SSIGE), Springer, New York City, USA, 179, 2018.
Vogel, H. J.: Topological characterization of porous media, in: Morphology of condensed matter, edited by: Mecke, K. R. and Stoyan, D., Springer, Berlin, 75–92, 2002.
Wang, W. P., Liu, J. L., Zhang, J. B., Li, X. P., Cheng, Y. N., Xin, W. W.,
and Yan, Y. F.: Evaluation of laser diffraction analysis of particle size
distribution of typical soils in China and comparison with the Sieve-Pipette
method, Soil Sci., 178, 194–204, 2013.
Wei, H., Ma, K., Yue, X., and Wang, X.:
The Relationship of Ultra-Low Permeability Sandstone Aspect Ratio With
Porosity, Permeability, Advances in Petroleum Exploration and Development, 7,
7–12, 2014.
Weissbrod, T.: Stratigraphy and correlation of the Lower Cretaceous exposures across the Dead Sea Transform with emphasis on tracing the Amir Formation in Jordan, Israel J. Earth Sci., 51, 55–78, 2002.
Weissbrod, T. and Nachmias, J.: Stratigraphic significance of heavy minerals in the late Precambrian-Mesozoic clastic sequence (“Nubian Sandstone”) in the Near East, Sediment. Geol., 47, 263–291, 1986.
Whitaker, S.: Flow in porous media I: A theoretical derivation of Darcy's law, Transport Porous Med., 1, 3–25, 1986.
Wiegmann, A.: GeoDict, the Digital Material Laboratory – Easy-to-use –
Powerful – Accurate, Whitepaper, 2019, Math2Market GmbH, Kaiserslautern, Germany,
https://doi.org/10.30423/WHITEPAPER.M2M-2019.
Wildenschild, D. and Sheppard, A. P.: X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems, Adv. Water Resour., 51, 217–246, 2013.
Zhang, D., Zhang, R., Chen, S., and Soll, W. E.: Pore scale study of flow in porous media: Scale dependency, REV, and statistical REV, Geophys. Res. Lett., 27, 1195–1198, 2000.
Zhang, P., Leed, Y. I., and Zhange, J.: A review of high-resolution X-ray computed tomography applied to petroleum geology and a case study, Micron, 124, 102702, https://doi.org/10.1016/j.micron.2019.102702, 2019.
Zhu, W., Montési, L. G. J., and Wong, T. F.: Effects of Stress on the Anisotropic Development of Permeability during Mechanical Compaction of Porous Sandstones, Geological Society, London, Special Publications, 200, 119–136, 2002.
Short summary
In this paper, we evaluate a multi-methodological approach for the comprehensive characterization of reservoir sandstones. The approach enables identification of links between rock permeability and textural and topological rock descriptors quantified at microscale. It is applied to study samples from three sandstone layers of Lower Cretaceous age in northern Israel, which differ in features observed at the outcrop, hand specimen and micro-CT scales, and leads to their accurate characterization.
In this paper, we evaluate a multi-methodological approach for the comprehensive...