Articles | Volume 14, issue 2
https://doi.org/10.5194/se-14-119-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-119-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs
Joshua Martin Guerrero
CORRESPONDING AUTHOR
Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
Frédéric Deschamps
CORRESPONDING AUTHOR
Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Institutions of Earth Science, Chinese Academy of Sciences, Beijing, China
Wen-Pin Hsieh
Institute of Earth Sciences, Academia Sinica, Taipei, Taiwan
Paul James Tackley
Department of Earth Sciences, ETH Zürich, Zurich, Switzerland
Related authors
No articles found.
Paul James Tackley
EGUsphere, https://doi.org/10.5194/egusphere-2025-1354, https://doi.org/10.5194/egusphere-2025-1354, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Tracers are commonly used in geodynamical models to track composition, but a common problem is that over time, gaps in the tracer distribution can develop, as well as bunches. Here a method to correct such problems is presented and tested. The method perturbs or “nudges” the positions of tracers in such a way as to close gaps and eliminate bunching. Test results show that this tracer nudging method is highly effective. The computational cost is small.
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021, https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Short summary
The lower mantle extends from 660–2890 km depth, making up > 50 % of the Earth’s volume. Its composition and structure, however, remain poorly understood. In this study, we investigate several hypotheses with computer simulations of mantle convection that include different materials: recycled, dense rocks and ancient, strong rocks. We propose a new integrated style of mantle convection including
piles,
blobs, and
streaksthat agrees with various observations of the deep Earth.
Daniela Paz Bolrão, Maxim D. Ballmer, Adrien Morison, Antoine B. Rozel, Patrick Sanan, Stéphane Labrosse, and Paul J. Tackley
Solid Earth, 12, 421–437, https://doi.org/10.5194/se-12-421-2021, https://doi.org/10.5194/se-12-421-2021, 2021
Short summary
Short summary
We use numerical models to investigate the thermo-chemical evolution of a solid mantle during a magma ocean stage. When applied to the Earth, our study shows that the solid mantle and a magma ocean tend toward chemical equilibration before crystallisation of this magma ocean. Our findings suggest that a very strong chemical stratification of the solid mantle is unlikely to occur (as predicted by previous studies), which may explain why the Earth’s mantle is rather homogeneous in composition.
Jana Schierjott, Antoine Rozel, and Paul Tackley
Solid Earth, 11, 959–982, https://doi.org/10.5194/se-11-959-2020, https://doi.org/10.5194/se-11-959-2020, 2020
Short summary
Short summary
We investigate the size of mineral grains of Earth's rocks in computer models of the whole Earth. This is relevant because grain size affects the stiffness (large grains are stiffer) and deformation of the Earth's mantle. We see that mineral grains grow inside stable non-deforming regions of the Earth. However, these regions are less stiff than expected. On the other hand, we find that grain size diminishes during deformation events such as when surface material comes down into the Earth.
Robert I. Petersen, Dave R. Stegman, and Paul J. Tackley
Solid Earth, 8, 339–350, https://doi.org/10.5194/se-8-339-2017, https://doi.org/10.5194/se-8-339-2017, 2017
Short summary
Short summary
In this study we propose a dichotomy in the strength profile of tectonic plates. This apparent dichotomy suggests that plates at the Earth's surface are significantly stronger, by orders of magnitude, than the subducted slabs in the Earth's interior. Strong plates promote single-sided, Earth-like subduction. Once subducted, strong slabs transmit dynamic stresses and disrupt subduction. Slabs which are weakened do not disrupt subduction and furthermore exhibit a variety of observed morphologies.
Related subject area
Subject area: Mantle and core structure and dynamics | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
On the global geodynamic consequences of different phase boundary morphologies
ECOMAN: an open-source package for geodynamic and seismological modelling of mechanical anisotropy
Quantifying mantle mixing through configurational entropy
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Transport mechanisms of hydrothermal convection in faulted tight sandstones
On the choice of finite element for applications in geodynamics
Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Comparing global seismic tomography models using varimax principal component analysis
Gwynfor T. Morgan, J. Huw Davies, Robert Myhill, and James Panton
EGUsphere, https://doi.org/10.5194/egusphere-2024-3496, https://doi.org/10.5194/egusphere-2024-3496, 2024
Short summary
Short summary
We simulate the effect of phase boundaries which are described by multiple Clapeyron slopes in P-T space on mantle geodynamics. We are motivated by two examples: the Rw-to-Brm+Pc reaction proceeding via Ak at cool temperatures, & a curving Gt-to-Brm boundary. Some have suggested these could change mantle dynamics. We find that this is unlikely for both reactions: the first due to the uniqueness of thermodynamic state, and the second due to the low value of Clapeyron slope and density change.
Manuele Faccenda, Brandon P. VanderBeek, Albert de Montserrat, Jianfeng Yang, Francesco Rappisi, and Neil Ribe
Solid Earth, 15, 1241–1264, https://doi.org/10.5194/se-15-1241-2024, https://doi.org/10.5194/se-15-1241-2024, 2024
Short summary
Short summary
The Earth's internal dynamics and structure can be well understood by combining seismological and geodynamic modelling with mineral physics, an approach that has been poorly adopted in the past. To this end we have developed ECOMAN, an open-source software package that is intended to overcome the computationally intensive nature of this multidisciplinary methodology and the lack of a dedicated and comprehensive computational framework.
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024, https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Short summary
Geodynamic models of mantle convection provide a powerful tool to study the structure and composition of the Earth's mantle. Comparing such models with other datasets is difficult. We explore the use of
configurational entropy, which allows us to quantify mixing in models. The entropy may be used to analyse the mixed state of the mantle as a whole and may also be useful to validate numerical models against anomalies in the mantle that are obtained from seismology and geochemistry.
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024, https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
Short summary
Heat flux heterogeneities at the bottom of Earth's mantle play an important role in the dynamic of the underlying core. Here, we study how these heterogeneities are affected by the global rotation of the Earth, called true polar wander (TPW), which has to be considered to relate mantle dynamics with core dynamics. We find that TPW can greatly modify the large scales of heat flux heterogeneities, notably at short timescales. We provide representative maps of these heterogeneities.
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024, https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Short summary
Fluids and melts in the mantle are key to the Earth’s evolution. The main driving force for their transport is the compaction of the porous mantle. Numerically, the compaction equations can yield unphysical negative liquid fractions (porosity), and it is necessary to enforce positive porosity. However, the effect of such a treatment on liquid flow and mass conservation has not been quantified. We found that although mass conservation is affected, the liquid pathways are well resolved.
Guoqiang Yan, Benjamin Busch, Robert Egert, Morteza Esmaeilpour, Kai Stricker, and Thomas Kohl
Solid Earth, 14, 293–310, https://doi.org/10.5194/se-14-293-2023, https://doi.org/10.5194/se-14-293-2023, 2023
Short summary
Short summary
The physical processes leading to the kilometre-scale thermal anomaly in faulted tight sandstones are numerically investigated. The fluid-flow pathways, heat-transfer types and interactions among different convective and advective flow modes are systematically identified. The methodologies and results can be applied to interpret hydrothermal convection-related geological phenomena and to draw implications for future petroleum and geothermal exploration and exploitation in analogous settings.
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, https://doi.org/10.5194/se-13-229-2022, 2022
Short summary
Short summary
One of the main numerical methods to solve the mass, momentum, and energy conservation equations in geodynamics is the finite-element method. Four main types of elements have been used in the past decades in hundreds of publications. For the first time we compare results obtained with these four elements on a series of geodynamical benchmarks and applications and draw conclusions as to which are the best ones and which are to be preferably avoided.
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021, https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Short summary
The lower mantle extends from 660–2890 km depth, making up > 50 % of the Earth’s volume. Its composition and structure, however, remain poorly understood. In this study, we investigate several hypotheses with computer simulations of mantle convection that include different materials: recycled, dense rocks and ancient, strong rocks. We propose a new integrated style of mantle convection including
piles,
blobs, and
streaksthat agrees with various observations of the deep Earth.
Olivier de Viron, Michel Van Camp, Alexia Grabkowiak, and Ana M. G. Ferreira
Solid Earth, 12, 1601–1634, https://doi.org/10.5194/se-12-1601-2021, https://doi.org/10.5194/se-12-1601-2021, 2021
Short summary
Short summary
As the travel time of seismic waves depends on the Earth's interior properties, seismic tomography uses it to infer the distribution of velocity anomalies, similarly to what is done in medical tomography. We propose analysing the outputs of those models using varimax principal component analysis, which results in a compressed objective representation of the model, helping analysis and comparison.
Cited articles
Ammann, M. W., Walker, A. M., Stackhouse, S., Wookey, J., Forte, A. M., Brodholt, J. P., and Dobson, D. P.: Variation of thermal conductivity and heat flux at the Earth's core mantle boundary, Earth Planet. Sc. Lett., 390, 175–185, 2014. a
Boehler, R.: High-pressure experiments and the phase diagram of lower mantle and core materials, Rev. Geophys., 38, 221–245, 2000. a
Citron, R. I., Lourenço, D. L., Wilson, A. J., Grima, A. G., Wipperfurth, S. A., Rudolph, M. L., Cottaar, S., and Montési, L. G.: Effects of Heat‐Producing Elements on the Stability of Deep Mantle Thermochemical Piles, Geochem. Geophy. Geosy., 21, e2019GC008895, https://doi.org/10.1029/2019GC008895, 2020. a
Dalton, D. A., Hsieh, W. P., Hohensee, G. T., Cahill, D. G., and Goncharov, A. F.: Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure, Scientific Reports, 3, 2400, https://doi.org/10.1038/srep02400, 2013. a, b
Davaille, A. and Romanowicz, B.: Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”, Tectonics, 39, e2020TC006265, https://doi.org/10.1029/2020TC006265, 2020. a, b, c
Davies, D. R., Goes, S., Davies, J. H., Schuberth, B. S. A., Bunge, H. P., and Ritsema, J.: Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity, Earth Planet. Sc. Lett., 353, 253–269, 2012. a
Dekura, H., Tsuchiya, T., and Tsuchiya, J.: Ab initio lattice thermal conductivity of MgSiO3 perovskite as found in Earth’s lower mantle, Phys. Rev. Lett., 110, 025904, https://doi.org/10.1103/PhysRevLett.110.025904, 2013. a
Deschamps, F., Kaminski, E., and Tackley, P. J.: A deep mantle origin for the primitive signature of ocean island basalt, Nat. Geosci., 4, 879–882, 2011. a
Deschamps, F., Li, Y., and Tackley, P. J.: Large-scale thermo-chemical structure of the deep mantle: observations and models, in: The Earth's heterogeneous mantle, Springer, Cham, 479–515, https://doi.org/10.1007/978-3-319-15627-9_15, 2015. a
Deschamps, F., Rogister, Y., and Tackley, P. J.: Constraints on core-mantle boundary topography from models of thermal and thermochemical convection, Geophys. J. Int., 212, 164–188, 2018. a
Dubuffet, F., and Yuen, D. A.: A thick pipe-like heat‐transfer mechanism in the mantle: Nonlinear coupling between 3‐D convection and variable thermal conductivity, Geophys. Res. Lett., 27, 17–20, 2000. a
Dubuffet, F., Yuen, D. A., and Yanagawa, T.: Feedback effects of variable thermal conductivity on the cold downwellings in high Rayleigh number convection, Geophys. Res. Lett., 27, 2981–2984, 2000. a
Frost, D. A., Avery, M. S., Buffett, B. A., Chidester, B. A., Deng, J., Dorfman, S. M., Li, Z., Liu, L., Lv, M., and Martin, J. F.: Multidisciplinary Constraints on the Thermal-Chemical Boundary Between Earth's Core and Mantle, Geochem. Geophy. Geosy., 23, e2021GC009764, https://doi.org/10.1029/2021GC009764, 2022. a
Garnero, E. J., McNamara, A. K., and Shim, S. H.: Continent-sized anomalous zones with low seismic velocity at the base of Earth's mantle, Nat. Geosci., 9, 481–489, 2016. a
Goncharov, A. F., Lobanov, S. S., Tan, X., Hohensee, G. T., Cahill, D. G., Lin, J. F., Thomas, S.-M., Okuchi, T., and Tomioka, N.: Experimental study of thermal conductivity at high pressures: Implications for the deep Earth’s interior, Phys. Earth Planet. In., 247, 11–16, 2015. a
Gülcher, A. J., Gebhardt, D. J., Ballmer, M. D., and Tackley, P. J.: Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle, Earth Planet. Sc. Lett., 536, 116160, https://doi.org/10.1016/j.epsl.2020.116160, 2020. a
Haigis, V., Salanne, M., and Jahn, S.: Thermal conductivity of MgO, MgSiO3 perovskite and post-perovskite in the Earth's deep mantle, Earth Planet. Sc. Lett., 355, 102–108, 2012. a
Hernlund, J. W. and Tackley, P. J.: Modeling mantle convection in the spherical annulus, Phys. Earth Planet. In., 171, 48–54, 2008. a
Heyn, B. H., Conrad, C. P., and Trønnes, R. G.: How thermochemical piles can (periodically) generate plumes at their edges, J. Geophys. Res.-Sol. Ea., 125, e2019JB018726, https://doi.org/10.1029/2019JB018726, 2020. a
Hirose, K., Fei, Y., Ma, Y., and Mao, H. K.: The fate of subducted basaltic crust in the Earth's lower mantle, Nature, 397, 53–56, 1999. a
Jaupart, C., Labrosse, S., and Mareschal, J.: Temperatures, Heat and Energy in the Mantle of the Earth, in: Treatise on Geophysics, volume 7, 1st edn., edited by: Bercovici, D., Elsevier, 2007, 253–303, https://doi.org/10.1016/B978-044452748-6.00114-0, 2007. a
Kanamori, H., Fujii, N., and Mizutani, H.: Thermal diffusivity measurement of rock‐forming minerals from 300 to 1100 K, J. Geophys. Res., 73, 595–605, 1968. a
Katsura, T.: Thermal diffusivity of periclase at high temperatures and high pressures, Phys. Earth Planet. In., 101, 73–77, 1997. a
Katsura, T.: A revised adiabatic temperature profile for the mantle, J. Geophys. Res.-Sol. Ea., 127, e2021JB023562, https://doi.org/10.1029/2021JB023562, 2022. a
Kawai, K. and Tsuchiya, T.: Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling, P. Natl. Acad. Sci. USA, 106, 22119–22123, 2009. a
Klemens, P. G.: Thermal resistance due to point defects at high temperatures, Phys. Rev., 119, 507–509, https://doi.org/10.1103/PhysRev.119.507, 1960. a, b
Labrosse, S., Hernlund, J. W., and Coltice, N.: A crystallizing dense magma ocean at the base of the Earth's mantle, Nature, 450, 866–869, 2007. a
Lee, C. T. A., Luffi, P., Höink, T., Li, J., Dasgupta, R., and Hernlund, J.: Upside-down differentiation and generation of a “primordial” lower mantle, Nature, 463, 930–933, 2010. a
Li, Y., Deschamps, F., and Tackley, P. J.: The stability and structure of primordial reservoirs in the lower mantle: insights from models of thermochemical convection in three-dimensional spherical geometry, Geophys. J. Int., 199, 914–930, 2014. a
Li, Y., Deschamps, F., and Tackley, P. J.: Effects of the post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth, Earth Planet. Sc. Lett., 432, 1–12, https://doi.org/10.1016/j.epsl.2015.09.040, 2015. a
Li, Y., Vilella, K., Deschamps, F., Zhao, L., and J. Tackley, P.: Effects of iron spin transition on the structure and stability of large primordial reservoirs in Earth's lower mantle, Geophys. Res. Lett., 45, 5918–5928, 2018. a
Li, Y., Deschamps, F., Yang, J., Chen, L., Zhao, L., and Tackley, P. J.: Effects of the Compositional Viscosity Ratio on the Long‐Term Evolution of Thermochemical Reservoirs in the Deep Mantle, Geophys. Res. Lett., 46, 9591–9601, 2019. a
Li, Y., Deschamps, F., Shi, Z., Guerrero J. M., Hsieh, W. P., and Tackley, P. J.: Influence of composition-dependent thermal conductivity on the long-term evolution of primordial reservoirs in Earth's lower mantle, Earth Planets Space, 74, 46, https://doi.org/10.1186/s40623-022-01608-3, 2022. a, b, c
Manthilake, G. M., de Koker, N., Frost, D. J., and McCammon, C. A.: Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core, P. Natl. Acad. Sci. USA, 108, 17901–17904, https://doi.org/10.1073/pnas.1110594108, 2011. a, b, c
Mosca, I., Cobden, L., Deuss, A., Ritsema, J., and Trampert, J.: Seismic and mineralogical structures of the lower mantle from probabilistic tomography, J. Geophys. Res.-Sol. Ea., 117, B06304, https://doi.org/10.1029/2011JB008851, 2012. a
Nakagawa, T., Tackley, P. J., Deschamps, F., and Connolly, J. A.: Incorporating self‐consistently calculated mineral physics into thermochemical mantle convection simulations in a 3‐D spherical shell and its influence on seismic anomalies in Earth's mantle, Geochem. Geophy. Geosy., 10, Q03004, https://doi.org/10.1029/2008GC002280, 2009. a
Okuda, Y., Ohta, K., Yagi, T., Sinmyo, R., Wakamatsu, T., Hirose, K., and Ohishi, Y.: The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth's lower mantle, Earth Planet. Sc. Lett., 474, 25–31, 2017. a
Price, G. D., Alfè, D., Vočadlo, L., and Gillan, M. J.: The Earth’s core: an approach from first principles, in: The State of the Planet: Frontiers and Challenges in Geophysics, Geophys. Monogr. Ser., vol. 150, edited by: Sparks, R. S. J. and Hawkesworth, C. J., AGU, Washington, D. C., 1–12, https://doi.org/10.1029/150GM02, 2004. a
Stackhouse, S., Stixrude, L., and Karki, B. B.: First-principles calculations of the lattice thermal conductivity of the lower mantle, Earth Planet. Sc. Lett., 427, 11–17, 2015. a
Tackley, P. J.: Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D. The Core-Mantle Boundary Region, Geodyn. Ser., 28, 231–253, 1998. a
Tackley, P. J.: Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. In., 171, 7–18, https://doi.org/10.1016/j.pepi.2008.08.005, 2008. a, b
Tan, E., Leng, W., Zhong, S., and Gurnis, M.: On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3‐D compressible mantle, Geochem. Geophy. Geosy., 12, Q07005, https://doi.org/10.1029/2011GC003665, 2011. a
Tang, X., Ntam, M. C., Dong, J., Rainey, E. S., and Kavner, A.: The thermal conductivity of Earth's lower mantle, Geophys. Res. Lett., 41, 2746–2752, 2014. a
Tosi, N., Yuen, D. A., de Koker, N., and Wentzcovitch, R. M.: Mantle dynamics with pressure-and temperature-dependent thermal expansivity and conductivity, Phys. Earth Planet. In., 217, 48–58, 2013. a
Yamazaki, D. and Karato, S. I.: Some mineral physics constraints on the rheology and geothermal structure of Earth's lower mantle, Am. Mineral., 86, 385–391, 2001. a
Yanagawa, T. K., Nakada, M., and Yuen, D. A.: Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity, Earth, Planets and Space, 57, 15–28, 2005. a
Zhang, Y., Yoshino, T., Yoneda, A., and Osako, M.: Effect of iron content on thermal conductivity of olivine with implications for cooling history of rocky planets, Earth Planet. Sc. Lett., 519, 109–119, 2019. a
Short summary
The mantle thermal conductivity's dependencies on temperature, pressure, and composition are often suppressed in numerical models. We examine the effect of these dependencies on the long-term evolution of lower-mantle thermochemical structure. We propose that depth-dependent conductivities derived from mantle minerals, along with moderate temperature and compositional correction, emulate the Earth's mean lowermost-mantle conductivity values and produce a stable two-pile configuration.
The mantle thermal conductivity's dependencies on temperature, pressure, and composition are...