Articles | Volume 14, issue 2
https://doi.org/10.5194/se-14-119-2023
https://doi.org/10.5194/se-14-119-2023
Research article
 | 
07 Feb 2023
Research article |  | 07 Feb 2023

Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs

Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley

Related authors

On stabilisation of compositional density jumps in compressible mantle convection simulations
Paul J. Tackley
EGUsphere, https://doi.org/10.5194/egusphere-2025-1543,https://doi.org/10.5194/egusphere-2025-1543, 2025
Short summary
The tracer nudging method for correcting and preventing uneven tracer distributions in geodynamical models
Paul James Tackley
EGUsphere, https://doi.org/10.5194/egusphere-2025-1354,https://doi.org/10.5194/egusphere-2025-1354, 2025
Short summary
Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021,https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans
Daniela Paz Bolrão, Maxim D. Ballmer, Adrien Morison, Antoine B. Rozel, Patrick Sanan, Stéphane Labrosse, and Paul J. Tackley
Solid Earth, 12, 421–437, https://doi.org/10.5194/se-12-421-2021,https://doi.org/10.5194/se-12-421-2021, 2021
Short summary

Cited articles

Ammann, M. W., Walker, A. M., Stackhouse, S., Wookey, J., Forte, A. M., Brodholt, J. P., and Dobson, D. P.: Variation of thermal conductivity and heat flux at the Earth's core mantle boundary, Earth Planet. Sc. Lett., 390, 175–185, 2014. a
Boehler, R.: High-pressure experiments and the phase diagram of lower mantle and core materials, Rev. Geophys., 38, 221–245, 2000. a
Citron, R. I., Lourenço, D. L., Wilson, A. J., Grima, A. G., Wipperfurth, S. A., Rudolph, M. L., Cottaar, S., and Montési, L. G.: Effects of Heat‐Producing Elements on the Stability of Deep Mantle Thermochemical Piles, Geochem. Geophy. Geosy., 21, e2019GC008895, https://doi.org/10.1029/2019GC008895, 2020. a
Dalton, D. A., Hsieh, W. P., Hohensee, G. T., Cahill, D. G., and Goncharov, A. F.: Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure, Scientific Reports, 3, 2400, https://doi.org/10.1038/srep02400, 2013. a, b
Davaille, A. and Romanowicz, B.: Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”, Tectonics, 39, e2020TC006265, https://doi.org/10.1029/2020TC006265, 2020. a, b, c
Download
Short summary
The mantle thermal conductivity's dependencies on temperature, pressure, and composition are often suppressed in numerical models. We examine the effect of these dependencies on the long-term evolution of lower-mantle thermochemical structure. We propose that depth-dependent conductivities derived from mantle minerals, along with moderate temperature and compositional correction, emulate the Earth's mean lowermost-mantle conductivity values and produce a stable two-pile configuration.
Share