Davies, D. R., Goes, S., Davies, J. H., Schuberth, B. S. A., Bunge, H. P., and Ritsema, J.: Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity, Earth Planet. Sc. Lett., 353, 253–269, 2012. a
Dekura, H., Tsuchiya, T., and Tsuchiya, J.: Ab initio lattice thermal conductivity of MgSiO
3 perovskite as found in Earth’s lower mantle, Phys. Rev. Lett., 110, 025904,
https://doi.org/10.1103/PhysRevLett.110.025904, 2013.
a
Deschamps, F. and Hsieh, W. P.: Lowermost mantle thermal conductivity constrained from experimental data and tomographic models, Geophys. J. Int., 219, S115–S136, 2019.
a,
b,
c,
d,
e,
f,
g
Deschamps, F., Li, Y., and Tackley, P. J.: Large-scale thermo-chemical structure of the deep mantle: observations and models, in: The Earth's heterogeneous mantle, Springer, Cham, 479–515,
https://doi.org/10.1007/978-3-319-15627-9_15, 2015.
a
Dubuffet, F., and Yuen, D. A.: A thick pipe-like heat‐transfer mechanism in the mantle: Nonlinear coupling between 3‐D convection and variable thermal conductivity, Geophys. Res. Lett., 27, 17–20, 2000. a
Dubuffet, F., Yuen, D. A., and Rabinowicz, M.: Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection, Earth Planet. Sc. Lett., 171, 401–409, 1999.
a,
b
French, S. W., and Romanowicz, B. A.: Whole-mantle radially anisotropic shear velocity structure from spectral-element waveform tomography, Geophys. J. Int., 199, 1303–1327, 2014.
a,
b
Frost, D. A., Avery, M. S., Buffett, B. A., Chidester, B. A., Deng, J., Dorfman, S. M., Li, Z., Liu, L., Lv, M., and Martin, J. F.: Multidisciplinary Constraints on the Thermal-Chemical Boundary Between Earth's Core and Mantle, Geochem. Geophy. Geosy., 23, e2021GC009764,
https://doi.org/10.1029/2021GC009764, 2022.
a
Geballe, Z. M., Sime, N., Badro, J., van Keken, P. E., and Goncharov, A. F., Thermal conductivity near the bottom of the Earth's lower mantle: Measurements of pyrolite up to 120 GPa and 2500 K, Earth Planet. Sc. Lett., 536, 116161,
https://doi.org/10.1016/j.epsl.2020.116161, 2020.
a,
b,
c,
d,
e
Goncharov, A. F., Lobanov, S. S., Tan, X., Hohensee, G. T., Cahill, D. G., Lin, J. F., Thomas, S.-M., Okuchi, T., and Tomioka, N.: Experimental study of thermal conductivity at high pressures: Implications for the deep Earth’s interior, Phys. Earth Planet. In., 247, 11–16, 2015. a
Gülcher, A. J., Gebhardt, D. J., Ballmer, M. D., and Tackley, P. J.: Variable dynamic styles of primordial heterogeneity preservation in the Earth's lower mantle, Earth Planet. Sc. Lett., 536, 116160,
https://doi.org/10.1016/j.epsl.2020.116160, 2020.
a
Haigis, V., Salanne, M., and Jahn, S.: Thermal conductivity of MgO, MgSiO
3 perovskite and post-perovskite in the Earth's deep mantle, Earth Planet. Sc. Lett., 355, 102–108, 2012. a
Heyn, B. H., Conrad, C. P., and Trønnes, R. G.: How thermochemical piles can (periodically) generate plumes at their edges, J. Geophys. Res.-Sol. Ea., 125, e2019JB018726,
https://doi.org/10.1029/2019JB018726, 2020.
a
Hirose, K., Fei, Y., Ma, Y., and Mao, H. K.: The fate of subducted basaltic crust in the Earth's lower mantle, Nature, 397, 53–56, 1999. a
Hofmeister, A. M.: Mantle values of thermal conductivity and the geotherm from phonon lifetimes, Science, 283, 1699–1706, 1999.
a,
b,
c
Houser, C., Masters, G., Shearer, P., and Laske, G.: Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms, Geophys. J. Int., 174, 195–212, 2008.
a,
b
Hsieh, W. P., Deschamps, F., Okuchi, T., and Lin, J. F.: Reduced lattice thermal conductivity of Fe‐bearing bridgmanite in Earth's deep mantle, J. Geophys. Res.-Sol. Ea., 122, 4900–4917, 2017.
a,
b,
c,
d,
e
Hsieh, W. P., Deschamps, F., Okuchi, T., and Lin, J. F.: Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics, P. Natl. Acad. Sci. USA, 115, 4099–4104, 2018.
a,
b,
c,
d,
e,
f
Jaupart, C., Labrosse, S., and Mareschal, J.: Temperatures, Heat and Energy in the Mantle of the Earth, in: Treatise on Geophysics, volume 7, 1st edn., edited by: Bercovici, D., Elsevier, 2007, 253–303,
https://doi.org/10.1016/B978-044452748-6.00114-0, 2007.
a
Katsura, T.: Thermal diffusivity of periclase at high temperatures and high pressures, Phys. Earth Planet. In., 101, 73–77, 1997. a
Kawai, K. and Tsuchiya, T.: Temperature profile in the lowermost mantle from seismological and mineral physics joint modeling, P. Natl. Acad. Sci. USA, 106, 22119–22123, 2009. a
Lee, C. T. A., Luffi, P., Höink, T., Li, J., Dasgupta, R., and Hernlund, J.: Upside-down differentiation and generation of a “primordial” lower mantle, Nature, 463, 930–933, 2010. a
Li, Y., Deschamps, F., and Tackley, P. J.: The stability and structure of primordial reservoirs in the lower mantle: insights from models of thermochemical convection in three-dimensional spherical geometry, Geophys. J. Int., 199, 914–930, 2014. a
Li, Y., Deschamps, F., and Tackley, P. J.: Effects of the post-perovskite phase transition properties on the stability and structure of primordial reservoirs in the lower mantle of the Earth, Earth Planet. Sc. Lett., 432, 1–12,
https://doi.org/10.1016/j.epsl.2015.09.040, 2015.
a
Li, Y., Vilella, K., Deschamps, F., Zhao, L., and J. Tackley, P.: Effects of iron spin transition on the structure and stability of large primordial reservoirs in Earth's lower mantle, Geophys. Res. Lett., 45, 5918–5928, 2018. a
Li, Y., Deschamps, F., Yang, J., Chen, L., Zhao, L., and Tackley, P. J.: Effects of the Compositional Viscosity Ratio on the Long‐Term Evolution of Thermochemical Reservoirs in the Deep Mantle, Geophys. Res. Lett., 46, 9591–9601, 2019. a
Li, Y., Deschamps, F., Shi, Z., Guerrero J. M., Hsieh, W. P., and Tackley, P. J.: Influence of composition-dependent thermal conductivity on the long-term evolution of primordial reservoirs in Earth's lower mantle, Earth Planets Space, 74, 46,
https://doi.org/10.1186/s40623-022-01608-3, 2022.
a,
b,
c
Manthilake, G. M., de Koker, N., Frost, D. J., and McCammon, C. A.: Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core, P. Natl. Acad. Sci. USA, 108, 17901–17904,
https://doi.org/10.1073/pnas.1110594108, 2011.
a,
b,
c
Mosca, I., Cobden, L., Deuss, A., Ritsema, J., and Trampert, J.: Seismic and mineralogical structures of the lower mantle from probabilistic tomography, J. Geophys. Res.-Sol. Ea., 117, B06304,
https://doi.org/10.1029/2011JB008851, 2012.
a
Nakagawa, T., Tackley, P. J., Deschamps, F., and Connolly, J. A.: Incorporating self‐consistently calculated mineral physics into thermochemical mantle convection simulations in a 3‐D spherical shell and its influence on seismic anomalies in Earth's mantle, Geochem. Geophy. Geosy., 10, Q03004,
https://doi.org/10.1029/2008GC002280, 2009.
a
Ohta, K., Yagi, T., Taketoshi, N., Hirose, K., Komabayashi, T., Baba, T., Ohishi, Y., and Hernlund, J.: Lattice thermal conductivity of MgSiO
3 perovskite and post-perovskite at the core-mantle boundary, Earth Planet. Sc. Lett., 349, 109–115, 2012.
a,
b
Okuda, Y., Ohta, K., Yagi, T., Sinmyo, R., Wakamatsu, T., Hirose, K., and Ohishi, Y.: The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth's lower mantle, Earth Planet. Sc. Lett., 474, 25–31, 2017. a
Price, G. D., Alfè, D., Vočadlo, L., and Gillan, M. J.: The Earth’s core: an approach from first principles, in: The State of the Planet: Frontiers and Challenges in Geophysics, Geophys. Monogr. Ser., vol. 150, edited by: Sparks, R. S. J. and Hawkesworth, C. J., AGU, Washington, D. C., 1–12,
https://doi.org/10.1029/150GM02, 2004.
a
Tackley, P. J.: Three-dimensional simulations of mantle convection with a thermo-chemical basal boundary layer: D. The Core-Mantle Boundary Region, Geodyn. Ser., 28, 231–253, 1998. a
Tackley, P. J.: Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid, Phys. Earth Planet. In., 171, 7–18,
https://doi.org/10.1016/j.pepi.2008.08.005, 2008.
a,
b
Tan, E., Leng, W., Zhong, S., and Gurnis, M.: On the location of plumes and lateral movement of thermochemical structures with high bulk modulus in the 3‐D compressible mantle, Geochem. Geophy. Geosy., 12, Q07005,
https://doi.org/10.1029/2011GC003665, 2011.
a
Tang, X., Ntam, M. C., Dong, J., Rainey, E. S., and Kavner, A.: The thermal conductivity of Earth's lower mantle, Geophys. Res. Lett., 41, 2746–2752, 2014. a
Tosi, N., Yuen, D. A., de Koker, N., and Wentzcovitch, R. M.: Mantle dynamics with pressure-and temperature-dependent thermal expansivity and conductivity, Phys. Earth Planet. In., 217, 48–58, 2013. a
Trampert, J., Deschamps, F., Resovsky, J., and Yuen, D.: Probabilistic tomography maps chemical heterogeneities throughout the lower mantle, Science, 306, 853–856, 2004.
a,
b
Xu, Y., Shankland, T. J., Linhardt, S., Rubie, D. C., Langenhorst, F., and Klasinski, K.: Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K, Phys. Earth Planet. In., 143, 321–336, 2004.
a,
b
Yamazaki, D. and Karato, S. I.: Some mineral physics constraints on the rheology and geothermal structure of Earth's lower mantle, Am. Mineral., 86, 385–391, 2001. a
Yanagawa, T. K., Nakada, M., and Yuen, D. A.: Influence of lattice thermal conductivity on thermal convection with strongly temperature-dependent viscosity, Earth, Planets and Space, 57, 15–28, 2005. a
Zhang, Y., Yoshino, T., Yoneda, A., and Osako, M.: Effect of iron content on thermal conductivity of olivine with implications for cooling history of rocky planets, Earth Planet. Sc. Lett., 519, 109–119, 2019. a