Articles | Volume 14, issue 2
https://doi.org/10.5194/se-14-119-2023
https://doi.org/10.5194/se-14-119-2023
Research article
 | 
07 Feb 2023
Research article |  | 07 Feb 2023

Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs

Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley

Related authors

Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021,https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Timescales of chemical equilibrium between the convecting solid mantle and over- and underlying magma oceans
Daniela Paz Bolrão, Maxim D. Ballmer, Adrien Morison, Antoine B. Rozel, Patrick Sanan, Stéphane Labrosse, and Paul J. Tackley
Solid Earth, 12, 421–437, https://doi.org/10.5194/se-12-421-2021,https://doi.org/10.5194/se-12-421-2021, 2021
Short summary
On the self-regulating effect of grain size evolution in mantle convection models: application to thermochemical piles
Jana Schierjott, Antoine Rozel, and Paul Tackley
Solid Earth, 11, 959–982, https://doi.org/10.5194/se-11-959-2020,https://doi.org/10.5194/se-11-959-2020, 2020
Short summary
The subduction dichotomy of strong plates and weak slabs
Robert I. Petersen, Dave R. Stegman, and Paul J. Tackley
Solid Earth, 8, 339–350, https://doi.org/10.5194/se-8-339-2017,https://doi.org/10.5194/se-8-339-2017, 2017
Short summary

Related subject area

Subject area: Core and mantle structure and dynamics | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
Quantifying mantle mixing through configurational entropy
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024,https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024,https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
ECOMAN: an open-source package for geodynamic and seismological modeling of mechanical anisotropy
Manuele Faccenda, Brandon Paul VanderBeek, Albert de Montserrat, Jianfeng Yang, and Neil Ribe
EGUsphere, https://doi.org/10.5194/egusphere-2024-299,https://doi.org/10.5194/egusphere-2024-299, 2024
Short summary
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024,https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Transport mechanisms of hydrothermal convection in faulted tight sandstones
Guoqiang Yan, Benjamin Busch, Robert Egert, Morteza Esmaeilpour, Kai Stricker, and Thomas Kohl
Solid Earth, 14, 293–310, https://doi.org/10.5194/se-14-293-2023,https://doi.org/10.5194/se-14-293-2023, 2023
Short summary

Cited articles

Ammann, M. W., Walker, A. M., Stackhouse, S., Wookey, J., Forte, A. M., Brodholt, J. P., and Dobson, D. P.: Variation of thermal conductivity and heat flux at the Earth's core mantle boundary, Earth Planet. Sc. Lett., 390, 175–185, 2014. a
Boehler, R.: High-pressure experiments and the phase diagram of lower mantle and core materials, Rev. Geophys., 38, 221–245, 2000. a
Citron, R. I., Lourenço, D. L., Wilson, A. J., Grima, A. G., Wipperfurth, S. A., Rudolph, M. L., Cottaar, S., and Montési, L. G.: Effects of Heat‐Producing Elements on the Stability of Deep Mantle Thermochemical Piles, Geochem. Geophy. Geosy., 21, e2019GC008895, https://doi.org/10.1029/2019GC008895, 2020. a
Dalton, D. A., Hsieh, W. P., Hohensee, G. T., Cahill, D. G., and Goncharov, A. F.: Effect of mass disorder on the lattice thermal conductivity of MgO periclase under pressure, Scientific Reports, 3, 2400, https://doi.org/10.1038/srep02400, 2013. a, b
Davaille, A. and Romanowicz, B.: Deflating the LLSVPs: bundles of mantle thermochemical plumes rather than thick stagnant “piles”, Tectonics, 39, e2020TC006265, https://doi.org/10.1029/2020TC006265, 2020. a, b, c
Download
Short summary
The mantle thermal conductivity's dependencies on temperature, pressure, and composition are often suppressed in numerical models. We examine the effect of these dependencies on the long-term evolution of lower-mantle thermochemical structure. We propose that depth-dependent conductivities derived from mantle minerals, along with moderate temperature and compositional correction, emulate the Earth's mean lowermost-mantle conductivity values and produce a stable two-pile configuration.