Articles | Volume 14, issue 4
https://doi.org/10.5194/se-14-463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-14-463-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spectral characterisation of hydrothermal alteration associated with sediment-hosted Cu–Ag mineralisation in the central European Kupferschiefer
Léa Géring
CORRESPONDING AUTHOR
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for
Resource Technology, 09599 Freiberg, Germany
Moritz Kirsch
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for
Resource Technology, 09599 Freiberg, Germany
Samuel Thiele
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for
Resource Technology, 09599 Freiberg, Germany
Andréa De Lima Ribeiro
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for
Resource Technology, 09599 Freiberg, Germany
Richard Gloaguen
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for
Resource Technology, 09599 Freiberg, Germany
Jens Gutzmer
Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for
Resource Technology, 09599 Freiberg, Germany
Related authors
No articles found.
Akshay Kamath, Samuel Thiele, Moritz Kirsch, and Richard Gloaguen
EGUsphere, https://doi.org/10.5194/egusphere-2024-3448, https://doi.org/10.5194/egusphere-2024-3448, 2024
This preprint is open for discussion and under review for Solid Earth (SE).
Short summary
Short summary
We developed a deep learning model that uses hyperspectral imaging data to predict key physical rock properties, specifically density, slowness, and gamma-ray values. Our model successfully learned to translate hyperspectral information into predicted physical properties. Tests on independent data gave accurate results, demonstrating the potential of hyperspectral data for mapping physical rock properties.
Aldino Rizaldy, Pedram Ghamisi, and Richard Gloaguen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W11-2024, 103–109, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, https://doi.org/10.5194/isprs-archives-XLVIII-4-W11-2024-103-2024, 2024
Robert Jackisch, Björn H. Heincke, Robert Zimmermann, Erik V. Sørensen, Markku Pirttijärvi, Moritz Kirsch, Heikki Salmirinne, Stefanie Lode, Urpo Kuronen, and Richard Gloaguen
Solid Earth, 13, 793–825, https://doi.org/10.5194/se-13-793-2022, https://doi.org/10.5194/se-13-793-2022, 2022
Short summary
Short summary
We integrate UAS-based magnetic and multispectral data with legacy exploration data of a Ni–Cu–PGE prospect on Disko Island, West Greenland. The basalt unit has a complex magnetization, and we use a constrained 3D magnetic vector inversion to estimate magnetic properties and spatial dimensions of the target unit. Our 3D modelling reveals a horizontal sheet and a strong remanent magnetization component. We highlight the advantage of UAS use in rugged and remote terrain.
Trond Ryberg, Moritz Kirsch, Christian Haberland, Raimon Tolosana-Delgado, Andrea Viezzoli, and Richard Gloaguen
Solid Earth, 13, 519–533, https://doi.org/10.5194/se-13-519-2022, https://doi.org/10.5194/se-13-519-2022, 2022
Short summary
Short summary
Novel methods for mineral exploration play an important role in future resource exploration. The methods have to be environmentally friendly, socially accepted and cost effective by integrating multidisciplinary methodologies. We investigate the potential of passive, ambient noise tomography combined with 3D airborne electromagnetics for mineral exploration in Geyer, Germany. We show that the combination of the two geophysical data sets has promising potential for future mineral exploration.
Margret C. Fuchs, Jan Beyer, Sandra Lorenz, Suchinder Sharma, Axel D. Renno, Johannes Heitmann, and Richard Gloaguen
Earth Syst. Sci. Data, 13, 4465–4483, https://doi.org/10.5194/essd-13-4465-2021, https://doi.org/10.5194/essd-13-4465-2021, 2021
Short summary
Short summary
We present a library of high-resolution laser-induced fluorescence (LiF) reference spectra using the Smithsonian rare earth phosphate standards for electron microprobe analysis. With the recurring interest in rare earth elements (REEs), LiF may provide a powerful tool for their rapid and accurate identification. Applications of the spectral LiF library to natural materials such as rocks could complement the spectroscopy-based toolkit for innovative, non-invasive exploration technologies.
I. C. Contreras, M. Khodadadzadeh, and R. Gloaguen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2020, 383–388, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-383-2020, https://doi.org/10.5194/isprs-archives-XLIII-B3-2020-383-2020, 2020
K. Rafiezadeh Shahi, P. Ghamisi, R. Jackisch, M. Khodadadzadeh, S. Lorenz, and R. Gloaguen
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-3-2020, 185–191, https://doi.org/10.5194/isprs-annals-V-3-2020-185-2020, https://doi.org/10.5194/isprs-annals-V-3-2020-185-2020, 2020
L. Andreani and R. Gloaguen
Earth Surf. Dynam., 4, 71–102, https://doi.org/10.5194/esurf-4-71-2016, https://doi.org/10.5194/esurf-4-71-2016, 2016
Short summary
Short summary
We use a geomorphic approach in order to unravel the recent tectonic evolution of the Sierra Madre de Chiapas and Maya Mountains (northern Central America). Our results highlight elevated relict landscapes that are characterized by a low-amplitude relief. The distribution of these landscapes results from a tectonic control. We combine our results with published GPS and seismotectonic data in order to extend existing geodynamic models of the North American–Caribbean–Cocos plate boundary.
M. C. Fuchs, R. Gloaguen, S. Merchel, E. Pohl, V. A. Sulaymonova, C. Andermann, and G. Rugel
Earth Surf. Dynam., 3, 423–439, https://doi.org/10.5194/esurf-3-423-2015, https://doi.org/10.5194/esurf-3-423-2015, 2015
E. Pohl, M. Knoche, R. Gloaguen, C. Andermann, and P. Krause
Earth Surf. Dynam., 3, 333–362, https://doi.org/10.5194/esurf-3-333-2015, https://doi.org/10.5194/esurf-3-333-2015, 2015
Short summary
Short summary
A semi-distributed hydrological model is used to analyse the hydrological cycle of a glaciated high-mountain catchment in the Pamirs.
We overcome data scarcity by utilising various raster data sets as meteorological input. Temperature in combination with the amount of snow provided in winter play the key role in the annual cycle.
This implies that expected Earth surface processes along precipitation and altitude gradients differ substantially.
A. A. Othman, R. Gloaguen, L. Andreani, and M. Rahnama
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-3-1789-2015, https://doi.org/10.5194/nhessd-3-1789-2015, 2015
Preprint withdrawn
U. Mallast, R. Gloaguen, J. Friesen, T. Rödiger, S. Geyer, R. Merz, and C. Siebert
Hydrol. Earth Syst. Sci., 18, 2773–2787, https://doi.org/10.5194/hess-18-2773-2014, https://doi.org/10.5194/hess-18-2773-2014, 2014
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Mineralogy
Luminescence and a New Approach for Detecting Heat Treatment of Sapphire
The acid sulfate zone and the mineral alteration styles of the Roman Puteoli (Neapolitan area, Italy): clues on fluid fracturing progression at the Campi Flegrei volcano
Generating porosity during olivine carbonation via dissolution channels and expansion cracks
Teerarat Pluthametwisute, Lutz Nasdala, Chutimun Chanmuang N., Manfred Wildner, Eugen Libowitzky, Gerald Giester, Gamini Zoysa, Chanenkant Jakkawanvibul, Waratchanok Suwanmanee, Tasnara Sripoonjan, Thanyaporn Tengchaisri, Bhuwadol Wanthanachaisaeng, and Chakkaphan Sutthirat
EGUsphere, https://doi.org/10.5194/egusphere-2024-1529, https://doi.org/10.5194/egusphere-2024-1529, 2024
Short summary
Short summary
For years, mankind has heated sapphire to increase its blue color and value. Gemologists have struggled for decades to detect heat-treated sapphire. Each test costs money. High-tech instruments like FTIR are costly. As a result, luminescence under SWUV and LWUV light provides a cheaper and more practical technique for identifying heat-treated sapphire. This work highlights that blue luminescence under SWUV light could indicate heated sapphire, whereas purplish red may also be helpful.
Monica Piochi, Angela Mormone, Harald Strauss, and Giuseppina Balassone
Solid Earth, 10, 1809–1831, https://doi.org/10.5194/se-10-1809-2019, https://doi.org/10.5194/se-10-1809-2019, 2019
Short summary
Short summary
The Campi Flegrei volcano in Italy displays hot fumarolic solfataras famous since Roman times. We use the solfataric mineralizations to investigate the local setting, evolution and geohazards. These provide information on hydrothermal activities that have been stable over the past 20 years. They reflect extreme conditions associated with the fluid overflow from subsurface and surface waters through a fracturing conduit. The solfataras are toxic and represent an extreme environment for life.
Tiange Xing, Wenlu Zhu, Florian Fusseis, and Harrison Lisabeth
Solid Earth, 9, 879–896, https://doi.org/10.5194/se-9-879-2018, https://doi.org/10.5194/se-9-879-2018, 2018
Short summary
Short summary
The olivine carbonation reaction is volume increasing and could prevent further reaction by clogging the fluid pathways. This contradicts the observed fully carbonated outcrops in nature, but the mechanism behind this self-sustainability is poorly understood. Our study reveals that the stretching-induced fracturing and the dissolution channelization are mechanisms that could contribute to the sustainability of carbonation reactions. This study provides new insights on the olivine carbonation.
Cited articles
Arne, D., House, E., Pontual, S., and Huntington, J.: Hyperspectral interpretation of selected drill cores from orogenic gold deposits in central Victoria, Australia, Austr. J. Earth Sci. 63, 1003–1025, https://doi.org/10.1080/08120099.2016.1223171, 2016.
Barker, R. D., Barker, S. L. L., Cracknell, M. J., Stock, E. D., and Holmes,
G.: Quantitative Mineral Mapping of Drill Core Surfaces II: Long-Wave
Infrared Mineral Characterization Using µ XRF and Machine Learning,
Econ. Geol., 116, 821–836, https://doi.org/10.5382/econgeo.4804, 2021.
Bechtel, A., Sun, Y., Püttmann, W., Hoernes, S., and Hoefs, J.: Isotopic
evidence for multi-stage base metal enrichment in the Kupferschiefer from
the Sangerhausen Basin, Germany, Chem. Geol., 176, 31–49,
10.1016/S0009-2541(00)00336-3, 2001.
Bedini, E.: The use of hyperspectral remote sensing for mineral exploration:
a review, Journal of Hyperspectral Remote Sensing, 7, 189–211,
https://doi.org/10.29150/jhrs.v7.4.p189-211, 2017.
Bierwirth, P., Huston, D., and Blewett, R.: Hyperspectral mapping of mineral assemblages
associated with gold mineralization in the Central Pilbara, Western Australia, Econ. Geol. 97, 819–826, 2002.
Blomme, K., Fowler, S. J., Bachaud, P., Nader, F. H., Michel, A. and
Swennen, R.: Ferroan Dolomitization by Seawater Interaction with Mafic
Igneous Dikes and Carbonate Host Rock at the Latemar Platform, Dolomites,
Italy: Numerical Modeling of Spatial, Temporal, and Temperature Data,
Geofluids, 2017, 6590672, https://doi.org/10.1155/2017/6590672, 2017.
Borg, G.: The significance of Rotliegend volcanics for the metal provinces
of the Kupferschiefer basin, Zbl. Geo.
Pal., 1991, 929–943, 1991.
Borg, G., Piestrzyński, A., and Barchmann Heinz, G.: An overview of the
European Kupferschiefer deposits, Economic Geology Special Publication,
455–486, https://doi.org/10.5382/SP.16.18, 2012.
Bruker Nano GmbH: M4 Tornado/M4+ Tornado High Performance
Micro-XRF spectrometer: User manual (V4), Berlin, Germany, 2019.
Burns, R. G.: Mineralogical applications of crystal field theory, Cambridge
University Press, New York, United States of America, 551 pp., https://doi.org/10.1017/CBO9780511524899, 1993.
Coward, M. P.: Structural and Tectonic Setting of the Permo-Triassic Basins
of Northwest Europe, Geol. Soc. Spec. Publ., 91,
7–39, https://doi.org/10.1144/GSL.SP.1995.091.01.02, 1995.
Cudahy, T., Jones, M., Thomas, M., Laukamp, C., Caccetta, M., Hewson, R.,
Rodger, A., and Verrall, M.: Next Generation Mineral Mapping: Queensland airborne
HyMap and satellite ASTER surveys 2006–2008, CSIRO report P2007/364, https://doi.org/10.13140/RG.2.1.2828.1844,
2008.
De La Rosa, R., Khodadadzadeh M., Tusa, L., Kirsch, M., Gisbert, G., Tornos,
F., Tolosana-Delgado R., and Gloaguen, R.: Mineral quantification at deposit
scale using drill-core hyperspectral data: A case study in the Iberian
Pyrite Belt, Ore Geol. Rev., 139, 104514,
https://doi.org/10.1016/j.oregeorev.2021.104514, 2021.
De La Rosa, R., Tolosana-Delgado, R., Kirsch, M., and Gloaguen, R.: Automated
Multi-Scale and Multivariate Geological Logging from Drill-Core
Hyperspectral Data, Remote Sensing, 14, 2676, https://doi.org/10.3390/rs14112676, 2022.
Essalhi, M., Sizaret, S., Barbanson, L., Chen, Y., Branquet, Y., Panis, D.,
Camps, P., Rochette, P., and Canals, A.: Track of fluid paleocirculation in
dolomite host rock at regional scale by the Anisotropy of Magnetic
Susceptibility (AMS): An example from Aptian carbonates of La Florida,
Northern Spain, Earth Planet. Sc. Lett., 277, 501–513,
https://doi.org/10.1016/j.epsl.2008.11.011, 2009.
Franz, R., Dette, K., Rusitzka, D., Richter, G., Gerasch, A., Rentzsch, J. and Siegert, C.: Ergebnisbericht mit Massenberechnung über die geologische Erkundung auf Kupferschiefer im Raum Spremberg – Weißwasser/Bez. Cottbus vom 01.11.1958 bis Oktober 1964, unpublished, VEB Geologische Erkundung Süd, Freiberg, 1967.
Gaffey, S. J.: Spectral Reflectance of Carbonate Minerals in the Visible and
near Infrared (0.35–2.55 Microns); Calcite, Aragonite, and Dolomite, Am.
Miner., 71, 151–162, 1986.
GMEX: Spectral interpretation field manual, 3rd Edn., AuSpec
International Ltd., v. I, II, III, 2008.
Green, D. and Schodlok, M.: Characterisation of carbonate minerals from
hyperspectral TIR scanning using features at 14 000 and 11 300 nm,
Austr. J. Earth Sci., 63, 8,
https://doi.org/10.1080/08120099.2016.1225601, 2016.
Greenberger, R., Ehlmann, B., Jewell, P., Birgenheier, L., and Green, R.:
Detection of Organic-Rich Oil Shales of the Green River Formation, Utah,
with Ground-Based Imaging Spectroscopy, 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Los Angeles, CA, USA, 1–5, https://doi.org/10.1109/WHISPERS.2016.8071807,
2016.
Hancock, N. J. and Taylor, A. M.: Clay mineral diagenesis and oil migration in
the Middle Jurassic Brent Sand Formation, J. Geol. Soc.,
135, 69–72, https://doi.org/10.1144/gsjgs.135.1.0069, 1978.
Harraden, C. L., Mcnulty, B. A., Gregory, M. J., and Lang, J. R.: Shortwave
Infrared Spectral Analysis of Hydrothermal Alteration Associated with the
Pebble Porphyry Copper-Gold Molybdenum Deposit, Iliamna, Alaska, Soc.
Eco. Geo., 108, 483–494, https://doi.org/10.2113/econgeo.108.3.483,
2013.
Hartsch, J.: New Aspects of Copper Deposits at the Base of the Zechstein in Central Europe, 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe, edited by: Weihed, P., Springer, 147–161, https://doi.org/10.1007/978-3-319-17428-0_7, 2015.
Herrmann, W., Blake, M., Doyle, M., Huston, D., Kamprad, J., Merry, N., and Pontual, P.: Short Wavelength Infrared (SWIR) Spectral Analysis of Hydrothermal Alteration Zones Associated with Base Metal Sulfide Deposits at Rosebery and Western Tharsis, Tasmania, and Highway-Reward, Queensland, Econ. Geol., 96, 939–955, https://doi.org/10.2113/gsecongeo.96.5.939, 2001.
Jakob, S., Gloaguen, R., and Laukamp, C.: Remote Sensing-Based Exploration of Structurally-Related Mineralizations around Mount Isa, Queensland, Australia, Remote Sens., 8, 358, https://doi.org/10.3390/rs8050358, 2016.
Jones, S., Herrmann, W., and Bruce, G.: Short Wavelength Infrared Spectral
Characteristics of the HW Horizon: Implications for Exploration in the Myra
Falls Volcanic-Hosted Massive Sulfide Camp, Vancouver Island, British
Columbia, Canada, Soc.
Eco. Geo., 100, 273–294,
https://doi.org/10.2113/gsecongeo.100.2.273, 2005.
Kehrer, C.: Geometallurgical assessment of the Kupferschiefer-type
base metal deposit Spremberg-Graustein, Lusatia, Germany, PhD thesis,
Technical University Bergakademie, Freiberg, Germany, 2016.
Kokaly, R. F., Clark, R. N., Swayze, G. A., Livo, K. E., Hoefen, T. M., Pearson, N. C., Wise, R. A., Benzel, W. M., Lowers, H. A., Driscoll, R. L., and Klein, A. J.: USGS Spectral Library Version 7. U.S. Geological
Survey Data Series, 1035, https://doi.org/10.3133/ds1035, 2017.
Kopp, J., Simon, A., and Göthel, M.: Die Kupfer-Lagerstätte Spremberg-Graustein in Südbrandenburg, Brandenburg, Geowiss. Beitr., Kleinmachnow 13, 117–132,
2006.
Kopp, J., Hermann, S., Hoding, T., Andreas, S., and Bernd, U.: The Copper-Silver Deposit Spremberg-Graustein (Lusatia. F. R. Germany) – (Enrichment of non-ferrous metals at the Zechstein-base between Spremberg and Weißwasser), Z. Geol. Wiss., 36, 75–114, 2008.
Kopp, J., Spieth, V., and Höding, T.: The Return of the Copper Mining in
Germany (Die Rückkehr des Kupferschieferbergbaus nach Deutschland),
Glückauf, 146, 353–363, 2010.
Kopp, J. C., Spieth, V., and Bernhardt, H.-J.: Precious metals and
selenides mineralisation in the copper-silver deposit Spremberg-Graustein,
Niederlausitz, SE-Germany, Z. Dtsch. Ges.
Geowiss., 163, 361–384, https://doi.org/10.1127/1860-1804/2012/0163-0361,
2012.
Kruse, F. A.: Integrated visible and near infrared,
shortwave infrared, and longwave infrared (VNIR-SWIR-LWIR), full-range hyperspectral data
analysis for geologic mapping, J. Appl. Remote Sens., 9, 096005-096005, https://doi.org/10.1117/1.Jrs.9.096005, 2015.
Kucha, H.: Geochemistry of the Kupferschiefer, Poland, Geol.
Rundsch., 79, 387–399, https://doi.org/10.1007/BF01830634, 1990.
Kucha, H.: Geology, mineralogy and geochemistry of the Kupferschiefer Poland, Eurtope's Major Base Metal Deposits, edited by: Kelly, C. J., Andrew, J. H., Ashton, M. B., Boland, G., Earls, L., and Fuscardi, G., Stanley, Irish Association for Economic Geol., 215–238, 2003.
Lampinen, H. M., Laukamp, C., Occhipinti, S. A., Metelka, V., and Spinks, S. C.: Delineating alteration footprints from field and ASTER SWIR spectra, geochemistry, and gamma-ray spectrometry above Regolith-covered base metal deposits – An example from abra, Western Australia, Econ. Geol., 112, 1977–2003, https://doi.org/10.5382/econgeo.2017.4537, 2017.
Laukamp, C., Cudahy, T., Thomas, M., Jones, M., Cleverley, J. S., and Oliver, N.
H. S.: Hydrothermal mineral alteration patterns in the Mount Isa Inlier
revealed by airborne hyperspectral data, Austr. J. Earth
Sci., 58, 917–936, https://doi.org/10.1080/08120099.2011.571287, 2011.
Laukamp, C., Rodger, A., LeGras, M., Lampinen, H., Lau, I. C., Pejcic, B., Stromberg, J., Francis, N., and Ramanaidou, E.: Mineral physicochemistry underlying feature-based extraction of mineral
abundance and composition from shortwave, mid and thermal infrared
reflectance spectra, Minerals, 11, 347, https://doi.org/10.3390/min11040347, 2021.
Lehmann, C.: Cement stratigraphy of mineralized Zechstein carbonate rocks of
the Cu-Ag deposit Spremberg-Graustein, Lusatia, Germany, BSc thesis,
Technical University Bergakademie, Freiberg, Germany, 2012.
Mantovani, M., Escudero, A., and Becerro, A. I.: Effect of pressure on kaolinite
illitization, Appl. Clay Sci., 50, 342–347,
https://doi.org/10.1016/j.clay.2010.08.024, 2010.
Mateer, M.: Ammonium Illite at the Jerritt
Canyon District and Gold strike Property, Nevada: its spatial distribution and significance in the exploration of Carlin-type deposits, MS thesis, University of Wyoming, 230 pp., ISBN 9781124293417, 2010.
McKie, T.: Paleogeographic Evolution of Latest Permian and Triassic Salt
Basins in Northwest Europe, in: Permo-Triassic Salt Provinces of Europe,
North Africa and the Atlantic Margins, edited by: Soto, J., Flinch, J.,
and Tari, G., Elsevier, 159–173, 2017.
Minz, F.: Cement Stratigraphy of the Siliciclastic Sedimentary Footwall
Rocks below the Kupferschiefer from the Cu-Ag Deposit Spremberg, Lusatia,
Germany, MSc Technical University Bergakademie, Freiberg, Germany, 2011.
Ngcofe, L., Minaar, H., Halenyane, K., and Chevallier, L.: Multispectral and hyperspectral remote
sensing: target area generation for porphyry copper exploration in the Namaqua Metamorphic province, South Africa. South African Journal of Geology, 259–272, https://doi.org/10.2113/gssajg.116.2259, 2013
Oszczepalski, S.: Origin of the Kupferschiefer polymetallic mineralization in Poland, Miner. Deposita, 34, 599–613, https://doi.org/10.1007/s001260050222, 1999.
Oszczepalski, S., Nowak, G. J., Bechtel, A., and Zák, K.: Evidence of
oxidation of the Kupferschiefer in the Lubin-Sieroszowice deposit, Poland:
implications for Cu-Ag and Au-Pt-Pd mineralisation, Geol. Q.,
46, 1–23, 2002.
Oszczepalski, S., Speczik, S., Zieliński, K., and Chmielewski, A.: The
Kupferschiefer Deposits and Prospects in SW Poland: Past, Present and
Future, Minerals, 9, 592, https://doi.org/10.3390/min9100592, 2019.
Portela, B., Sepp, M., van Ruitenbeek, F., Christoph Hecker, C., and Dilles,
J. H.: Using hyperspectral imagery for identification of
pyrophyllite-muscovite intergrowths and alunite in the shallow epithermal
environment of the Yerington porphyry copper district, Ore Geol. Rev.,
131, 104012, https://doi.org/10.1016/j.oregeorev.2021.104012, 2021.
Rahfeld, A., Kleeberg, R., Möckel, R., and Gutzmer, J.: Quantitative
mineralogical analysis of European Kupferschiefer ore, Miner.
Eng., 115, 21–32, https://doi.org/10.1016/j.mineng.2017.10.007, 2018.
Rentzsch, J.: The Kupferschiefer in comparison with the deposits of the
Zambian Copperbelt, Annales de la Société géologique de
Belgique, Special Publications, Gisements stratiformes et provinces
cuprifères – Centenaire de la Société Géologique de
Belgique, 1974, 395–418,
https://popups.uliege.be/0037-9395/index.php?id=3595 (last access: June 2022), 1974.
Riley, D., Mars, J., Cudahy, T., and Hewson, R.: Mineral mapping for copper porphyry exploration using multispectral satellite and airborne hyperspectral airborne sensors, Arizona Geological Society Digest., 22, 111–125, 2008.
Schmidt, F. P.: Alteration zones around Kupferschiefer-type base metal
mineralization in West Germany, Miner. Deposita, 22,
https://doi.org/10.1007/BF00206606, 1987.
Schmidt Mumm, A. and Wolfgramm, M.: Fluid systems and mineralization in the
north German and Polish basin, Geofluids, 4, 315–328,
https://doi.org/10.1111/j.1468-8123.2004.00090.x, 2004.
Speczik, S. and Püttman, W.: Origin of Kupferschiefer mineralisation as
suggested by coal petrology and organic geochemical studies, Acta Geol.
Pol., 37, 1987.
Spieth, V.: Zechstein Kupferschiefer at Spremberg and Related Sites: Hot
Hydrothermal Origin of the Polymetallic Cu-Ag-Au Deposit, PhD thesis,
University of Stuttgart, https://doi.org/10.18419/opus-10530, 2019.
Stoll, M.: Deportment of critical metals and process mineralogy of
Kupferschiefer ores from the Polkowice-Sieroszowice mine, SW Poland, BSc
thesis, Faculty of Geology and Petrology, Institute of Mineralogy, Technical
University Bergakademie, Freiberg, Germany, 2014.
Swayze, G. A., Clark, R. N., Goetz, A. F. H., Livo, K. E.,
Breit, G. N., Kruse, F. A., Sutley, S. J., Snee, L. W.,
Lowers, H. A., and Post, J. L.: Mapping Advanced
Argillic Alteration at Cuprite, Nevada, Using
Imaging Spectroscopy, Econ. Geol., 109,
1179–1221, 2014.
Symons, D., Kawasaki, K., Walther, S., and Borg, G.: Paleomagnetism of the
Cu–Zn–Pb-Bearing Kupferschiefer Black Shale (Upper Permian) at
Sangerhausen, Germany, Miner. Deposita, 46, 37–52,
https://doi.org/10.1007/s00126-010-0319-2, 2011.
Tagle, R. A., Reinhardt, F., Waldschläger, U., Hill, T., and Wolff, T.:
A deeper insight into materials: potentials and limitations of μ-XRF,
European Microbeam Analysis Society (EMAS), in: EMAS 2019 Workshop, Book of
Tutorials and Abstracts, Trondheim, Norway, 19–23 May 2019, ISBN 978 90 8227
695 4, 2019.
Tappert, M. C., Rivard, B., Tappert, R., and Feng, J.: Using Reflectance
Spectroscopy to Estimate the Orientation of Quartz Crystals in Rocks,
Can. Mineral., 51, 405–413, https://doi.org/10.3749/canmin.51.3.405, 2013.
Taylor, G. R., Hansford, P., Stevens, B. P. J., and Robson, D.: HyMap™ of Broken Hill – imaging
spectrometry for rock and mineral abundance
mapping, Explor. Geophys., 36, 397–400, https://doi.org/10.1071/EG05397, 2005.
Thiele, S., Lorenz, S., Kirsch, M., Contreras Acosta, C., Tusa, L., Hermann,
E., Mockel, R., and Gloaguen, R.: Multi-Scale, Multi-Sensor Data Integration for
Automated 3-D Geological Mapping, Ore Geol. Rev., 136, 104252,
https://doi.org/10.1016/j.oregeorev.2021.104252, 2021.
Thompson, A. J. B., Phoebe, L. H., and Audrey, J. R.: Alteration Mapping in
Exploration: Application of Short-Wave Infrared (SWIR) Spectroscopy, Society
of Economic Geologists, Newsletter, 39, 1–27,
https://doi.org/10.5382/SEGnews.1999-39.fea, 1999.
Tusa, L., Andreani, L., Pohl, E., Contreras, I. C., Khodadadzadeh, M. I.,
Gloaguen, R., and Gutzmer, J.: Extraction of Structural and Mineralogical Features from Hyperspectral Drill-Core Scans, IGARSS 2018 – 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018, 4070–4073, https://doi.org/10.1109/IGARSS.2018.8517786, 2018.
Tusa, L., Khodadadzadeh, M., Contreras, C., Rafiezadeh Shahi, K., Fuchs, M.,
Gloaguen, R., and Gutzmer, J.: Drill-Core Mineral Abundance Estimation Using
Hyperspectral and High-Resolution Mineralogical Data, Remote Sensing,
12, 1218, https://doi.org/10.3390/rs12071218, 2020.
Van der Meer, F.: Analysis of spectral absorption features in hyperspectral
imagery, Int. J. Appl. Earth Obs., 5, 55–68,
https://doi.org/10.1016/j.jag.2003.09.001, 2004.
Van Ruitenbeek, F., Cudahy, T.-J., Van der Meer, F.-D., and Hale, M.:
Characterization of the hydrothermal systems associated with Archean
VMS-mineralization at Panorama, Western Australia, using hyperspectral,
geochemical and geothermometric data, Ore Geol. Rev., 45, 33–46,
https://doi.org/10.1016/j.oregeorev.2011.07.001, 2012.
Van Ruitenbeek, F., Bakker, W. H., van der Werff, H., Zegers, T. E.,
Oosthoek, J. H., Omer, Z. A., Marsh, S., van der Meer, F. D.: Mapping the
wavelength position of deepest absorption features to explore mineral
diversity in hyperspectral images, Planet. Space Sci., 101, 108–117,
https://doi.org/10.1016/j.pss.2014.06.009, 2014.
Wang, R., Cudahy, T. J., Laukamp, C., Walshe, J. L.,
Bath, A., Mei, Y., Young, C., Roache, T. J., Jenkins,
A., Roberts, M., Barker, A., and Laird J.: White mica as a hyperspectral tool in exploration for Sunrise Dam and Kanowna Belle gold deposits, Western Australia, Econ. Geol. 112, 1153–1176, https://doi.org/econgeo.2017.4505, 2017.
Wodzicki, A. and Piestrzyński, A.: An Ore Genetic Model for the Lubin –
Sieroszowice Mining District, Poland, Miner. Deposita, 29, 30–43,
https://doi.org/10.1007/BF03326394, 1994.
Zaini, N., Meer, F., and van der Werff, H.: Effect of Grain Size and Mineral
Mixing on Carbonate Absorption Features in the SWIR and TIR Wavelength
Regions, Remote Sensing, 4, 987–1003, https://doi.org/10.3390/rs4040987, 2012.
Zamudio, J. A.: Focusing Field Exploration Efforts, Using Results from Hyperspectral Data Analysis of the El Capitan Gold-Platinum Group Metals-Iron Deposit, New Mexico, Remote Sensing and Spectral Geology, edited by: Bedell, R., Crósta, A. P., and Grunsky, E., Society of Economic Geologists, Inc., 169–176,
https://doi.org/10.5382/Rev.16.13, 2009
Short summary
We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type...