Articles | Volume 15, issue 10
https://doi.org/10.5194/se-15-1241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-1241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
ECOMAN: an open-source package for geodynamic and seismological modelling of mechanical anisotropy
Manuele Faccenda
CORRESPONDING AUTHOR
Dipartimento di Geoscienze, Università di Padova, 35131 Padua, Italy
Brandon P. VanderBeek
CORRESPONDING AUTHOR
Dipartimento di Geoscienze, Università di Padova, 35131 Padua, Italy
Albert de Montserrat
Institute of Geophysics, ETH Zürich, Sonneggstrasse 5, 8092 Zurich, Switzerland
Jianfeng Yang
State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
Francesco Rappisi
School of Earth and Environment, University of Leeds, Leeds, UK
Neil Ribe
Lab FAST, Univ Paris-Saclay, CNRS, Bat 530, rue André Rivière, 91405 Orsay, France
Related authors
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Related subject area
Subject area: Core and mantle structure and dynamics | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
Quantifying mantle mixing through configurational entropy
On the impact of true polar wander on heat flux patterns at the core–mantle boundary
Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation
Transport mechanisms of hydrothermal convection in faulted tight sandstones
Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs
On the choice of finite element for applications in geodynamics
Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Comparing global seismic tomography models using varimax principal component analysis
Erik van der Wiel, Cedric Thieulot, and Douwe J. J. van Hinsbergen
Solid Earth, 15, 861–875, https://doi.org/10.5194/se-15-861-2024, https://doi.org/10.5194/se-15-861-2024, 2024
Short summary
Short summary
Geodynamic models of mantle convection provide a powerful tool to study the structure and composition of the Earth's mantle. Comparing such models with other datasets is difficult. We explore the use of
configurational entropy, which allows us to quantify mixing in models. The entropy may be used to analyse the mixed state of the mantle as a whole and may also be useful to validate numerical models against anomalies in the mantle that are obtained from seismology and geochemistry.
Thomas Frasson, Stéphane Labrosse, Henri-Claude Nataf, Nicolas Coltice, and Nicolas Flament
Solid Earth, 15, 617–637, https://doi.org/10.5194/se-15-617-2024, https://doi.org/10.5194/se-15-617-2024, 2024
Short summary
Short summary
Heat flux heterogeneities at the bottom of Earth's mantle play an important role in the dynamic of the underlying core. Here, we study how these heterogeneities are affected by the global rotation of the Earth, called true polar wander (TPW), which has to be considered to relate mantle dynamics with core dynamics. We find that TPW can greatly modify the large scales of heat flux heterogeneities, notably at short timescales. We provide representative maps of these heterogeneities.
Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada
Solid Earth, 15, 23–38, https://doi.org/10.5194/se-15-23-2024, https://doi.org/10.5194/se-15-23-2024, 2024
Short summary
Short summary
Fluids and melts in the mantle are key to the Earth’s evolution. The main driving force for their transport is the compaction of the porous mantle. Numerically, the compaction equations can yield unphysical negative liquid fractions (porosity), and it is necessary to enforce positive porosity. However, the effect of such a treatment on liquid flow and mass conservation has not been quantified. We found that although mass conservation is affected, the liquid pathways are well resolved.
Guoqiang Yan, Benjamin Busch, Robert Egert, Morteza Esmaeilpour, Kai Stricker, and Thomas Kohl
Solid Earth, 14, 293–310, https://doi.org/10.5194/se-14-293-2023, https://doi.org/10.5194/se-14-293-2023, 2023
Short summary
Short summary
The physical processes leading to the kilometre-scale thermal anomaly in faulted tight sandstones are numerically investigated. The fluid-flow pathways, heat-transfer types and interactions among different convective and advective flow modes are systematically identified. The methodologies and results can be applied to interpret hydrothermal convection-related geological phenomena and to draw implications for future petroleum and geothermal exploration and exploitation in analogous settings.
Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley
Solid Earth, 14, 119–135, https://doi.org/10.5194/se-14-119-2023, https://doi.org/10.5194/se-14-119-2023, 2023
Short summary
Short summary
The mantle thermal conductivity's dependencies on temperature, pressure, and composition are often suppressed in numerical models. We examine the effect of these dependencies on the long-term evolution of lower-mantle thermochemical structure. We propose that depth-dependent conductivities derived from mantle minerals, along with moderate temperature and compositional correction, emulate the Earth's mean lowermost-mantle conductivity values and produce a stable two-pile configuration.
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022, https://doi.org/10.5194/se-13-229-2022, 2022
Short summary
Short summary
One of the main numerical methods to solve the mass, momentum, and energy conservation equations in geodynamics is the finite-element method. Four main types of elements have been used in the past decades in hundreds of publications. For the first time we compare results obtained with these four elements on a series of geodynamical benchmarks and applications and draw conclusions as to which are the best ones and which are to be preferably avoided.
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021, https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Short summary
The lower mantle extends from 660–2890 km depth, making up > 50 % of the Earth’s volume. Its composition and structure, however, remain poorly understood. In this study, we investigate several hypotheses with computer simulations of mantle convection that include different materials: recycled, dense rocks and ancient, strong rocks. We propose a new integrated style of mantle convection including
piles,
blobs, and
streaksthat agrees with various observations of the deep Earth.
Olivier de Viron, Michel Van Camp, Alexia Grabkowiak, and Ana M. G. Ferreira
Solid Earth, 12, 1601–1634, https://doi.org/10.5194/se-12-1601-2021, https://doi.org/10.5194/se-12-1601-2021, 2021
Short summary
Short summary
As the travel time of seismic waves depends on the Earth's interior properties, seismic tomography uses it to infer the distribution of velocity anomalies, similarly to what is done in medical tomography. We propose analysing the outputs of those models using varimax principal component analysis, which results in a compressed objective representation of the model, helping analysis and comparison.
Cited articles
Abt, D. L. and Fischer, K.: Resolving three-dimensional anisotropic structure with shear wave splitting tomography, Geophys. J. Int., 173, 859–886, 2008.
Ahrens, J., Geveci, B., and Law, C.: ParaView: An End-User Tool for Large Data Visualization, in: Visualization Handbook, edited by: Hansen, C. D. and Johnson, C. R., Elsevier, 717–731, https://doi.org/10.1016/B978-012387582-2/50038-1, 2005.
Almqvist, B. S. G. and Mainprice, D.: Seismic properties and anisotropy of the continental crust: Predictions based on mineral texture and rock microstructure, Rev. Geophys., 55, 367–433, https://doi.org/10.1002/2016RG000552, 2017.
Backus, G. E.: Long‐wave elastic anisotropy produced by horizontal layering. J. Geophys. Res., 67, 4427–4440, https://doi.org/10.1029/JZ067i011p04427, 1962.
Bangerth, W., Dannberg, J., Gassmoeller, R., and Heister, T.: Aspect v2.2.0, Zenodo [code], https://doi.org/10.5281/zenodo.3924604, 2020.
Becker, T. W., Chevrot, S., Schulte-Pelkum, V., and Blackman, D. K.: Statistical properties of seismic anisotropy predicted by upper mantle geodynamic models, J. Geophys. Res., 111, B08309, https://doi.org/10.1029/2005JB004095, 2006.
Bezada, M., Faccenda, M., and Toomey, D. R: Representing anisotropic subduction zones with isotropic velocity models: A characterization of the problem and some steps on a possible path forward, Geochem. Geophy. Geosy., 17, 3164–3189, https://doi.org/10.1002/2016GC006507, 2016.
Booth, D. C. and Crampin, S.: The anisotropic reflectivity technique: Theory, Geophys. J. Roy. Astron. Soc., 72, 31–45, 1983.
Browaeys, J. T. and Chevrot, S.: Decomposition of the elastic tensor and geophysical applications, Geophys. J. Int., 159, 667–678, 2004.
Bunge, H.-P., Hagelberg, C. R., and Travis, B.J.: Mantle circulation models with variational data assimilation: inferring past mantle flow and structure from plate motion histories and seismic tomography, Geophys. J. Int., 152, 280–301, 2003.
Chai, M. and Brown, J.: The elastic constants of a pyrope-grossular-almandine garnet to 20 GPa, Geophys. Res. Lett., 24, 523–526, 1997.
Chai, M., Brown, J., and Slutski, L.: The elastic constants of an aluminous orthopyroxene to 12.5 GPa, J. Geophys. Res., 102, 779–785, 1992.
Chandler, B. C., Chen, L.-W., Li, M., Romanowicz, B., and Wenk, H.-R.: Seismic anisotropy, dominant slip systems and phase transitions in the lowermost mantle, Geophys. J. Int., 227, 1665–1681, https://doi.org/10.1093/gji/ggab278, 2021.
Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J., and Woodhouse, J. H.: Joint inversion for global isotropic and radially anisotropic mantle structure including crustal thickness perturbations, J. Geophys. Res.-Solid, 120, 4278–4300, https://doi.org/10.1002/2014JB011824, 2015.
Chang, S.-J., Ferreira, A. M. G., and Faccenda, M.: Upper- and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs, Nat. Commun., 7, 10799, https://doi.org/10.1038/ncomms10799, 2016.
Chapman, C. H. and Shearer, P. M.: Ray tracing in azimuthally anisotropic media: II. Quasishear wave coupling, Geophys. J. Int., 96, 65–83, 1989.
Chemia, Z., Dolejš, D., and Steinle-Neumann, G.: Thermal effects of variable material properties and metamorphic reactions in a three-component subducting slab, J. Geophys. Res., 120, 6823–6845, 2015.
Chevrot, S.: Multichannel analysis of shear wave splitting, J. Geophys. Res., 105, 21579–21590, 2000.
Christensen, U. C.: Some geodynamical effects of anisotropic viscosity, Geophys. J. Roy. Astron. Soc., 91, 711–736, 1987.
Chust, T. C., Steinle-Neumann, G., Dolejs, D., Schuberth, B. S., and Bunge, H. P.: MMA- EoS: a computational framework for mineralogical thermodynamics, J. Geophys. Res., 122, 9881–9920, 2017.
Crameri, F. and Tackley, P. J.: Spontaneous development of arcuate single-sided subduction in global 3-Dmantle convection models with a free surface, J. Geophys. Res.-Solid, 119, 921–5942, https://doi.org/10.1002/2014JB010939, 2014.
Crotwell, H. P., Owens, T. J., and Ritsema, J.: The TauP Toolkit: flexible seismic travel-time and ray-path utilities, Seismol. Res. Lett., 70, 154–160, 1999.
Davies, D. R., Goes, S., Davies, J. H., Schuberth, B. S. A., Bunge, H.-P., and Ritsema, J.: Reconciling dynamic and seismic models of Earth's lower mantle: The dominant role of thermal heterogeneity, Earth Planet. Sc. Lett., 353–354, 253–269, 2012.
Debayle, E., Kennet, B., and Priiestley, K.: Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia, Nature, 433, 509–512, 2005.
Debayle, E., Bodin, T., Durand, S., and Ricard, Y.: Seismic evidence for partial melt below tectonic plates, Nature, 586, 555–559, https://doi.org/10.1038/s41586-020-2809-4, 2020.
Del Piccolo, G., VanderBeek, B., Faccenda, M., Morelli, A., and Byrnes, J.: Imaging upper mantle anisotropy with transdimensional Bayesian Monte Carlo sampling, Bull. Seismol. Soc. Am., 114, 1214–1226, https://doi.org/10.1785/0120230233, 2024.
de Montserrat, A., Faccenda, M., and Pennacchioni, G.: Extrinsic anisotropy of two-phase Newtonian aggregates: Fabric characterization and parameterization, J. Geophys. Res.-Solid, 126, e2021JB022232, https://doi.org/10.1029/2021JB022232, 2021.
Deuss, A: Heterogeneity and anisotropy of Earth's inner core, Annu. Rev. Earth. Planet. Sci., 42, 103–126, https://doi.org/10.1146/annurev-earth-060313-054658, 2014.
ECOMAN project: ecoman-geos, GitHub, https://github.com/ecoman-geos (last access: 1 October 2024), 2024.
Faccenda, M.: Mid mantle seismic anisotropy around subduction zones, Phys. Earth Planet. Int., 227, 1–19, 2014.
Faccenda, M.: ECOMAN2.0-geodynamics, Zenodo [code], https://doi.org/10.5281/zenodo.10599735, 2024a.
Faccenda, M.: ECOMAN2.0-seismology. SKS-split, Zenodo [code], https://doi.org/10.5281/zenodo.11173260, 2024b.
Faccenda, M. and Capitanio, F. A.: Development of mantle seismic anisotropy during subduction-induced 3D flow, Geophys. Res. Lett., 39, L11305, https://doi.org/10.1029/2012GL051988, 2012.
Faccenda, M. and Capitanio, F. A.: Seismic anisotropy around subduction zones: insights from three-dimensional modeling of upper mantle deformation and SKS splitting calculations, Geochem. Geophy. Geosy., 14, 243–262, https://doi.org/10.1002/ggge.20055, 2013.
Faccenda, M. and VanDerBeek, B. P.: On constraining 3D seismic anisotropy in subduction, mid-ocean-ridge, and plume environments with teleseismic body wave data, J. Geodyn., 158, 102003, https://doi.org/10.1016/j.jog.2023.102003, 2023.
Faccenda, M., Ferreira, A. M. G., Tisato, N., Lithgow-Bertelloni, C., Stixrude, L., and Pennacchioni, G.: Extrinsic anisotropy in a compositionally heterogeneous mantle, J. Geophys. Res., 124, 1671–1687, https://doi.org/10.1029/2018JB016482, 2019.
Ferreira, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.-J., and Schardong, L.: Ubiquitous lower-mantle anisotropy beneath subduction zone, Nat. Geosci., 12, 301–306, https://doi.org/10.1038/s41561-019-0325-7, 2019.
Fraters, M. R. T. and Billen, M. I.: On the implementation and usability of crystal preferred orientation evolution in geodynamic modelling, Geochem. Geophy., Geosy., 22, e2021GC009846, https://doi.org/10.1029/2021GC009846, 2021.
French, S. and Romanowicz, B.: Broad plumes rooted at the base of the Earth's mantle beneath major hotspots, Nature, 525, 95–99, https://doi.org/10.1038/nature14876, 2015.
Halter, W., Macherel, E., Duretz, T., and Schmalholz, S. M.: Numerical modelling of strain localization by anisotropy evolution during 2D viscous simple shearing, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-11438, https://doi.org/10.5194/egusphere-egu22-11438, 2022.
Han, D. and Wahr, J.: An analysis of anisotropic mantle viscosity, and its possible effects on post-glacial rebound, Phys. Earth Planet. Int., 102, 33–50, 1997.
Hansen, L. N., Zhao, Y.-H., Zimmerman, M. E., and Kohlstedt, D. L.: Protracted fabric evolution in olivine: Implications for the relationship among strain, crystallographic fabric, and seismic anisotropy, Earth Planet. Sc. Lett., 387, 157–168, https://doi.org/10.1016/j.epsl.2013.11.009, 2014.
Hedjazian, N., Garel, F., Rhodri Davies, D., and Kaminski, E.: Age-independent seismic anisotropy under oceanic plates explained by strain history in the asthenosphere, Earth Planet. Sc. Lett., 460, 135–142, 2017.
Hirschmann, M., Kogiso, T., Baker, M., and Stopler, E.: Alkalic magmas generated by partial melting of garnet pyroxenite, Geology, 31, 481–484, 2003.
Hu, J., Faccenda, M., and Liu, L.: Subduction-controlled mantle flow and seismic anisotropy in South America, Earth Planet. Sc. Lett., 470, 13–24, https://doi.org/10.1016/j.epsl.2017.04.027, 2017.
Isaak, D.: High-temperature elasticity of iron-bearing olivines, J. Geophys. Res., 97, 1871–1885, 1992.
Ito, G., Dunn, R., Li, A., Wolfe, C. J., Gallego, A., and Fu, Y.: Seismic anisotropy and shear wave splitting associated with mantle plume-plate interaction, J. Geophys. Res.-Solid, 119, 4923–4937, https://doi.org/10.1002/2013JB010735, 2014.
Jackson, J., Sinogeikin, S., and Bass, J.: Sound velocities and single-crystal elasticity of orthoenstatite to 1073 K at ambient pressure, Phys. Earth Planet. Int., 171, 1–12, 2007.
Jadamec, M. and Billen, M.: Reconciling surface plate motions with rapid three-dimensional mantle flow around a slab edge, Nature, 465, 338–341, https://doi.org/10.1038/nature09053, 2010.
Kaminski, E. and Ribe N. M.: A kinematic model for recrystallization and texture development in olivine polycrystals, Earth Planet. Sc. Lett., 189, 253–267, 2001.
Kageyama, A. and Sato, T: “Yin-Yang grid”: An overset grid in spherical geometry, Geochem. Geophy. Geosy., 5, Q09005, https://doi.org/10.1029/2004GC000734, 2004.
Kaminski, E., Ribe, N. M., and Browaeys, J. T.: D-Rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle, Geophys. J. Int., 158, 744–752, https://doi.org/10.1111/j.1365-246x.2004.02308.x, 2004.
Karato, S.-I.: Seismic anisotropy in the deep mantle, boundary layers and the geometry of mantle convection, Pure Appl. Geophys., 151, 2-4, 565–587, https://doi.org/10.1007/s000240050130, 1998.
Karato, S.-I., Jung, H., Katayama, I., and Skemer, P.: Geodynamic significance of seismic anisotropy of the upper mantle: New insights from laboratory studies, Annu. Rev. Earth Planet. Sci., 36, 59–95, https://doi.org/10.1146/annurev.earth.36.031207.124120, 2008.
Karki, B., Wentzcovitch, R., de Gironcoli, S., and Baroni, S.: High-pressure lattice dynamics and thermoelasticity of MgO, Phys. Rev. B, 61, 8793–8800, 2000.
Kawai, K. and Tsuchiya, T.: Small shear modulus of cubic CaSiO3 perovskite, Geophys. Res. Lett., 42, 2718–2726, https://doi.org/10.1002/2015GL063446, 2015.
Kelemen, P. and Ghiorso, M.: Assimilation of peridotite in zoned calc-alkaline plutonic complexes: evidence from the Big Jim complex, Washington Cascades, Contrib. Min., 94, 12–28, 1986.
Kendall, J.-M.: Seismic anisotropy in the boundary layers of the mantle, in: Earth's deep interior: Mineral physics and tomography from the atomic to the global scale, Geophysical Monograph Series 117, American Geophysical Union, Washington, DC, 133–159, https://doi.org/10.1029/GM117p0133, 2000.
Király, Á., Conrad, C. P., and Hansen, L. N.: Evolving viscous anisotropy in the upper mantle and its geodynamic implications, Geochem. Geophy. Geosy., 21, e2020GC009159, https://doi.org/10.1029/2020GC009159, 2020.
Kocher, T., Schmalholz, S. M., and Mancktelow, N. S.: Impact of mechanical anisotropy and power-law rheology on single layer folding, Tectonophysics, 421, 71–87, 2006.
Komatitsch, D. and Tromp, J.: Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophys. J. Int., 139, 806–822, 1999.
Lev, E. and Hager, B. H.: Rayleigh–Taylor instabilities with anisotropic lithospheric viscosity, Geophys. J. Int., 173, 806–814, 2008a.
Lev, E. and Hager, B. H.: Prediction of anisotropy from flow models: A comparison of three methods, Geochem. Geophy. Geosy., 9, Q07014, https://doi.org/10.1029/2008GC002032, 2008b.
Li, Z.-H., Di Leo, J. F., and Ribe, N. M.: Subduction-induced mantle flow, finite strain, and seismic anisotropy: Numerical modeling, J. Geophys. Res.-Solid, 119, 5052–5076, https://doi.org/10.1002/2014JB010996, 2014.
Lo Bue, R., Faccenda, M., and Yang, J.: The role of Adria Plate Lithospheric Structures on the Recent Dynamics of the Central Mediterranean Region, J. Geophys. Res., 126, e2021JB022377, https://doi.org/10.1029/2021JB022377, 2021.
Lo Bue, R., Rappisi, F., VanderBeek, B. P., and Faccenda, M.: Tomographic Image Interpretation and Central-Western Mediterranean-Like Upper Mantle Dynamics From Coupled Seismological and Geodynamic Modeling Approach, Front. Earth Sci., 10, 884100, https://doi.org/10.3389/feart.2022.884100, 2022.
Lo Bue, R., Rappisi, F., Firetto Carlino, M., Giampiccolo, E., Cocina, O., Vanderbeek, B. P., and Faccenda, M.: Crustal structure of Etna volcano (Italy) from P-wave anisotropic tomography, Geophys. Res. Lett., 51, e2024GL108733, https://doi.org/10.1029/2024GL108733, 2024.
Long, M. D. and Becker, T. W.: Mantle dynamics and seismic anisotropy, Earth Planet. Sc. Lett., 297, 341–354, 2010.
Long, M. D., Maarten, V., and Van Der Hilst, R. D.: Wave-equation shear wave splitting tomography, Geophys. J. Int., 172, 311–330, https://doi.org/10.1111/j.1365-246X.2007.03632.x, 2008.
Maguire, R., Ritsema, J., Bonnin, M., van Keken, P. E., and Goes, S.: Evaluating the resolution of deep mantle plumes in teleseismic traveltime tomography, J. Geophys. Res., 123, 384–400, https://doi.org/10.1002/2017JB014730, 2018.
Mainprice, D.: Modelling the anisotropic seismic properties of partially molten rocks found at mid-ocean ridges, Tectonophysics, 279, 161–179, 1997.
Mainprice, D.: Seismic Anisotropy of the Deep Earth from a Mineral and Rock Physics Perspective, in: Treatise on Geophysics, 2, edited by: Schubert, G., Elsevier, 437–491, ISBN 978-0-444-53803-1, 2007.
Mainprice, D., Hielscher, R., and Schaeben, H.: Calculating anisotropic physical properties from texture data using the MTEX open source package, in: Deformation Mechanisms, Rheology and Tectonics: Microstructures, Mechanics and Anisotropy, edited by: Prior, D. J., Rutter, E. H., and Tatham, D. J., Geol. Soc. Lond. Spec. Publ., 360, 175–192, 2011.
Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., and Garnero, E. J.: Elastic Shear Anisotropy of Ferropericlase in Earth's Lower Mantle, Science, 324, 224–226, https://doi.org/10.1126/science.1169365, 2009.
Menke, W. and Levin, V.: The cross-convolution method for interpreting SKS splitting observations, with application to one and two layer anisotropic earth models, Geophys. J. Int., 154, 379–392, 2003.
Mondal, P. and Long, M. D.: A model space search approach to finite-frequency SKS splitting intensity tomography in a reduced parameter space, Geophys. J. Int., 217, 238–256, https://doi.org/10.1093/gji/ggz016, 2019.
Mühlhaus, H.-B., Moresi, L., Hobbs, B. and Dufour, F.: Large amplitude folding in finely layered viscoelastic rock structures, Pure Appl. Geophys., 159, 2311–2333, 2002.
Mühlhaus, H.-B., Moresi, L., and Cada, M.: Emergent anisotropy and flow alignment in viscous rock, Pure Appl. Geophys., 161, 2451–2463, 2004.
Müller, R. D., Flament, N., Cannon, J., Tetley, M. G., Williams, S. E., Cao, X., Bodur, Ö. F., Zahirovic, S., and Merdith, A.: A tectonic-rules-based mantle reference frame since 1 billion years ago – implications for supercontinent cycles and plate–mantle system evolution, Solid Earth, 13, 1127–1159, https://doi.org/10.5194/se-13-1127-2022, 2022.
Munzarova, H., Plomerova, J., and Kissling, E.: Novel anisotropic teleseismic body- wave tomography code AniTomo to illuminate heterogeneous anisotropic upper mantle: Part I – theory and inversion tuning with realistic synthetic data, Geophys. J. Int., 215, 524–545, 2018.
Oganov, A. R. and Ono, S.: Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D′′ layer, Nature, 430, 445–448, 2004.
Paige, C. C. and Saunders, M. A.: LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Softw., 8, 43–71, 1982.
Panning, M. and Romanowicz, B.: A three-dimensional radially anisotropic model of shear velocity in the whole mantle, Geophys. J. Int., 167, 361–379, 2006.
Rappisi, F., VanderBeek, B., Faccenda, M., Morelli, A., and Molinari, I: Slab geometry and upper mantle flow patterns in the Central Mediterranean from 3D anisotropic P-wave tomography, J. Geophys. Res., 127, e2021JB023488, https://doi.org/10.1029/2021JB023488, 2022.
Rappisi, F., Witek, M., Faccenda, M., Ferreira, A. M. G., and Chang, S.-J.: Artificial age-independent seismic anisotropy, slab thickening and shallowing due to limited resolving power of (an)isotropic tomography, Geophys. J. Int., 237, 217–234, 2024.
Ribe, N. M., Hielscher, R. H., and Castelnau, O.: An analytical finite-strain parameterization for texture evolution in deforming olivine polycrystals, Geophys. J. Int., 216, 486–514, https://doi.org/10.1093/gji/ggy442, 2019.
Ribe, N. M., Faccenda, M., and Hielscher, R. H.: SBFTEX: An Analytical Parameterization for Finite Strain-Induced upper mantle Anisotropy, in: AGU Fall Meeting 2023, San Francisco, USA, DI42A-08, https://agu.confex.com/agu/fm23/meetingapp.cgi/Paper/1239978 (last access: 1 October 2024), 2023.
Rudolph, M. L., Lekić, V., and Lithgow-Bertelloni, C.: Viscosity jump in Earth's mid-mantle, Science, 350, 1349–1352, https://doi.org/10.1126/science.aad1929, 2015.
Rumpker, G. and Silver, P. G.: Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy, Geophys. J. Int., 135, 790–800, 1998.
Schaeffer, A. J., Lebedev, S., and Becker, T. W.: Azimuthal seismic anisotropy in the Earth's upper mantle and the thickness of tectonic plates. Geophys. J. Int., 207, 901–933, https://doi.org/10.1093/gji/ggw309, 2016.
Schuberth, B. S. A., Zaroli, C., and Nolet, G.: Synthetic seismograms for a synthetic Earth: long-period P- and S-wave traveltime variations can be explained by temperature alone, Geophys. J. Int., 188, 1393–1412, https://doi.org/10.1111/j.1365-246X.2011.05333.x, 2012.
Schulte-Pelkum, V. and Blackman, D. K.: A synthesis of seismic P and S anisotropy, J. Geophys. Int., 154, 166–178, 2003.
Shea Jr., W. T. and Kronenberg, A. K.: Strength and anisotropy of foliated rocks with varied mica contents, J. Struct. Geol., 15, 1097–1121, https://doi.org/10.1016/0191-8141(93)90158-7, 1993.
Sinogeikin, S. and Bass, J: Elasticity of pyrope and majorite – pyrope solid solutions to high temperatures, Earth Planet. Sc. Lett., 203, 549–555, 2002.
Sinogeikin, S., Bass, J., and Katsura, K.: Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity, Phys. Earth Planet. Int., 136, 41–66, 2003.
Steinberger, B. and Calderwood, A.: Models of large-scale viscous flow in the Earth's mantle with constraints from mineral physics and surface observations, Geophys. J. Int., 167, 1461–1481, https://doi.org/10.1111/j.1365-246X.2006.03131.x, 2006.
Sturgeon, W., Ferreira, A. M. G., Faccenda, M., Chang, S.-J., and Schardong, L.: On the origin of radial anisotropy near subducted slabs in the midmantle, Geochem. Geophy. Geosy., 20, 5105–5125, https://doi.org/10.1029/2019GC008462, 2019.
Styles, E., Davies, D. R., and Goes, S.: Mapping spherical seismic into physical structure: Biases from 3-D phase-transition and thermal boundary-layer heterogeneity, Geophys. J. Int., 184, 1371–1378, https://doi.org/10.1111/j.1365-246X.2010.04914.x , 2011.
Tape, W. and Tape, C.: A reformulation of the Browaeys and Chevrot decomposition of elastic maps, J. Elast., 156, 415–454, https://doi.org/10.1007/s10659-024-10056-x, 2024.
Tasaka, M., Zimmerman, M. E., Kohlstedt, D. L., Stünitz, H., and Heilbronner, R.: Rheological weakening of olivine + orthopyroxene aggregates due to phase mixing: Part 2. Microstructural development, J. Geophys. Res.-Solid, 122, 7597–7612, https://doi.org/10.1002/2017JB014311, 2017.
Thomsen, L.: Weak elastic anisotropy, Geophysics, 51, 1954–1966, 1986.
Tommasi, A., Knoll, M., Vauchez, A., Signorelli, J. W., Thoraval, C., and Logé, R.: Structural reactivation in plate tectonics controlled by olivine crystal anisotropy, Nat. Geosci., 2, 423–427, https://doi.org/10.1038/ngeo528, 2009.
VanderBeek, B. P.: ECOMAN2.0-45 seismology PSI_D, Zenodo [code], https://doi.org/10.5281/zenodo.11186805, 2024.
VanderBeek, B. P. and Faccenda, M.: Imaging upper mantle anisotropy with teleseismic P-wave delays: insights from tomographic reconstructions of subduction simulations, Geophys. J. Int., 225, 2097–2119, 2021.
VanderBeek, B. P., Lo Bue, R., Rappisi, F., and Faccenda, M.: Imaging upper mantle anisotropy with travel-time and splitting intensity observations from teleseismic shear waves: Insights from tomographic reconstructions of subduction simulations, Geophys. J. Int., 235, 2640-2670, https://doi.org/10.1093/gji/ggad389, 2023.
Wang, Z. and Zhao, D.: 3D anisotropic structure of the Japan subduction zone, Sci. Adv., 7, 4, https://doi.org/10.1126/sciadv.abc9620, 2021.
Warren, J. M., Hirth, G., and Kelemen, P. B.: Evolution of olivine preferred orientation during simple shear in the mantle, Earth Planet. Sc. Lett. 272, 501–512, https://doi.org/10.1016/j.epsl.2008.03.063, 2008.
Wentzcovitch, R., Karki, B., Cococcioni, M., and de Gironcoli, S.: Properties of MgSiO3-perovskite: Insights on the nature of the earth's lower mantle, Phys. Rev. Lett., 92, 018501, https://doi.org/10.1103/PhysRevLett.92.018501, 2004.
Wookey, J.: Direct probabilistic inversion of shear wave data for seismic anisotropy, Geophys. J. Int., 189, 1025–1037, https://doi.org/10.1111/j.1365-246X.2012.05405.x, 2012.
Workman, R. and Hart, S.: Major and trace element composition of the depleted morb mantle, Earth Planet. Sc. Lett., 231, 53–72, 2005.
Zha, C., Duffy, T., Mao, H., Downs, R., Hemley, R., and Weidner, D.: Single-crystal elasticity of β-Mg2SiO4 seismic discontinuity in the earth's mantle, Earth Planet. Sc. Lett., 147, E9–E15, 1997.
Zha, C., Duffy, T., Downs, R., Mao, H., and Hemley, R.: Brillouin scattering and x-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa, Earth Planet. Sc. Lett., 159, 25–33, 1998.
Zhang, Z., Stixrude, L., and Brodholt, J.: Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep earth, Earth Planet. Sc. Lett., 379, 1–12, 2013.
Zhang, Z., Cottaar, S., Tao, L., Stackhouse, S., and Militzer, B.: High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: Implications for the earth's lower mantle, Earth Planet. Sc. Lett., 434, 264–273, 2016.
Zhou, Q., Hu, J., Liu, L., Chaparro, T., Stegman, D. R., and Faccenda, M.: Western U.S. seismic anisotropy revealing complex mantle dynamics, Earth Planet. Sc. Lett. 500, 156-167, https://doi.org/10.1016/j.epsl.2018.08.015, 2018.
Zhou, W.-Y., Hao, M., Zhang, J., Chen, B., Wang, R., and Schamndt, B.: Constraining composition and temperature variations in the mantle transition zone, Nat. Commun., 13, 1094, https://doi.org/10.1038/s41467-022-28709-7, 2022.
Short summary
The Earth's internal dynamics and structure can be well understood by combining seismological and geodynamic modelling with mineral physics, an approach that has been poorly adopted in the past. To this end we have developed ECOMAN, an open-source software package that is intended to overcome the computationally intensive nature of this multidisciplinary methodology and the lack of a dedicated and comprehensive computational framework.
The Earth's internal dynamics and structure can be well understood by combining seismological...