Articles | Volume 15, issue 1
https://doi.org/10.5194/se-15-23-2024
https://doi.org/10.5194/se-15-23-2024
Method article
 | 
17 Jan 2024
Method article |  | 17 Jan 2024

Modeling liquid transport in the Earth's mantle as two-phase flow: effect of an enforced positive porosity on liquid flow and mass conservation

Changyeol Lee, Nestor G. Cerpa, Dongwoo Han, and Ikuko Wada

Related subject area

Subject area: Core and mantle structure and dynamics | Editorial team: Geodynamics and quantitative modelling | Discipline: Geodynamics
Transport mechanisms of hydrothermal convection in faulted tight sandstones
Guoqiang Yan, Benjamin Busch, Robert Egert, Morteza Esmaeilpour, Kai Stricker, and Thomas Kohl
Solid Earth, 14, 293–310, https://doi.org/10.5194/se-14-293-2023,https://doi.org/10.5194/se-14-293-2023, 2023
Short summary
Influence of heterogeneous thermal conductivity on the long-term evolution of the lower-mantle thermochemical structure: implications for primordial reservoirs
Joshua Martin Guerrero, Frédéric Deschamps, Yang Li, Wen-Pin Hsieh, and Paul James Tackley
Solid Earth, 14, 119–135, https://doi.org/10.5194/se-14-119-2023,https://doi.org/10.5194/se-14-119-2023, 2023
Short summary
On the choice of finite element for applications in geodynamics
Cedric Thieulot and Wolfgang Bangerth
Solid Earth, 13, 229–249, https://doi.org/10.5194/se-13-229-2022,https://doi.org/10.5194/se-13-229-2022, 2022
Short summary
Coupled dynamics and evolution of primordial and recycled heterogeneity in Earth's lower mantle
Anna Johanna Pia Gülcher, Maxim Dionys Ballmer, and Paul James Tackley
Solid Earth, 12, 2087–2107, https://doi.org/10.5194/se-12-2087-2021,https://doi.org/10.5194/se-12-2087-2021, 2021
Short summary
Comparing global seismic tomography models using varimax principal component analysis
Olivier de Viron, Michel Van Camp, Alexia Grabkowiak, and Ana M. G. Ferreira
Solid Earth, 12, 1601–1634, https://doi.org/10.5194/se-12-1601-2021,https://doi.org/10.5194/se-12-1601-2021, 2021
Short summary

Cited articles

Arbogast, T., Hesse, M. A., and Taicher, A. L.: Mixed Methods for Two-Phase Darcy–Stokes Mixtures of Partially Melted Materials with Regions of Zero Porosity, SIAM J. Sci. Comput., 39, B375–B402, https://doi.org/10.1137/16m1091095, 2017. 
Bercovici, D. and Karato, S.-i.: Whole-mantle convection and the transition-zone water filter, Nature, 425, 39–44, https://doi.org/10.1038/nature01918, 2003. 
Bie, L., Hicks, S., Rietbrock, A., Goes, S., Collier, J., Rychert, C., Harmon, N., and Maunder, B.: Imaging slab-transported fluids and their deep dehydration from seismic velocity tomography in the Lesser Antilles subduction zone, Earth Planet. Sci. Lett., 586, 117535, https://doi.org/10.1016/j.epsl.2022.117535, 2022. 
Butler, S. L.: Shear-induced porosity bands in a compacting porous medium with damage rheology, Phys. Earth Planet. In., 264, 7–17, https://doi.org/10.1016/j.pepi.2016.12.006, 2017. 
Cerpa, N. G., Rees Jones, D. W., and Katz, R. F.: Consequences of glacial cycles for magmatism and carbon transport at mid-ocean ridges, Earth Planet. Sci. Lett., 528, 115845, https://doi.org/10.1016/j.epsl.2019.115845, 2019. 
Download
Short summary
Fluids and melts in the mantle are key to the Earth’s evolution. The main driving force for their transport is the compaction of the porous mantle. Numerically, the compaction equations can yield unphysical negative liquid fractions (porosity), and it is necessary to enforce positive porosity. However, the effect of such a treatment on liquid flow and mass conservation has not been quantified. We found that although mass conservation is affected, the liquid pathways are well resolved.