Articles | Volume 15, issue 8
https://doi.org/10.5194/se-15-921-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-15-921-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Geodynamic controls on clastic-dominated base metal deposits
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Invited contribution by Anne C. Glerum, recipient of the EGU Geodynamics Division Outstanding Early Career Scientists Award 2024.
Sascha Brune
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Joseph M. Magnall
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Philipp Weis
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
University of Potsdam, Institute of Geosciences, Karl-Liebknecht-Str. 24–25, 14476 Potsdam, Germany
Sarah A. Gleeson
Helmholtz Centre Potsdam – GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany
Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74–100, 12249 Berlin, Germany
Related authors
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022, https://doi.org/10.5194/se-13-583-2022, 2022
Short summary
Short summary
Geodynamic modelling provides a powerful tool to investigate processes in the Earth’s crust, mantle, and core that are not directly observable. In this review, we present a comprehensive yet concise overview of the modelling process with an emphasis on best practices. We also highlight synergies with related fields, such as seismology and geology. Hence, this review is the perfect starting point for anyone wishing to (re)gain a solid understanding of geodynamic modelling as a whole.
Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman
Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, https://doi.org/10.5194/se-9-267-2018, 2018
Short summary
Short summary
A nonlinear viscoplastic rheology is implemented and benchmarked in the ASPECT software, allowing for the modeling of lithospheric deformation. We showcase the new functionality with a four-dimensional model of thermomechanically coupled subduction.
Frank Zwaan, Tiago M. Alves, Patricia Cadenas, Mohamed Gouiza, Jordan J. J. Phethean, Sascha Brune, and Anne C. Glerum
Solid Earth, 15, 989–1028, https://doi.org/10.5194/se-15-989-2024, https://doi.org/10.5194/se-15-989-2024, 2024
Short summary
Short summary
Rifting and the break-up of continents are key aspects of Earth’s plate tectonic system. A thorough understanding of the geological processes involved in rifting, and of the associated natural hazards and resources, is of great importance in the context of the energy transition. Here, we provide a coherent overview of rift processes and the links with hazards and resources, and we assess future challenges and opportunities for (collaboration between) researchers, government, and industry.
Thilo Wrona, Indranil Pan, Rebecca E. Bell, Christopher A.-L. Jackson, Robert L. Gawthorpe, Haakon Fossen, Edoseghe E. Osagiede, and Sascha Brune
Solid Earth, 14, 1181–1195, https://doi.org/10.5194/se-14-1181-2023, https://doi.org/10.5194/se-14-1181-2023, 2023
Short summary
Short summary
We need to understand where faults are to do the following: (1) assess their seismic hazard, (2) explore for natural resources and (3) store CO2 safely in the subsurface. Currently, we still map subsurface faults primarily by hand using seismic reflection data, i.e. acoustic images of the Earth. Mapping faults this way is difficult and time-consuming. Here, we show how to use deep learning to accelerate fault mapping and how to use networks or graphs to simplify fault analyses.
Timothy Chris Schmid, Sascha Brune, Anne Glerum, and Guido Schreurs
Solid Earth, 14, 389–407, https://doi.org/10.5194/se-14-389-2023, https://doi.org/10.5194/se-14-389-2023, 2023
Short summary
Short summary
Continental rifts form by linkage of individual rift segments and disturb the regional stress field. We use analog and numerical models of such rift segment interactions to investigate the linkage of deformation and stresses and subsequent stress deflections from the regional stress pattern. This local stress re-orientation eventually causes rift deflection when multiple rift segments compete for linkage with opposingly propagating segments and may explain rift deflection as observed in nature.
Susanne J. H. Buiter, Sascha Brune, Derek Keir, and Gwenn Peron-Pinvidic
EGUsphere, https://doi.org/10.5194/egusphere-2022-139, https://doi.org/10.5194/egusphere-2022-139, 2022
Preprint archived
Short summary
Short summary
Continental rifts can form when and where continents are stretched. Rifts are characterised by faults, sedimentary basins, earthquakes and/or volcanism. If rifting can continue, a rift may break a continent into conjugate margins such as along the Atlantic and Indian Oceans. In some cases, however, rifting fails, such as in the West African Rift. We discuss continental rifting from inception to break-up, focussing on the processes at play, and illustrate these with several natural examples.
Iris van Zelst, Fabio Crameri, Adina E. Pusok, Anne Glerum, Juliane Dannberg, and Cedric Thieulot
Solid Earth, 13, 583–637, https://doi.org/10.5194/se-13-583-2022, https://doi.org/10.5194/se-13-583-2022, 2022
Short summary
Short summary
Geodynamic modelling provides a powerful tool to investigate processes in the Earth’s crust, mantle, and core that are not directly observable. In this review, we present a comprehensive yet concise overview of the modelling process with an emphasis on best practices. We also highlight synergies with related fields, such as seismology and geology. Hence, this review is the perfect starting point for anyone wishing to (re)gain a solid understanding of geodynamic modelling as a whole.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Sascha Brune, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, https://doi.org/10.5194/se-9-1187-2018, 2018
Short summary
Short summary
Fragmentation of continents often involves obliquely rifting segments that feature a complex three-dimensional structural evolution. Here we show that more than ~ 70 % of Earth’s rifted margins exceeded an obliquity of 20° demonstrating that oblique rifting should be considered the rule, not the exception. This highlights the importance of three-dimensional approaches in modelling, surveying, and interpretation of those rift segments where oblique rifting is the dominant mode of deformation.
Anne Glerum, Cedric Thieulot, Menno Fraters, Constantijn Blom, and Wim Spakman
Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, https://doi.org/10.5194/se-9-267-2018, 2018
Short summary
Short summary
A nonlinear viscoplastic rheology is implemented and benchmarked in the ASPECT software, allowing for the modeling of lithospheric deformation. We showcase the new functionality with a four-dimensional model of thermomechanically coupled subduction.
Michael Rubey, Sascha Brune, Christian Heine, D. Rhodri Davies, Simon E. Williams, and R. Dietmar Müller
Solid Earth, 8, 899–919, https://doi.org/10.5194/se-8-899-2017, https://doi.org/10.5194/se-8-899-2017, 2017
Short summary
Short summary
Earth's surface is constantly warped up and down by the convecting mantle. Here we derive geodynamic rules for this so-called
dynamic topographyby employing high-resolution numerical models of global mantle convection. We define four types of dynamic topography history that are primarily controlled by the ever-changing pattern of Earth's subduction zones. Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution.
Cited articles
Ahrens, J., Geveci, B., and Law, C.: ParaView: an end-user tool for large data visualization, in: Visualization Handbook, Elsevier, ISBN 978-0123875822, 2005.
Ali, S. H., Giurco, D., Arndt, N., Nickless, E., Brown, G., Demetriades, A., Durrheim, R., Enriquez, M. A., Kinnaird, J., Littleboy, A., Meinert, L. D., Oberhänsli, R., Salem, J., Schodde, R., Schneider, G., Vidal, O., and Yakovleva, N.: Mineral supply for sustainable development requires resource governance, Nature, 543, 367–372, https://doi.org/10.1038/nature21359, 2017.
Allen, P. A. and Allen, J. R.: Basin analysis: principles and application to petroleum play assessment, Third edition, Wiley-Blackwell, Chichester, West Susex, UK, 619 pp., ISBN 978-0-470-67377-5, 2013.
Andrés-Martínez, M., Pérez-Gussinyé, M., Armitage, J., and Morgan, J. P.: Thermomechanical Implications of Sediment Transport for the Architecture and Evolution of Continental Rifts and Margins, Tectonics, 38, 641–665, https://doi.org/10.1029/2018TC005346, 2019.
Austin, N. and Evans, B.: The kinetics of microstructural evolution during deformation of calcite, J. Geophys. Res.-Sol. Ea., 114, B09402, https://doi.org/10.1029/2008JB006138, 2009.
Ayachit, U.: The ParaView guide: a parallel visualization application, Kitware, ISBN 9781930934306, 2015.
Ayuso, R. A., Kelley, K., Leach, D., Young, L., Slack, J., Wandless, J., Lyon, A., and Dillingham, J.: Origin of the Red Dog Zn–Pb–Ag Deposits, Brooks Range, Alaska: Evidence from Regional Pb and Sr Isotope Sources, Econ. Geol., 99, 1533–1553, https://doi.org/10.2113/gsecongeo.99.7.1533, 2004.
Balázs, A., Maţenco, L., Granjeon, D., Alms, K., François, T., and Sztanó, O.: Towards stratigraphic-thermo-mechanical numerical modelling: Integrated analysis of asymmetric extensional basins, Global Planet. Change, 196, 103386, https://doi.org/10.1016/j.gloplacha.2020.103386, 2021.
Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T., and Naliboff, J. B.: ASPECT: Advanced Solver for Problems in Earth's ConvecTion, User Manual, 39037568 Bytes, figshare https://doi.org/10.6084/M9.FIGSHARE.4865333.V8, 2021a.
Bangerth, W., Dannberg, J., Fraters, M., Gassmoeller, R., Glerum, A., Heister, T., and Naliboff, J. B.: ASPECT v2.3.0, Zenodo [code], https://doi.org/10.5281/zenodo.5131909, 2021b.
Banks, D. A., Boyce, A. J., and Samson, I. M.: Constraints on the origins of fluids forming Irish Zn–Pb–Ba deposits: Evidence from the composition of fluid inclusions, Econ. Geol., 97, 471–480, https://doi.org/10.2113/gsecongeo.97.3.471, 2002.
Barnicoat, A. C., Sheldon, H. A., and Ord, A.: Faulting and fluid flow in porous rocks and sediments: implications for mineralisation and other processes, Miner. Deposita, 44, 705–718, https://doi.org/10.1007/s00126-009-0236-4, 2009.
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault zone hydrogeology, Earth-Sci. Rev., 127, 171–192, https://doi.org/10.1016/j.earscirev.2013.09.008, 2013.
Beranek, L. P.: A magma-poor rift model for the Cordilleran margin of western North America, Geology, 45, 1115–1118, https://doi.org/10.1130/G39265.1, 2017.
Betts, P. G., Giles, D., Mark, G., Lister, G. S., Goleby, B. R., and Aillères, L.: Synthesis of the proterozoic evolution of the Mt Isa Inlier, Australian J. Earth Sci., 53, 187–211, https://doi.org/10.1080/08120090500434625, 2006.
Beucher, R. and Huismans, R. S.: Morphotectonic Evolution of Passive Margins Undergoing Active Surface Processes: Large-Scale Experiments Using Numerical Models, Geochem. Geophy. Geosy., 21, e2019GC008884, https://doi.org/10.1029/2019GC008884, 2020.
Blaikie, T. N. and Kunzmann, M.: Geophysical interpretation and tectonic synthesis of the Proterozoic southern McArthur Basin, northern Australia, Precambrian Res., 343, 105728, https://doi.org/10.1016/j.precamres.2020.105728, 2020.
Bovy, B.: fastscape-lem/fastscape 0.1.0beta2, Zenodo [code], https://doi.org/10.5281/zenodo.3840917, 2020.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision and landscape evolution, Geomorphology, 180–181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.
Brune, S., Popov, A. A., and Sobolev, S. V.: Modeling suggests that oblique extension facilitates rifting and continental break-up, J. Geophys. Res.-Sol. Ea., 117, B08402, https://doi.org/10.1029/2011JB008860, 2012.
Brune, S., Heine, C., Pérez-Gussinyé, M., and Sobolev, S. V.: Rift migration explains continental margin asymmetry and crustal hyper-extension, Nat. Commun., 5, 4014, https://doi.org/10.1038/ncomms5014, 2014.
Brune, S., Williams, S. E., Butterworth, N. P., and Müller, R. D.: Abrupt plate accelerations shape rifted continental margins, Nature, 536, 201–204, https://doi.org/10.1038/nature18319, 2016.
Brune, S., Heine, C., Clift, P. D., and Pérez-Gussinye, M.: Rifted margin architecture and crustal rheology: Reviewing Iberia-Newfoundland, Central South Atlantic, and South China Sea, Mar. Petrol. Geol., 79, 257–281, https://doi.org/10.1016/j.marpetgeo.2016.10.018, 2017.
Brune, S., Williams, S. E., and Müller, R. D.: Oblique rifting: the rule, not the exception, Solid Earth, 9, 1187–1206, https://doi.org/10.5194/se-9-1187-2018, 2018.
Brune, S., Kolawole, F., Olive, J.-A., Stamps, D. S., Buck, W. R., Buiter, S. J. H., Furman, T., and Shillington, D. J.: Geodynamics of continental rift initiation and evolution, Nat. Rev. Earth Environ., 4, 235–253, https://doi.org/10.1038/s43017-023-00391-3, 2023.
Buck, W. R.: Modes of continental lithospheric extension, J. Geophys. Res., 96, 20161–20178, https://doi.org/10.1029/91jb01485, 1991.
Bürgmann, R. and Dresen, G.: Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations, Annu. Rev. Earth Pl. Sc., 36, 531–567, https://doi.org/10.1146/annurev.earth.36.031207.124326, 2008.
Chapman, D. S.: Thermal gradients in the continental crust, Geological Society, London, Special Publications, 24, 63–70, https://doi.org/10.1144/GSL.SP.1986.024.01.07, 1986.
Cooke, D. R., Bull, S. W., Large, R. R., and McGoldrick, P. J.: The Importance of Oxidized Brines for the Formation of Australian Proterozoic Stratiform Sediment-Hosted Pb-Zn (Sedex) Deposits, Econ. Geol., 95, 1–18, https://doi.org/10.2113/gsecongeo.95.1.1, 2000.
Crameri, F.: Scientific colour maps, Zenodo [data], https://doi.org/10.5281/zenodo.5501399, 2021.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Davis, R. O. and Selvadurai, A. P. S.: Plasticity and Geomechanics, Cambridge University Press, https://doi.org/10.1017/CBO9780511614958, 2002.
Dumoulin, J. A., Johnson, C. A., Slack, J. F., Bird, K. J., Whalen, M. T., Moore, T. E., Harris, A. G., and O'Sullivan, P. B.: Carbonate Margin, Slope, and Basin Facies of the Lisburne Group (Carboniferous–Permian) in Northern Alaska, in: Deposits, Architecture, and Controls of Carbonate Margin, Slope, and Basinal Settings, edited by: Verwer, K., Playton, T., and Harris, P. (Mitch), SEPM (Society for Sedimentary Geology), 211–236, https://doi.org/10.2110/sepmsp.105.02, 2014.
Dyksterhuis, S., Rey, P., Müller, R. D., and Moresi, L.: Effects of initial weakness on rift architecture, in: Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup, vol. 282, edited by: Karner, G. D., Manatschal, G., and Pinheiro, L. M., Geological Society of London, 282, https://doi.org/10.1144/SP282.18, 2007.
Elshkaki, A., Graedel, T. E., Ciacci, L., and Reck, B. K.: Resource Demand Scenarios for the Major Metals, Environ. Sci. Technol., 52, 2491–2497, https://doi.org/10.1021/acs.est.7b05154, 2018.
Fallick, A. E., Ashton, J. H., Boyce, A. J., Ellam, R. M., and Russell, M. J.: BACTERIA WERE RESPONSIBLE FOR THE MAGNITUDE OF THE WORLD-CLASS HYDROTHERMAL BASE METAL SULFIDE OREBODY AT NAVAN, IRELAND, Econ. Geol., 96, 885–890, https://doi.org/10.2113/gsecongeo.96.4.885, 2001.
Gibson, G. M. and Edwards, S.: Basin inversion and structural architecture as constraints on fluid flow and Pb–Zn mineralization in the Paleo–Mesoproterozoic sedimentary sequences of northern Australia, Solid Earth, 11, 1205–1226, https://doi.org/10.5194/se-11-1205-2020, 2020.
Gleeson, T. and Ingebritsen, S.: Crustal Permeability, Wiley, Wiley-Blackwell, ISBN 978-1-119-16656-6, 2016.
Glerum, A.: anne-glerum/paper-Glerum-Geodynamic-controls-clastic-dominated-base-metal-deposits: v1.0.0, Zenodo [data set, code], https://doi.org/10.5281/zenodo.10048075, 2023.
Glerum, A., Thieulot, C., Fraters, M., Blom, C., and Spakman, W.: Nonlinear viscoplasticity in ASPECT: benchmarking and applications to subduction, Solid Earth, 9, 267–294, https://doi.org/10.5194/se-9-267-2018, 2018.
Goodfellow, W. D., Lydon, J. W., and Turner, R. J. W.: Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits, Geological Association of Canada Special Paper, 40, 201–251, 1993.
Gorczyk, W. and Gonzalez, C. M.: CO2 degassing and melting of metasomatized mantle lithosphere during rifting – Numerical study, Geosci. Front., 10, 1409–1420, https://doi.org/10.1016/j.gsf.2018.11.003, 2019.
Gouiza, M. and Naliboff, J. B.: Rheological inheritance controls the formation of segmented rifted margins in cratonic lithosphere, Nat. Commun., 12, 4653, https://doi.org/10.1038/s41467-021-24945-5, 2021.
Groves, D. I. and Santosh, M.: Craton and thick lithosphere margins: The sites of giant mineral deposits and mineral provinces, Gondwana Res., 100, 195–222, https://doi.org/10.1016/j.gr.2020.06.008, 2021.
Guerit, L., Yuan, X.-P., Carretier, S., Bonnet, S., Rohais, S., Braun, J., and Rouby, D.: Fluvial landscape evolution controlled by the sediment deposition coefficient: Estimation from experimental and natural landscapes, Geology, 47, 853–856, https://doi.org/10.1130/G46356.1, 2019.
Gueydan, F., Morency, C., and Brun, J.-P.: Continental rifting as a function of lithosphere mantle strength, Tectonophysics, 460, 83–93, https://doi.org/10.1016/j.tecto.2008.08.012, 2008.
Hagemann, S. G., Lisitsin, V. A., and Huston, D. L.: Mineral system analysis: Quo vadis, Ore Geol. Rev., 76, 504–522, https://doi.org/10.1016/j.oregeorev.2015.12.012, 2016.
Handy, M. R.: Deformation regimes and the rheological evolution of fault zones in the lithosphere: the effects of pressure, temperature, grainsize and time, Tectonophysics, 163, 119–152, https://doi.org/10.1016/0040-1951(89)90122-4, 1989.
Hasenclever, J., Knorr, G., Rüpke, L. H., Köhler, P., Morgan, J., Garofalo, K., Barker, S., Lohmann, G., and Hall, I. R.: Sea level fall during glaciation stabilized atmospheric CO2 by enhanced volcanic degassing, Nat. Commun., 8, 15867, https://doi.org/10.1038/ncomms15867, 2017.
Hayward, N. and Paradis, S.: Geophysical reassessment of the role of ancient lineaments on the development of the western Laurentian margin and its sediment-hosted Zn–Pb deposits, Yukon and Northwest Territories, Canada, Can. J. Earth Sci., 58, 1283–1300, https://doi.org/10.1139/cjes-2021-0003, 2021.
Hayward, N., Magnall, J. M., Taylor, M., King, R., McMillan, N., and Gleeson, S. A.: The Teena Zn–Pb Deposit (McArthur Basin, Australia). Part I: Syndiagenetic Base Metal Sulfide Mineralization Related to Dynamic Subbasin Evolution, Econ. Geol., 116, 1743–1768, https://doi.org/10.5382/econgeo.4846, 2021.
Heinrich, C. A. and Candela, P. A.: Fluids and Ore Formation in the Earth's Crust, in: Treatise on Geochemistry, Elsevier, 1–28, https://doi.org/10.1016/B978-0-08-095975-7.01101-3, 2014.
Heister, T., Dannberg, J., Gassmöller, R., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods – II: Realistic models and problems, Geophys. J. Int., 210, 833–851, https://doi.org/10.1093/gji/ggx195, 2017.
Hirth, G. and Kohlstedt, D.: Rheology of the upper mantle and the mantle wedge: a view from the experimentalists, in: Inside the Subduction Factory, vol. 183, edited by: Eiler, J., American Geophysical Union, Geoph. Monog. Series, 83–105, https://doi.org/10.1029/138GM06, 2004.
Hnatyshin, D., Creaser, R. A., Wilkinson, J. J., and Gleeson, S. A.: Re-Os dating of pyrite confirms an early diagenetic onset and extended duration of mineralization in the Irish Zn–Pb ore field, Geology, 43, 143–146, https://doi.org/10.1130/G36296.1, 2015.
Hoggard, M. J., Czarnota, K., Richards, F. D., Huston, D. L., Jaques, A. L., and Ghelichkhan, S.: Global distribution of sediment-hosted metals controlled by craton edge stability, Nat. Geosci., 13, 504–510, https://doi.org/10.1038/s41561-020-0593-2, 2020.
Huismans, R. S. and Beaumont, C.: Symmetric and asymmetric lithospheric extension: Relative effects of frictional-plastic and viscous strain softening, J. Geophys. Res.-Sol. Ea., 108, 2496, https://doi.org/10.1029/2002jb002026, 2003.
Huston, D. L., Champion, D. C., Czarnota, K., Duan, J., Hutchens, M., Paradis, S., Hoggard, M., Ware, B., Gibson, G. M., Doublier, M. P., Kelley, K., McCafferty, A., Hayward, N., Richards, F., Tessalina, S., and Carr, G.: Zinc on the edge – isotopic and geophysical evidence that cratonic edges control world-class shale-hosted zinc-lead deposits, Miner. Deposita, 58, 707–729, https://doi.org/10.1007/s00126-022-01153-9, 2022.
IEA: The Role of Critical Minerals in Clean Energy Transitions, https://www.iea.org/reports/the-role-of-critical-minerals-in-clean-energy-transitions (last access: 28 September 2023), 2021.
Inkscape Team: Inkscape, [code], https://inkscape.org/ (last access: 21 July 2023), version 1.3.0, 2022.
IRP: Mineral Resource Governance in the 21st Century: Gearing extractive industries towards sustainable development, United Nations Environment Programme, Nairobi, Kenya, https://www.resourcepanel.org/reports/mineral-resource-governance-21st-century (last access: 28 October 2023), 2020.
Kallmeyer, J., Pockalny, R., Adhikari, R. R., Smith, D. C., and D'Hondt, S.: Global distribution of microbial abundance and biomass in subseafloor sediment, P. Natl. Acad. Sci. USA, 109, 16213–16216, https://doi.org/10.1073/pnas.1203849109, 2012.
Karato, S.: Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth, Cambridge University Press, ISBN 978-0-511-80489-2, 2008.
Karato, S. and Wu, P.: Rheology of the Upper Mantle: A Synthesis, Science, 260, 771–778, 1993.
Kaus, B. J. P., Mühlhaus, H., and May, D. A.: A stabilization algorithm for geodynamic numerical simulations with a free surface, Phys. Earth Planet. In., 181, 12–20, https://doi.org/10.1016/j.pepi.2010.04.007, 2010.
Kelley, K. D., Leach, D. L., Johnson, C. A., Clark, J. L., Fayek, M., Slack, J. F., Anderson, V. M., Ayuso, R. A., and Ridley, W. I.: Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn–Pb–Ag deposits, Brooks Range, Alaska: Implications for Ore Formation, Econ. Geol., 99, 1509–1532, https://doi.org/10.2113/gsecongeo.99.7.1509, 2004.
Kronbichler, M., Heister, T., and Bangerth, W.: High accuracy mantle convection simulation through modern numerical methods, Geophys. J. Int., 191, 12–29, https://doi.org/10.1111/j.1365-246X.2012.05609.x, 2012.
Kunzmann, M., Schmid, S., Blaikie, T. N., and Halverson, G. P.: Facies analysis, sequence stratigraphy, and carbon isotope chemostratigraphy of a classic Zn–Pb host succession: The Proterozoic middle McArthur Group, McArthur Basin, Australia, Ore Geol. Rev., 106, 150–175, https://doi.org/10.1016/j.oregeorev.2019.01.011, 2019.
Lawley, C. J. M., McCafferty, A. E., Graham, G. E., Huston, D. L., Kelley, K. D., Czarnota, K., Paradis, S., Peter, J. M., Hayward, N., Barlow, M., Emsbo, P., Coyan, J., San Juan, C. A., and Gadd, M. G.: Data–driven prospectivity modelling of sediment–hosted Zn–Pb mineral systems and their critical raw materials, Ore Geol. Rev., 141, 104635, https://doi.org/10.1016/j.oregeorev.2021.104635, 2022.
Leach, D. L., Marsh, E., Emsbo, P., Rombach, C. S., Kelley, K. D., and Anthony, M.: Nature of Hydrothermal Fluids at the Shale-Hosted Red Dog Zn–Pb–Ag Deposits, Brooks Range, Alaska, Econ. Geol., 99, 1449–1480, https://doi.org/10.2113/gsecongeo.99.7.1449, 2004.
Leach, D. L., Sangster, D. F., Kelley, K. D., Large, R. R., Garven, G., Allen, C. R., Gutzmer, J., and Walters, S.: Sediment-Hosted Lead-Zinc Deposits: A Global Perspective, Econ. Geol., 100th Anni, 561–607, https://doi.org/10.5382/AV100.18, 2005.
Leach, D. L., Bradley, D. C., Huston, D., Pisarevsky, S. A., Taylor, R. D., and Gardoll, S. J.: Sediment-hosted lead-zinc deposits in Earth history, Econ. Geol., 105, 593–625, https://doi.org/10.2113/gsecongeo.105.3.593, 2010.
Le Pourhiet, L., May, D. A., Huille, L., Watremez, L., and Leroy, S.: A genetic link between transform and hyper-extended margins, Earth Planet. Sc. Lett., 465, 184–192, https://doi.org/10.1016/j.epsl.2017.02.043, 2017.
Lister, G. S., Etheridge, M. A., and Symonds, P. A.: Detachment faulting and the evolution of passive continental margins, Geology, 14, 246–250, https://doi.org/10.1130/0091-7613(1986)14<246:DFATEO>2.0.CO;2, 1986.
Liu, Z., Perez-Gussinye, M., García-Pintado, J., Mezri, L., and Bach, W.: Mantle serpentinization and associated hydrogen flux at North Atlantic magma-poor rifted margins, Geology, 51, 284–289, https://doi.org/10.1130/G50722.1, 2023.
Lund, K.: Geometry of the Neoproterozoic and Paleozoic rift margin of western Laurentia: Implications for mineral deposit settings, Geosphere, 4, 429–444, https://doi.org/10.1130/GES00121.1, 2008.
Lydon, J. W.: The leachability of metals from sedimentary rocks, in: Targeted geoscience initiative 4: Sediment-hosted Zn–Pb deposits: Processes and implications for exploration, vol. 7838, edited by: Paradis, S., Open File, Geological Survey of Canada, 7838, 11–42, https://doi.org/10.4095/296328, 2015.
Machel, H. G.: Bacterial and thermochemical sulfate reduction in diagenetic settings – old and new insights, Sediment. Geol., 140, 143–175, https://doi.org/10.1016/S0037-0738(00)00176-7, 2001.
Magnall, J. M., Gleeson, S. A., Blamey, N. J. F., Paradis, S., and Luo, Y.: The thermal and chemical evolution of hydrothermal vent fluids in shale hosted massive sulphide (SHMS) systems from the MacMillan Pass district (Yukon, Canada), Geochim. Cosmochim. Ac., 193, 251–273, https://doi.org/10.1016/j.gca.2016.07.020, 2016.
Magnall, J. M., Gleeson, S. A., Poulton, S. W., Gordon, G. W., and Paradis, S.: Links between seawater paleoredox and the formation of sediment-hosted massive sulphide (SHMS) deposits – Fe speciation and Mo isotope constraints from Late Devonian mudstones, Chem. Geol., 490, 45–60, https://doi.org/10.1016/j.chemgeo.2018.05.005, 2018.
Magnall, J. M., Gleeson, S. A., and Paradis, S.: A NEW SUBSEAFLOOR REPLACEMENT MODEL FOR THE MACMILLAN PASS CLASTIC-DOMINANT Zn–Pb ± Ba DEPOSITS (YUKON, CANADA), Econ. Geol., 115, 953–959, https://doi.org/10.5382/econgeo.4719, 2020.
Magnall, J. M., Hayward, N., Gleeson, S. A., Schleicher, A., Dalrymple, I., King, R., and Mahlstadt, N.: The Teena Zn–Pb deposit (McArthur Basin, Australia). Part II: carbonate replacement sulfide mineralization during burial diagenesis – implications for mineral exploration, Econ. Geol., 116, 1769–1801, 2021.
Manning, A. H. and Emsbo, P.: Testing the potential role of brine reflux in the formation of sedimentary exhalative (sedex) ore deposits, Ore Geol. Rev., 102, 862–874, https://doi.org/10.1016/j.oregeorev.2018.10.003, 2018.
McCuaig, T. C., Beresford, S., and Hronsky, J.: Translating the mineral systems approach into an effective exploration targeting system, Ore Geol. Rev., 38, 128–138, https://doi.org/10.1016/j.oregeorev.2010.05.008, 2010.
Middelburg, J. J.: Biogeochemical Processes and Inorganic Carbon Dynamics, in: Marine Carbon Biogeochemistry: A Primer for Earth System Scientists, edited by: Middelburg, J. J., Springer International Publishing, Cham, 77–105, https://doi.org/10.1007/978-3-030-10822-9_5, 2019.
Mudd, G. M., Jowitt, S. M., and Werner, T. T.: The world's lead-zinc mineral resources: Scarcity, data, issues and opportunities, Ore Geol. Rev., 80, 1160–1190, https://doi.org/10.1016/j.oregeorev.2016.08.010, 2017.
Murphy, F. C., Hutton, L. J., Walshe, J. L., Cleverley, J. S., Kendrick, M. A., Mclellan, J., Rubenach, M. J., Oliver, N. H. S., Gessner, K., Bierlein, F. P., Jupp, B., Aillères, L., Laukamp, C., Roy, I. G., Miller, J. M. L., Keys, D., and Nortje, G. S.: Mineral system analysis of the Mt Isa-McArthur River region, Northern Australia, Aust. J. Earth Sci., 58, 849–873, https://doi.org/10.1080/08120099.2011.606333, 2011.
Naliboff, J. B. and Buiter, S. J. H.: Rift reactivation and migration during multiphase extension, Earth Planet. Sc. Lett., 421, 58–67, https://doi.org/10.1016/j.epsl.2015.03.050, 2015.
Naliboff, J. B., Glerum, A., Brune, S., Péron-Pinvidic, G., and Wrona, T.: Development of 3-D Rift Heterogeneity Through Fault Network Evolution, Geophys. Res. Lett., 47, e2019GL086611, https://doi.org/10.1029/2019GL086611, 2020.
Neuharth, D., Brune, S., Wrona, T., Glerum, A., Braun, J., and Yuan, X.: Evolution of Rift Systems and Their Fault Networks in Response to Surface Processes, Tectonics, 41, e2021TC007166, https://doi.org/10.1029/2021TC007166, 2022a.
Neuharth, D., Brune, S., Glerum, A., Morley, C. K., Yuan, X., and Braun, J.: Flexural strike-slip basins, Geology, 50, 361–365, https://doi.org/10.1130/G49351.1, 2022b.
Neuzil, C. E.: Permeability of Clays and Shales, Annu. Rev. Earth Pl. Sc., 47, 247–273, https://doi.org/10.1146/annurev-earth-053018-060437, 2019.
Olive, J.-A., Behn, M. D., and Malatesta, L. C.: Modes of extensional faulting controlled by surface processes, Geophys. Res. Lett., 41, 6725–6733, https://doi.org/10.1002/2014GL061507, 2014.
Oliver, N. H. S., McLellan, J. G., Hobbs, B. E., Cleverly, J. S., Ord, A., and Feltrin, L.: Numerical models of extensional deformation, heat transfer, and fluid flow across basement-cover interfaces during basin-related mineralization, Econ. Geol., 101, 1–31, https://doi.org/10.2113/gsecongeo.101.1.1, 2006.
Pérez-Gussinyé, M., Collier, J. S., Armitage, J. J., Hopper, J. R., Sun, Z., and Ranero, C. R.: Towards a process-based understanding of rifted continental margins, Nat. Rev. Earth Environ., 4, 66–184, https://doi.org/10.1038/s43017-022-00380-y, 2023.
Péron-Pinvidic, G., Manatschal, G., Masini, E., Sutra, E., Flament, J. M., Haupert, I., and Unternehr, P.: Unravelling the along-strike variability of the Angola–Gabon rifted margin: a mapping approach, Geological Society, London, Special Publications, 438, 49–76, https://doi.org/10.1144/SP438.1, 2017.
Raghuram, G., Pérez-Gussinyé, M., Andrés-Martínez, M., García-Pintado, J., Araujo, M. N., and Morgan, J. P.: Asymmetry and evolution of craton-influenced rifted margins, Geology, 51, 1077–1082, https://doi.org/10.1130/G51370.1, 2023.
Rajabi, A., Canet, C., Rastad, E., and Alfonso, P.: Basin evolution and stratigraphic correlation of sedimentary-exhalative Zn–Pb deposits of the Early Cambrian Zarigan–Chahmir Basin, Central Iran, Ore Geol. Rev., 64, 328–353, https://doi.org/10.1016/j.oregeorev.2014.07.013, 2015.
Reynolds, M. A., Gingras, M. K., Gleeson, S. A., and Stemler, J. U.: More than a trace of oxygen: Ichnological constraints on the formation of the giant Zn–Pb–Ag ± Ba deposits, Red Dog district, Alaska, Geology, 43, 867–870, https://doi.org/10.1130/G36954.1, 2015.
Richter, M. J. E. A., Brune, S., Riedl, S., Glerum, A., Neuharth, D., and Strecker, M. R.: Controls on Asymmetric Rift Dynamics: Numerical Modeling of Strain Localization and Fault Evolution in the Kenya Rift, Tectonics, 40, e2020TC006553, https://doi.org/10.1029/2020TC006553, 2021.
Ridley, J.: Ore deposit geology, Cambridge university press, Cambridge, ISBN 978-1-107-02222-5, 2013.
Rodríguez, A., Weis, P., Magnall, J. M., and Gleeson, S. A.: Hydrodynamic Constraints on Ore Formation by Basin-Scale Fluid Flow at Continental Margins: Modelling Zn Metallogenesis in the Devonian Selwyn Basin, Geochem. Geophy. Geosy., 22, e2020GC009453, https://doi.org/10.1029/2020GC009453, 2021.
Rose, I., Buffett, B., and Heister, T.: Stability and accuracy of free surface time integration in viscous flows, Phys. Earth Planet. In., 262, 90–100, https://doi.org/10.1016/j.pepi.2016.11.007, 2017.
Rüpke, L. H. and Hasenclever, J.: Global rates of mantle serpentinization and H2 production at oceanic transform faults in 3-D geodynamic models, Geophys. Res. Lett., 44, 6726–6734, https://doi.org/10.1002/2017GL072893, 2017.
Rutter, E. H. and Brodie, K. H.: Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates, J. Struct. Geol., 26, 2011–2023, https://doi.org/10.1016/j.jsg.2004.04.006, 2004.
Rybacki, E. and Dresen, G.: Deformation mechanism maps for feldspar rocks, Tectonophysics, 382, 173–187, https://doi.org/10.1016/j.tecto.2004.01.006, 2004.
Rybacki, E., Gottschalk, M., Wirth, R., and Dresen, G.: Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates, J. Geophys. Res.-Sol. Ea., 111, B03203, https://doi.org/10.1029/2005JB003663, 2006.
Schardt, C., Garven, G., Kelley, K. D., and Leach, D. L.: Reactive flow models of the Anarraaq Zn–Pb–Ag deposit, Red Dog district, Alaska, Miner. Deposita, 43, 735–757, https://doi.org/10.1007/s00126-008-0193-3, 2008.
Schodde, R.: The Global Shift to Undercover Exploration – How fast? How effective?, https://minexconsulting.com/wp-content/uploads/2019/04/Schodde-presentation-to-SEG-Sept-2014-FINAL.pdf (last access: 5 July 2023), 2014.
Schodde, R.: The challenges and opportunities for geophysics for making discoveries under cover, https://minexconsulting.com/wp-content/uploads/2020/03/KEGS-Breakfast-talk-3-March-2020c.pdf (last access: 26 October 2023), 2020.
Sharples, W., Moresi, L.-N., Jadamec, M. A., and Revote, J.: Styles of rifting and fault spacing in numerical models of crustal extension, J. Geophys. Res.-Sol. Ea., 120, 4379–4404, https://doi.org/10.1002/2014JB011813, 2015.
Sheldon, H. A., Schaubs, P. M., Blaikie, T. N., Kunzmann, M., Schmid, S., and Spinks, S.: An integrated study of the McArthur River mineral system: From geochemistry, geophysics and sequence stratigraphy to basin-scale models of fluid flow, in: Annual Geoscience Exploration Seminar (AGES) Proceedings, Alice Springs, Northern Territory, 19–20 March 2019, Northern Territory Geological Survey, Darwin, 81–86, 2019.
Sheldon, H. A., Crombez, V., Poulet, T., Kelka, U., Kunzmann, M., and Kerrison, E.: Realistic permeability distributions in faults and sediments: The key to predicting fluid flow in sedimentary basins, Basin Res., 35, 2118–2139, https://doi.org/10.1111/bre.12792, 2023.
Singer, D. A.: World class base and precious metal deposits; a quantitative analysis, Econ. Geol., 90, 88–104, https://doi.org/10.2113/gsecongeo.90.1.88, 1995.
Svartman Dias, A. E., Lavier, L. L., and Hayman, N. W.: Conjugate rifted margins width and asymmetry: The interplay between lithospheric strength and thermomechanical processes, J. Geophys. Res.-Sol. Ea., 120, 8672–8700, https://doi.org/10.1002/2015JB012074, 2015.
Takai, K., Nakamura, K., Toki, T., Tsunogai, U., Miyazaki, M., Miyazaki, J., Hirayama, H., Nakagawa, S., Nunoura, T., and Horikoshi, K.: Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation, P. Natl. Acad. Sci. USA, 105, 10949–10954, https://doi.org/10.1073/pnas.0712334105, 2008.
Tetreault, J. L. and Buiter, S. J. H.: The influence of extension rate and crustal rheology on the evolution of passive margins from rifting to break-up, Tectonophysics, 746, 155–172, https://doi.org/10.1016/j.tecto.2017.08.029, 2018.
The MathWorks Inc.: MATLAB 9.13.0.2049777 (R2022b), [code], The MathWorks Inc., Natick, Massachusetts, United States, https://www.mathworks.com (last access: 29 July 2024), 2022.
The Python Software Foundation: Python 3.9.17, [code], https://www.python.org/downloads/release/python-3917/ (last access: 18 July 2024), 2023.
Theunissen, T. and Huismans, R. S.: Long-Term Coupling and Feedback Between Tectonics and Surface Processes During Non-Volcanic Rifted Margin Formation, J. Geophys. Res.-Sol. Ea., 124, 12323–12347, https://doi.org/10.1029/2018JB017235, 2019.
Tommasi, A. and Vauchez, A.: Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle, Earth Planet. Sc. Lett., 185, 199–210, 2001.
van den Berg, A., van Keken, P. E., and Yuen, D. A.: The effects of a composite non-Newtonian and Newtonian rheology on mantle convection, Geophys. J. Int., 115, 62–78, 1993.
Walsh, J. J., Torremans, K., Güven, J., Kyne, R., Conneally, J., and Bonson, C.: Fault-Controlled Fluid Flow Within Extensional Basins and Its Implications for Sedimentary Rock-Hosted Mineral Deposits, in: Metals, Minerals, and Society, SEG Special Publications, 21, 237–269, https://doi.org/10.5382/sp.21.11, 2018.
White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D., and Humphreys, F. J.: On mylonites in ductile shear zones, J. Struct. Geol., 2, 175–187, https://doi.org/10.1016/0191-8141(80)90048-6, 1980.
Wilkinson, J. J.: On diagenesis, dolomitisation and mineralisation in the Irish Zn–Pb orefield, Miner. Deposita, 38, 968–983, https://doi.org/10.1007/s00126-003-0387-7, 2003.
Wilkinson, J. J.: Sediment-Hosted Zinc–Lead Mineralization: Processes and Perspectives, in: Treatise on Geochemistry, Elsevier, 219–249, https://doi.org/10.1016/B978-0-08-095975-7.01109-8, 2014.
Wilkinson, J. J.: Tracing metals from source to sink in Irish-type Zn–Pb(-Ba-Ag) deposits, in: Irish-type Zn–Pb deposits around the world, Editors: Andrew, C. J., Hitzman, M. W., and Stanley, G., 147–168, https://doi.org/10.61153/QAIF6416, 2023.
Wilkinson, J. J., Stoffell, B., Wilkinson, C. C., Jeffries, T. E., and Appold, M. S.: Anomalously Metal-Rich Fluids Form Hydrothermal Ore Deposits, Science, 323, 764–767, https://doi.org/10.1126/science.1164436, 2009.
Willett, S. D.: Dynamic and kinematic growth and change of a Coulomb wedge, in: Thrust tectonics, edited by: McClay, K. R., Springer, Dordrecht, 19–31, https://doi.org/10.1007/978-94-011-3066-0_2, 1992.
Wolf, S. G., Huismans, R. S., Muñoz, J. A., Curry, M. E., and van der Beek, P.: Growth of Collisional Orogens From Small and Cold to Large and Hot—Inferences From Geodynamic Models, J. Geophys. Res.-Sol. Ea., 126, e2020JB021168, https://doi.org/10.1029/2020JB021168, 2021.
Wu, H., Ji, Y., Wu, C., Duclaux, G., Wu, H., Gao, C., Li, L., and Chang, L.: Stratigraphic response to spatiotemporally varying tectonic forcing in rifted continental basin: Insight from a coupled tectonic-stratigraphic numerical model, Basin Res., 31, 311–336, https://doi.org/10.1111/bre.12322, 2019.
Yang, J., Large, R. R., and Bull, S. W.: Factors controlling free thermal convection in faults in sedimentary basins: Implications for the formation of zinc-lead mineral deposits, Geofluids, 4, 237–247, https://doi.org/10.1111/j.1468-8123.2004.00084.x, 2004a.
Yang, J., Bull, S., and Large, R.: Numerical investigation of salinity in controlling ore-forming fluid transport in sedimentary basins: Example of the HYC deposit, Northern Australia, Miner. Deposita, 39, 622–631, https://doi.org/10.1007/s00126-004-0430-3, 2004b.
Yapparova, A., Miron, G. D., Kulik, D. A., Kosakowski, G., and Driesner, T.: An advanced reactive transport simulation scheme for hydrothermal systems modelling, Geothermics, 78, 138–153, https://doi.org/10.1016/j.geothermics.2018.12.003, 2019.
Yardley, B. W. D.: 100th Anniversary Special Paper: Metal Concentrations in Crustal Fluids and Their Relationship to Ore Formation, Econ. Geol., 100, 613–632, https://doi.org/10.2113/gsecongeo.100.4.613, 2005.
Yuan, X. P., Braun, J., Guerit, L., Rouby, D., and Cordonnier, G.: A New Efficient Method to Solve the Stream Power Law Model Taking Into Account Sediment Deposition, J. Geophys. Res.-Earth, 124, 1346–1365, https://doi.org/10.1029/2018JF004867, 2019a.
Yuan, X. P., Braun, J., Guerit, L., Simon, B., Bovy, B., Rouby, D., Robin, C., and Jiao, R.: Linking continental erosion to marine sediment transport and deposition: A new implicit and O(N) method for inverse analysis, Earth Planet. Sc. Lett., 524, 115728, https://doi.org/10.1016/j.epsl.2019.115728, 2019b.
Short summary
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted apart. We use computer simulations of rifting and the associated sediment erosion and deposition to understand why they formed in some basins but not in others. Basins that contain a metal source, faults that focus fluids, and rocks that can host deposits occurred in both narrow and wide rifts for ≤ 3 Myr. The largest and the most deposits form in narrow margins of narrow asymmetric rifts.
High-value zinc–lead deposits formed in sedimentary basins created when tectonic plates rifted...