Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-1025-2025
https://doi.org/10.5194/se-16-1025-2025
Method article
 | 
08 Oct 2025
Method article |  | 08 Oct 2025

Computational modeling and analytical validation of singular geometric effects in fault data using a combinatorial approach

Michał P. Michalak, Janusz Morawiec, and Peter Menzel

Related authors

SubsurfaceBreaks v. 1.0: a supervised detection of fault-related structures on triangulated models of subsurface homoclinal interfaces
Michał P. Michalak, Christian Gerhards, and Peter Menzel
Geosci. Model Dev., 18, 4469–4481, https://doi.org/10.5194/gmd-18-4469-2025,https://doi.org/10.5194/gmd-18-4469-2025, 2025
Short summary
Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022,https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary

Cited articles

Allenby, R. B. and Slomson, A.: How to count: An introduction to combinatorics, Chapman and Hall/CRC, https://doi.org/10.1201/9781439895153, 2010. 
Allmendinger, R. W., Cardozo, N., and Fisher, D. M.: Structural geology algorithms: Vectors and tensors, Cambridge University Press, 1–289, https://doi.org/10.1017/CBO9780511920202, 2011. 
Aydin, A.: Fractures, faults, and hydrocarbon entrapment, migration and flow, Mar. Pet. Geol., 17, 797–814, https://doi.org/10.1016/S0264-8172(00)00020-9, 2000. 
Aydin, O. and Caers, J. K.: Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework, Tectonophysics, 712–713, 101–124, https://doi.org/10.1016/j.tecto.2017.04.027, 2017. 
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault zone hydrogeology, Earth-Sci. Rev., 127, 171–192, https://doi.org/10.1016/j.earscirev.2013.09.008, 2013. 
Download
Short summary
This study analyzes geological faults using triangular surface data to model displaced horizons, considering scenarios with and without elevation uncertainties. Formal proofs and computational experiments show that, without elevation errors, identical dip directions occur. Even with uncertainties, the expected dip direction remains consistent. The findings offer insights for predicting fault geometry in data-sparse environments, improving fault modeling with imprecise elevation data.
Share