Articles | Volume 16, issue 10
https://doi.org/10.5194/se-16-1025-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-1025-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Computational modeling and analytical validation of singular geometric effects in fault data using a combinatorial approach
Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, Mickiewicza 30, 30-059 Cracow, Poland
Janusz Morawiec
Institute of Mathematics, Faculty of Science and Technology, University of Silesia in Katowice, Bankowa 14, 40-007 Katowice, Poland
Peter Menzel
Institute of Geophysics and Geoinformatics, TU Bergakademie Freiberg, Gustav-Zeuner-Straße 12, 09599 Freiberg, Germany
Related authors
Michał P. Michalak, Christian Gerhards, and Peter Menzel
Geosci. Model Dev., 18, 4469–4481, https://doi.org/10.5194/gmd-18-4469-2025, https://doi.org/10.5194/gmd-18-4469-2025, 2025
Short summary
Short summary
Using geometric features of synthetic triangulated models of subsurface homoclinal interfaces, we applied machine learning to detect faults. Testing on real borehole data validated its effectiveness across various fault orientations. The supervised approach represents a significant improvement over older methods that relied on simpler clustering techniques which were capable of identifying fewer orientations of potential faults.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Michał P. Michalak, Christian Gerhards, and Peter Menzel
Geosci. Model Dev., 18, 4469–4481, https://doi.org/10.5194/gmd-18-4469-2025, https://doi.org/10.5194/gmd-18-4469-2025, 2025
Short summary
Short summary
Using geometric features of synthetic triangulated models of subsurface homoclinal interfaces, we applied machine learning to detect faults. Testing on real borehole data validated its effectiveness across various fault orientations. The supervised approach represents a significant improvement over older methods that relied on simpler clustering techniques which were capable of identifying fewer orientations of potential faults.
Michał P. Michalak, Lesław Teper, Florian Wellmann, Jerzy Żaba, Krzysztof Gaidzik, Marcin Kostur, Yuriy P. Maystrenko, and Paulina Leonowicz
Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, https://doi.org/10.5194/se-13-1697-2022, 2022
Short summary
Short summary
When characterizing geological/geophysical surfaces, various geometric attributes are calculated, such as dip angle (1D) or dip direction (2D). However, the boundaries between specific values may be subjective and without optimization significance, resulting from using default color palletes. This study proposes minimizing cosine distance among within-cluster observations to detect 3D anomalies. Our results suggest that the method holds promise for identification of megacylinders or megacones.
Cited articles
Allenby, R. B. and Slomson, A.: How to count: An introduction to combinatorics, Chapman and Hall/CRC, https://doi.org/10.1201/9781439895153, 2010.
Allmendinger, R. W., Cardozo, N., and Fisher, D. M.: Structural geology algorithms: Vectors and tensors, Cambridge University Press, 1–289, https://doi.org/10.1017/CBO9780511920202, 2011.
Aydin, A.: Fractures, faults, and hydrocarbon entrapment, migration and flow, Mar. Pet. Geol., 17, 797–814, https://doi.org/10.1016/S0264-8172(00)00020-9, 2000.
Aydin, O. and Caers, J. K.: Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework, Tectonophysics, 712–713, 101–124, https://doi.org/10.1016/j.tecto.2017.04.027, 2017.
Bense, V. F., Gleeson, T., Loveless, S. E., Bour, O., and Scibek, J.: Fault zone hydrogeology, Earth-Sci. Rev., 127, 171–192, https://doi.org/10.1016/j.earscirev.2013.09.008, 2013.
De Berg, M., Cheong, O., Van Kreveld, M., and Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn., Springer, 364 pp., https://doi.org/10.2307/3620533, 2008.
Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt, J. Struct. Geol., 74, 185–200, https://doi.org/10.1016/j.jsg.2015.03.003, 2015.
Bowden, R. A.: Building confidence in geological models, Geol. Soc. Spec. Publ., 239, 157–173, https://doi.org/10.1144/GSL.SP.2004.239.01.11, 2004.
Calcagno, P., Chilès, J. P., Courrioux, G., and Guillen, A.: Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules, Phys. Earth Planet. In., 171, 147–157, https://doi.org/10.1016/j.pepi.2008.06.013, 2008.
Cardozo, N. and Allmendinger, R. W.: Spherical projections with OSXStereonet, Comput. Geosci., 51, 193–205, https://doi.org/10.1016/j.cageo.2012.07.021, 2013.
Cherpeau, N. and Caumon, G.: Stochastic structural modelling in sparse data situations, Pet. Geosci., 21, 233–247, https://doi.org/10.1144/petgeo2013-030, 2015.
Cherpeau, N., Caumon, G., Caers, J., and Lévy, B.: Method for Stochastic Inverse Modeling of Fault Geometry and Connectivity Using Flow Data, Math. Geosci., 44, 147–168, https://doi.org/10.1007/s11004-012-9389-2, 2012.
Collon, P., Steckiewicz-Laurent, W., Pellerin, J., Laurent, G., Caumon, G., Reichart, G., and Vaute, L.: 3D geomodelling combining implicit surfaces and Voronoi-based remeshing: A case study in the Lorraine Coal Basin (France), Comput. Geosci., 77, 29–43, https://doi.org/10.1016/j.cageo.2015.01.009, 2015.
de la Varga, M. and Wellmann, J. F.: Structural geologic modeling as an inference problem: A Bayesian perspective, Interpretation, 4, SM15-SM30, https://doi.org/10.1190/INT-2015-0188.1, 2016.
de la Varga, M., Schaaf, A., and Wellmann, F.: GemPy 1.0: open-source stochastic geological modeling and inversion, Geosci. Model Dev., 12, 1–32, https://doi.org/10.5194/gmd-12-1-2019, 2019.
Dowd, P.: Quantifying the impacts of uncertainty, in: Handbook of Mathematical Geosciences: Fifty Years of IAMG, Springer, 349–373, https://doi.org/10.1007/978-3-319-78999-6_18, 2018.
Fadel, M., Reinecker, J., Bruss, D., and Moeck, I.: Causes of a premature thermal breakthrough of a hydrothermal project in Germany, Geothermics, 105, 102523, https://doi.org/10.1016/j.geothermics.2022.102523, 2022.
Fisher, N. I.: Statistical analysis of circular data, Cambridge University Press, 277 pp., https://doi.org/10.1017/cbo9780511564345, 1993.
Fossen, H.: Structural geology, 2nd edn., Cambridge University Press, Cambridge, ISBN-13 978-1107057647, 2006.
Godefroy, G., Caumon, G., Laurent, G., and Bonneau, F.: Structural Interpretation of Sparse Fault Data Using Graph Theory and Geological Rules: Fault Data Interpretation, Math. Geosci., 51, 1091–1107, https://doi.org/10.1007/s11004-019-09800-0, 2019.
Goodwin, H., Aker, E., and Røe, P.: Stochastic Modeling of Subseismic Faults Conditioned on Displacement and Orientation Maps, Math. Geosci., 54, 207–224, https://doi.org/10.1007/s11004-021-09965-7, 2022.
Gridded Bathymetry Data: https://www.gebco.net/, last access: 18 July 2024.
Idzikowska, M., Pająk, K., and Kowalczyk, K.: Possibility and quality assessment in seafloor modeling relative to the sea surface using hybrid data, Trans. GIS, https://doi.org/10.1111/tgis.13178, 2024.
Jing, J., Tang, Z., Yang, Y., and Ma, L.: Impact of formation slope and fault on CO2 storage efficiency and containment at the Shenhua CO2 geological storage site in the Ordos Basin, China, Int. J. Greenh. Gas Control, 88, 209–225, https://doi.org/10.1016/j.ijggc.2019.06.013, 2019.
La Fontaine, N. M., Le, T., Hoffman, T., and Hofmann, M. H.: Integrated outcrop and subsurface geomodeling of the Turonian Wall Creek Member of the Frontier Formation, Powder River Basin, Wyoming, USA, Mar. Pet. Geol., 125, https://doi.org/10.1016/j.marpetgeo.2020.104795, 2021.
Lajaunie, C., Courrioux, G., and Manuel, L.: Foliation fields and 3D cartography in geology: Principles of a method based on potential interpolation, Math. Geol., 29, 571–584, https://doi.org/10.1007/bf02775087, 1997.
Lark, R. M., Mathers, S. J., Thorpe, S., Arkley, S. L. B., Morgan, D. J., and Lawrence, D. J. D.: A statistical assessment of the uncertainty in a 3-D geological framework model, Proc. Geol. Assoc., 124, 946–958, https://doi.org/10.1016/j.pgeola.2013.01.005, 2013.
Lecour, M., Cognot, R., Duvinage, I., Thore, P., and Dulac, J. C.: Modelling of stochastic faults and fault networks in a structural uncertainty study, Pet. Geosci., 7, https://doi.org/10.1144/petgeo.7.s.s31, 2001.
Liang, D., Hua, W. H., Liu, X., Zhao, Y., and Liu, Z.: Uncertainty assessment of a 3D geological model by integrating data errors, spatial variations and cognition bias, Earth Sci. Inf., 14, 161–178, https://doi.org/10.1007/S12145-020-00548-4, 2021.
Lipski, W.: Kombinatoryka dla programistów [Combinatorics for programmers], Wydawnictwa Naukowo-Techniczne, Warszawa, 39–40, 2004.
Lund, U., Agostinelli, C., Arai, H., Gagliardi, A., Garcia Portuges, E., Giunchi, D., Irisson, J.-O., Pocermnich, M., and Rotolo, F.: Package “circular”: Circular Statistics, Repos. CRAN, 1–142, 2017.
Mardia, K. V. and Jupp, P. E.: Directional Statistics, Wiley, 350 pp., https://doi.org/10.1002/9780470316979, 2008.
Medici, G., Ling, F., and Shang, J.: Review of discrete fracture network characterization for geothermal energy extraction, Front. Earth Sci., 11, https://doi.org/10.3389/feart.2023.1328397, 2023.
Merland, R., Caumon, G., Lévy, B., and Collon-Drouaillet, P.: Voronoi grids conforming to 3D structural features, Comput. Geosci., 18, 373–383, https://doi.org/10.1007/s10596-014-9408-0, 2014.
Michalak, M.: Computational modeling and analytical validation of singular geometric effects in fault data using a combinatorial approach – Input and processed data, Zenodo [data set], https://doi.org/10.5281/zenodo.13986509, 2024a.
Michalak, M.: michalmichalak997/3GeoCombine2: v. 1.0 – Initial release (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.13974878, 2024b.
Michalak, M. P., Kuzak, R., Gładki, P., Kulawik, A., and Ge, Y.: Constraining uncertainty of fault orientation using a combinatorial algorithm, Comput. Geosci., 154, 104777, https://doi.org/10.1016/j.cageo.2021.104777, 2021.
Michalak, M. P., Teper, L., Wellmann, F., Żaba, J., Gaidzik, K., Kostur, M., Maystrenko, Y. P., and Leonowicz, P.: Clustering has a meaning: optimization of angular similarity to detect 3D geometric anomalies in geological terrains, Solid Earth, 13, 1697–1720, https://doi.org/10.5194/se-13-1697-2022, 2022.
Pakyuz-Charrier, E., Giraud, J., Ogarko, V., Lindsay, M., and Jessell, M.: Drillhole uncertainty propagation for three-dimensional geological modeling using Monte Carlo, Tectonophysics, 747–748, 16–39, https://doi.org/10.1016/j.tecto.2018.09.005, 2018.
Pakyuz-Charrier, E., Jessell, M., Giraud, J., Lindsay, M., and Ogarko, V.: Topological analysis in Monte Carlo simulation for uncertainty propagation, Solid Earth, 10, 1663–1684, https://doi.org/10.5194/se-10-1663-2019, 2019.
Person, M., Banerjee, A., Hofstra, A., Sweetkind, D., and Gao, Y.: Hydrologic models of modern and fossil geothermal systems in the Great Basin: Genetic implications for epithermal Au-Ag and Carlin-type gold deposits, Geosphere, 4, 888–917, https://doi.org/10.1130/GES00150.1, 2008.
Rocscience: Dips – Graphical and Statistical Analysis of Orientation Data, https://www.rocscience.com/software/dips/ (last access: 23 September 2025), 2017.
Wackernagel, H.: Multivariate geostatistics: an introduction with applications, Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-662-03098-1, 1995.
Wellmann, J. F. and Regenauer-Lieb, K.: Uncertainties have a meaning: Information entropy as a quality measure for 3-D geological models, Tectonophysics, 526, 207–216, https://doi.org/10.1016/j.tecto.2011.05.001, 2012.
Włodarczyk-Sielicka, M., Bodus-Olkowska, I., and Łącka, M.: The process of modelling the elevation surface of a coastal area using the fusion of spatial data from different sensors, Oceanologia, 64, 22–34, https://doi.org/10.1016/j.oceano.2021.08.002, 2022.
Short summary
This study analyzes geological faults using triangular surface data to model displaced horizons, considering scenarios with and without elevation uncertainties. Formal proofs and computational experiments show that, without elevation errors, identical dip directions occur. Even with uncertainties, the expected dip direction remains consistent. The findings offer insights for predicting fault geometry in data-sparse environments, improving fault modeling with imprecise elevation data.
This study analyzes geological faults using triangular surface data to model displaced horizons,...