Articles | Volume 16, issue 11
https://doi.org/10.5194/se-16-1401-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-1401-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of Self-Organizing Maps to characterize subglacial bedrock properties based on gravity, magnetic and radar data – an example for the Wilkes and Aurora Subglacial Basin region, East Antarctica
Jonas Liebsch
Institute of Geosciences, Kiel University, Kiel, Germany
now at: University of Iceland, Reykjavik, Iceland
Institute of Geosciences, Kiel University, Kiel, Germany
Kenichi Matsuoka
Norwegian Polar Institute, Tromsø, Norway
Related authors
No articles found.
Felipe Napoleoni, Michael J. Bentley, Neil Ross, Stewart S. R. Jamieson, José A. Uribe, Jonathan Oberreuter, Rodrigo Zamora, Andrés Rivera, Andrew M. Smith, Robert G. Bingham, and Kenichi Matsuoka
EGUsphere, https://doi.org/10.5194/egusphere-2025-4670, https://doi.org/10.5194/egusphere-2025-4670, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We mapped buried layers inside West Antarctic ice using ice penetrating radar across 13,000 km² near the Amundsen–Weddell divide. Some layers may be as old as 17k years. They appear neat in slow ice and warped where ice speeds up, yet can be followed across most of the area. Snowfall has long been higher on one side, suggesting the divide has remained stable for millennia. Our work links records from the Weddell and Amundsen seas and helps target future climate archives and models.
Robert G. Bingham, Julien A. Bodart, Marie G. P. Cavitte, Ailsa Chung, Rebecca J. Sanderson, Johannes C. R. Sutter, Olaf Eisen, Nanna B. Karlsson, Joseph A. MacGregor, Neil Ross, Duncan A. Young, David W. Ashmore, Andreas Born, Winnie Chu, Xiangbin Cui, Reinhard Drews, Steven Franke, Vikram Goel, John W. Goodge, A. Clara J. Henry, Antoine Hermant, Benjamin H. Hills, Nicholas Holschuh, Michelle R. Koutnik, Gwendolyn J.-M. C. Leysinger Vieli, Emma J. MacKie, Elisa Mantelli, Carlos Martín, Felix S. L. Ng, Falk M. Oraschewski, Felipe Napoleoni, Frédéric Parrenin, Sergey V. Popov, Therese Rieckh, Rebecca Schlegel, Dustin M. Schroeder, Martin J. Siegert, Xueyuan Tang, Thomas O. Teisberg, Kate Winter, Shuai Yan, Harry Davis, Christine F. Dow, Tyler J. Fudge, Tom A. Jordan, Bernd Kulessa, Kenichi Matsuoka, Clara J. Nyqvist, Maryam Rahnemoonfar, Matthew R. Siegfried, Shivangini Singh, Vjeran Višnjević, Rodrigo Zamora, and Alexandra Zuhr
The Cryosphere, 19, 4611–4655, https://doi.org/10.5194/tc-19-4611-2025, https://doi.org/10.5194/tc-19-4611-2025, 2025
Short summary
Short summary
The ice sheets covering Antarctica have built up over millenia through successive snowfall events which become buried and preserved as internal surfaces of equal age detectable with ice-penetrating radar. This paper describes an international initiative working together on these archival data to build a comprehensive 3-D picture of how old the ice is everywhere across Antarctica and how this is being used to reconstruct past and to predict future ice and climate behaviour.
Björn H. Heincke, Wolfgang Szwillus, Judith Freienstein, Jörg Ebbing, Carmen Gaina, Antonia Ruppel, Yixiati Dilixiati, and Agnes Wansing
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-448, https://doi.org/10.5194/essd-2025-448, 2025
Preprint under review for ESSD
Short summary
Short summary
With over three-quarters of Greenland hidden beneath ice, direct geological observation is nearly impossible. Magnetic mapping provides now a passive and efficient geophysical method to image hidden subsurface features, offering a powerful tool for tectonic analysis and geological modeling in otherwise inaccessible regions. We have now developed a new magnetic anomaly map of Greenland using state-of-the-art technology providing new insight into Greenland’s buried geology.
Vikram Goel, Carlos Martin, Kenichi Matsuoka, Bhanu Pratap, Geir Moholdt, Rahul Dey, Chavarukonam M. Laluraj, and Meloth Thamban
EGUsphere, https://doi.org/10.5194/egusphere-2025-2037, https://doi.org/10.5194/egusphere-2025-2037, 2025
Short summary
Short summary
We identified an ideal site in coastal East Antarctica for extracting ice core that contain detailed climate records dating back 20,000 years. We surveyed two ice rises combining radar measurements with ice flow modeling to assess their suitability. One site emerged as optimal, offering well-preserved climate history with high temporal resolution. An ice core record from this site could help us understand historical interactions between sea ice, winds, and precipitation patterns in the region.
Jennifer F. Arthur, Calvin Shackleton, Geir Moholdt, Kenichi Matsuoka, and Jelte van Oostveen
The Cryosphere, 19, 375–392, https://doi.org/10.5194/tc-19-375-2025, https://doi.org/10.5194/tc-19-375-2025, 2025
Short summary
Short summary
Lakes can form beneath the large ice sheets and can influence ice-sheet dynamics and stability. Some of these subglacial lakes are active, meaning that they periodically drain and refill. Here we report seven new active subglacial lakes close to the Antarctic Ice Sheet margin using satellite measurements of ice surface height changes in a region where little was known previously. These findings improve our understanding of subglacial hydrology and will help refine subglacial hydrological models.
Peter Haas, Myron F. H. Thomas, Christian Heine, Jörg Ebbing, Andrey Seregin, and Jimmy van Itterbeeck
Solid Earth, 15, 1419–1443, https://doi.org/10.5194/se-15-1419-2024, https://doi.org/10.5194/se-15-1419-2024, 2024
Short summary
Short summary
Transform faults are conservative plate boundaries where no material is added or destroyed. Oceanic fracture zones are their inactive remnants and record tectonic processes that formed oceanic crust. In this study, we combine high-resolution data sets along fracture zones in the Gulf of Guinea to demonstrate that their formation is characterized by increased metamorphic conditions. This is in line with previous studies that describe the non-conservative character of transform faults.
Ran Issachar, Peter Haas, Nico Augustin, and Jörg Ebbing
Solid Earth, 15, 807–826, https://doi.org/10.5194/se-15-807-2024, https://doi.org/10.5194/se-15-807-2024, 2024
Short summary
Short summary
In this contribution, we explore the causal relationship between the arrival of the Afar plume and the initiation of the Afro-Arabian rift. We mapped the rift architecture in the triple-junction region using geophysical data and reviewed the available geological data. We interpret a progressive development of the plume–rift system and suggest an interaction between active and passive mechanisms in which the plume provided a push force that changed the kinematics of the associated plates.
Eledath M. Gayathri, Chavarukonam M. Laluraj, Karathazhiyath Satheesan, Kenichi Matsuoka, Mahalinganathan Kanthanathan, and Meloth Thamban
EGUsphere, https://doi.org/10.5194/egusphere-2024-1666, https://doi.org/10.5194/egusphere-2024-1666, 2024
Preprint archived
Short summary
Short summary
Here, we study the effects of short–term atmospheric warming events on the ice sheet surface and subsurface temperatures of coastal Dronning Maud Land during 2014–2018. Our results revealed that the impact of warming events over ice sheet surface and subsurface temperatures varies with the mechanism of warming and prevailing meteorological conditions. The frequency and duration of such events are important for the surface and sub-surface processes of ice sheets.
Judith Freienstein, Wolfgang Szwillus, Agnes Wansing, and Jörg Ebbing
Solid Earth, 15, 513–533, https://doi.org/10.5194/se-15-513-2024, https://doi.org/10.5194/se-15-513-2024, 2024
Short summary
Short summary
Geothermal heat flow influences ice sheet dynamics, making its investigation important for ice-covered regions. Here we evaluate the sparse measurements for their agreement with regional solid Earth models, as well as with a statistical approach. This shows that some points should be excluded from regional studies. In particular, the NGRIP point, which strongly influences heat flow maps and the distribution of high basal melts, should be statistically considered an outlier.
Eledath M. Gayathri, Chavarukonam M. Laluraj, Karathazhiyath Satheesan, Kenichi Matsuoka, and Meloth Thamban
EGUsphere, https://doi.org/10.5194/egusphere-2023-2515, https://doi.org/10.5194/egusphere-2023-2515, 2023
Preprint archived
Short summary
Short summary
Episodic Antarctic Ice Sheet Surface Warming events can affect the mass balance of ice sheets by sublimation and melting during summer. Our study using five-year borehole thermistor measurements revealed two types of events over the coastal Dronning Maud Land region: cloud-induced and wind-induced. Understanding the frequency and duration of these events is important for predicting their future impacts on ice shelves and ice sheets.
Marie G. P. Cavitte, Hugues Goosse, Kenichi Matsuoka, Sarah Wauthy, Vikram Goel, Rahul Dey, Bhanu Pratap, Brice Van Liefferinge, Thamban Meloth, and Jean-Louis Tison
The Cryosphere, 17, 4779–4795, https://doi.org/10.5194/tc-17-4779-2023, https://doi.org/10.5194/tc-17-4779-2023, 2023
Short summary
Short summary
The net accumulation of snow over Antarctica is key for assessing current and future sea-level rise. Ice cores record a noisy snowfall signal to verify model simulations. We find that ice core net snowfall is biased to lower values for ice rises and the Dome Fuji site (Antarctica), while the relative uncertainty in measuring snowfall increases rapidly with distance away from the ice core sites at the ice rises but not at Dome Fuji. Spatial variation in snowfall must therefore be considered.
Angelika Graiff, Matthias Braun, Amelie Driemel, Jörg Ebbing, Hans-Peter Grossart, Tilmann Harder, Joseph I. Hoffman, Boris Koch, Florian Leese, Judith Piontek, Mirko Scheinert, Petra Quillfeldt, Jonas Zimmermann, and Ulf Karsten
Polarforschung, 91, 45–57, https://doi.org/10.5194/polf-91-45-2023, https://doi.org/10.5194/polf-91-45-2023, 2023
Short summary
Short summary
There are many approaches to better understanding Antarctic processes that generate very large data sets (
Antarctic big data). For these large data sets there is a pressing need for improved data acquisition, curation, integration, service, and application to support fundamental scientific research, and this article describes and evaluates the current status of big data in various Antarctic scientific disciplines, identifies current gaps, and provides solutions to fill these gaps.
Alice C. Frémand, Peter Fretwell, Julien A. Bodart, Hamish D. Pritchard, Alan Aitken, Jonathan L. Bamber, Robin Bell, Cesidio Bianchi, Robert G. Bingham, Donald D. Blankenship, Gino Casassa, Ginny Catania, Knut Christianson, Howard Conway, Hugh F. J. Corr, Xiangbin Cui, Detlef Damaske, Volkmar Damm, Reinhard Drews, Graeme Eagles, Olaf Eisen, Hannes Eisermann, Fausto Ferraccioli, Elena Field, René Forsberg, Steven Franke, Shuji Fujita, Yonggyu Gim, Vikram Goel, Siva Prasad Gogineni, Jamin Greenbaum, Benjamin Hills, Richard C. A. Hindmarsh, Andrew O. Hoffman, Per Holmlund, Nicholas Holschuh, John W. Holt, Annika N. Horlings, Angelika Humbert, Robert W. Jacobel, Daniela Jansen, Adrian Jenkins, Wilfried Jokat, Tom Jordan, Edward King, Jack Kohler, William Krabill, Mette Kusk Gillespie, Kirsty Langley, Joohan Lee, German Leitchenkov, Carlton Leuschen, Bruce Luyendyk, Joseph MacGregor, Emma MacKie, Kenichi Matsuoka, Mathieu Morlighem, Jérémie Mouginot, Frank O. Nitsche, Yoshifumi Nogi, Ole A. Nost, John Paden, Frank Pattyn, Sergey V. Popov, Eric Rignot, David M. Rippin, Andrés Rivera, Jason Roberts, Neil Ross, Anotonia Ruppel, Dustin M. Schroeder, Martin J. Siegert, Andrew M. Smith, Daniel Steinhage, Michael Studinger, Bo Sun, Ignazio Tabacco, Kirsty Tinto, Stefano Urbini, David Vaughan, Brian C. Welch, Douglas S. Wilson, Duncan A. Young, and Achille Zirizzotti
Earth Syst. Sci. Data, 15, 2695–2710, https://doi.org/10.5194/essd-15-2695-2023, https://doi.org/10.5194/essd-15-2695-2023, 2023
Short summary
Short summary
This paper presents the release of over 60 years of ice thickness, bed elevation, and surface elevation data acquired over Antarctica by the international community. These data are a crucial component of the Antarctic Bedmap initiative which aims to produce a new map and datasets of Antarctic ice thickness and bed topography for the international glaciology and geophysical community.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Igor Ognev, Jörg Ebbing, and Peter Haas
Solid Earth, 13, 431–448, https://doi.org/10.5194/se-13-431-2022, https://doi.org/10.5194/se-13-431-2022, 2022
Short summary
Short summary
We present a new 3D crustal model of Volgo–Uralia, an eastern segment of the East European craton. We built this model by processing the satellite gravity data and using prior crustal thickness estimation from regional seismic studies to constrain the results. The modelling revealed a high-density body on the top of the mantle and otherwise reflected the main known features of the Volgo–Uralian crustal architecture. We plan to use the obtained model for further geothermal analysis of the region.
Pavol Zahorec, Juraj Papčo, Roman Pašteka, Miroslav Bielik, Sylvain Bonvalot, Carla Braitenberg, Jörg Ebbing, Gerald Gabriel, Andrej Gosar, Adam Grand, Hans-Jürgen Götze, György Hetényi, Nils Holzrichter, Edi Kissling, Urs Marti, Bruno Meurers, Jan Mrlina, Ema Nogová, Alberto Pastorutti, Corinne Salaun, Matteo Scarponi, Josef Sebera, Lucia Seoane, Peter Skiba, Eszter Szűcs, and Matej Varga
Earth Syst. Sci. Data, 13, 2165–2209, https://doi.org/10.5194/essd-13-2165-2021, https://doi.org/10.5194/essd-13-2165-2021, 2021
Short summary
Short summary
The gravity field of the Earth expresses the overall effect of the distribution of different rocks at depth with their distinguishing densities. Our work is the first to present the high-resolution gravity map of the entire Alpine orogen, for which high-quality land and sea data were reprocessed with the exact same calculation procedures. The results reflect the local and regional structure of the Alpine lithosphere in great detail. The database is hereby openly shared to serve further research.
Maximilian Lowe, Jörg Ebbing, Amr El-Sharkawy, and Thomas Meier
Solid Earth, 12, 691–711, https://doi.org/10.5194/se-12-691-2021, https://doi.org/10.5194/se-12-691-2021, 2021
Short summary
Short summary
This study estimates the gravitational contribution from subcrustal density heterogeneities interpreted as subducting lithosphere beneath the Alps to the gravity field. We showed that those heterogeneities contribute up to 40 mGal of gravitational signal. Such density variations are often not accounted for in Alpine lithospheric models. We demonstrate that future studies should account for subcrustal density variations to provide a meaningful representation of the complex geodynamic Alpine area.
Cited articles
Aitken, A. R. A., Young, D. A., Ferraccioli, F., Betts, P. G., Greenbaum, J. S., Richter, T. G., Roberts, J. L., Blankenship, D. D., and Siegert, M. J.: The subglacial geology of Wilkes Land, East Antarctica, Geophysical Research Letters, 41, 2390–2400, https://doi.org/10.1002/2014GL059405, 2014.
Aitken, A. R., Li, L., Kulessa, B., Schroeder, D., Jordan, T. A., Whittaker, J. M., Anandakrishan, S., Dawson, E. J., Wiens, D. A., Eisen, O., and Siegert, M. J.: Antarctic sedimentary basins and their influence on ice-sheet dynamics, Reviews of Geophysics, 61, e2021RG000767. https://doi.org/10.1029/2021RG000767, 2023.
Anandakrishnan, S., Blankenship, D. D., Alley, R. B., and Stoffa, P. L.: Influence of subglacial geology on the position of a West Antarctic ice stream from seismic observations, Nature, 394, 62–65, https://doi.org/10.1038/27889, 1998.
Bayer, B., Geissler, W. H., Eckstaller, A., and Jokat, W.: Seismic imaging of the crust beneath Dronning Maud Land, East Antarctica, Geophysical Journal International, 178, 860–876, https://doi.org/10.1111/j.1365-246X.2009.04196.x, 2009.
Bell, R. E.: The role of subglacial water in ice-sheet mass balance, Nature Geoscience, 1, 297–304, https://doi.org/10.1038/ngeo186, 2008.
Betts, P. G., Moore, D., Aitken, A., Blaikie, T., Jessell, M., Ailleres, L., Armit, R., McLean, M., Munukutla, R., and Chukwu, C.: Geology from aeromagnetic data, Earth-Science Reviews, 104958, https://doi.org/10.1016/j.earscirev.2024.104958, 2024.
Bingham, R. G., Ferraccioli, F., King, E. C., Larter, R. D., Pritchard, H. D., Smith, A. M., and Vaughan, D. G.: Inland thinning of West Antarctic Ice Sheet steered along subglacial rifts, Nature, 487, 468–471, https://doi.org/10.1038/nature11292, 2012.
Blakely, R. J.: Potential theory in gravity and magnetic applications, Cambridge University Press, https://doi.org/10.1017/CBO9780511549816, 1996.
Blankenship, D. D., Kempf, S. D., Young, D. A., Richter, T. G., Schroeder, D. M., Ng, G., Greenbaum, J. S., van Ommen, T., Warner, R. C., Roberts, J. L., Young, N. W., Lemeur, E., and Siegert, M. J.: IceBridge HiCARS 2 L2 Geolocated Ice Thickness (IR2HI2, Version 1), NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA [data set], https://doi.org/10.5067/9EBR2T0VXUDG, 2012.
Blankenship, D. D., Kempf, S. D., Young, D. A., Richter, T. G., Schroeder, D. M., Greenbaum, J. S., van Ommen, T., Warner, R. C., Roberts, J. L., Young, N. W., Lemeur, E., Siegert, M. J., and Holt, J. W.: IceBridge HiCARS 1 L1B Time-Tagged Echo Strength Profiles, Version 1, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/W2KXX0MYNJ9G, 2017.
Carneiro, C. D. C., Fraser, S. J., Crósta, A. P., Silva, A. M., and Barros, C. E. D. M.: Semiautomated geologic mapping using self-organizing maps and airborne geophysics in the Brazilian Amazon, Geophysics, 77, K17–K24, https://doi.org/10.1190/geo2011-0302.1, 2012.
Colgan, W., Wansing, A., Mankoff, K., Lösing, M., Hopper, J., Louden, K., Ebbing, J., Christiansen, F. G., Ingeman-Nielsen, T., Liljedahl, L. C., MacGregor, J. A., Hjartarson, Á., Bernstein, S., Karlsson, N. B., Fuchs, S., Hartikainen, J., Liakka, J., Fausto, R. S., Dahl-Jensen, D., Bjørk, A., Naslund, J.-O., Mørk, F., Martos, Y., Balling, N., Funck, T., Kjeldsen, K. K., Petersen, D., Gregersen, U., Dam, G., Nielsen, T., Khan, S. A., and Løkkegaard, A.: Greenland Geothermal Heat Flow Database and Map (Version 1), Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, 2022.
Ebbing, J., Haas, P., Ferraccioli, F., Pappa, F., Szwillus, W., and Bouman, J.: Earth tectonics as seen by GOCE- Enhanced satellite gravity gradient imaging, Scientific Reports, 8, 16356, https://doi.org/10.1038/s41598-018-34733-9, 2018.
Eisen, O., Winter, A., Steinhage, D., Kleiner, T., and Humbert, A.: Basal roughness of the East Antarctic Ice Sheet in relation to flow speed and basal thermal state, Annals of Glaciology, 61, 162–175, https://doi.org/10.1017/aog.2020.47, 2020.
Elliot, D. H.: Tectonics of Antarctica: a review, Am. J. Sci, 275, 45–106, 1975.
Ferraccioli, F., Bozzo, E., and Damaske, D.: Aeromagnetic signatures over western Marie Byrd Land provide insight into magmatic arc basement, mafic magmatism and structure of the Eastern Ross Sea Rift flank, Tectonophysics, 347, 139–165, https://doi.org/10.1016/S0040-1951(01)00242-6, 2002.
Ferraccioli, F., Armadillo, E., Jordan, T., Bozzo, E., and Corr, H.: Aeromagnetic exploration over the East Antarctic Ice Sheet: a new view of the Wilkes Subglacial Basin, Tectonophysics, 478, 62–77, https://doi.org/10.1016/j.tecto.2009.03.013, 2009.
Ferraccioli, F., Finn, C., Jordan, T. A., Bell, R. E., Anderson, L. M., and Damaske, D.: East Antarctic rifting triggers uplift of the Gamburtsev Mountains, Nature, 479, 388–392, https://doi.org/10.1038/nature10566, 2011.
Freienstein, J., Szwillus, W., Zimmer, M., Ebbing, J.: Learning from Finland: Variability of subglacial heat flow in Greenland explored from geological units and radiogenic heat, J. Geophys. Res.-Solid Earth, 130, e2025JB031545, https://doi.org/10.1029/2025JB031545, 2025.
Frémand, A. C., Bodart, J. A., Jordan, T. A., Ferraccioli, F., Robinson, C., Corr, H. F., Peat , H. J., Bingham, R. G., and Vaughan, D. G.: British Antarctic Survey’s aerogeophysical data: Releasing 25 years of airborne gravity, magnetic, and radar datasets over Antarctica. Earth System Science Data Discussions, 2022, 1–49, https://doi.org/10.5194/essd-14-3379-2022, 2022.
Golynsky, A. V., Chiappini, M., Damaske, D., Ferraccioli, F., Finn, C. A., Ishihara, T., Kim, H. R., Kovacs, L., Masolov, V. N., Morris, P., and von Frese, R. R. B: ADMAP – A digital magnetic anomaly map of the Antarctic, Antarctica: Contributions to global earth sciences, 109–116, https://doi.org/10.1007/3-540-32934-X_12, 2006.
Golynsky, A. V., Ferraccioli, F., Hong, J. K., Golynsky, D. A., von Frese, R. R. B., Young, D. A., Blankenship, D. D., Holt, J. W., Ivanov, S. V., Kiselev, A. V., Masolov, V. N., Eagles, G., Gohl, K., Jokat, W., Damaske, D., Finn, C., Aitken, A., Bell, R. E., Armadillo, E., Jordan, T. A., Bozzo, E., Caneva, G., Forsberg, R., Ghidella, M., Galindo-Zaldivar, J., Bohoyo, F., Martos, Y. M., Nogi, Y., Quartini, E., Kim, H. R., and Roberts, J. L.: New magnetic anomaly map of the Antarctic, Geophysical Research Letters, 45, 6437–6449, https://doi.org/10.1029/2018GL078153, 2018.
Jamieson, S. S. R., Stokes, C. R., Ross, N., Rippin, D. M., Bingham, R. G., Wilson, D. S., Margold, M., and Bentley, M. J.: The glacial geomorphology of the Antarctic ice sheet bed, Antarctic Science, 26, 724–741, https://doi.org/10.1017/S0954102014000212, 2014.
Jordan, T. A., Ferraccioli, F., Corr, H., Graham, A., Armadillo, E., and Bozzo, E.: Hypothesis for mega-outburst flooding from a palaeo-subglacial lake beneath the East Antarctic Ice Sheet, Terra Nova, 22, 283–289, https://doi.org/10.1111/j.1365-3121.2010.00944.x, 2010.
Jordan, T. A., Riley, T. R., and Siddoway, C. S.: The geological history and evolution of West Antarctica, Nature Reviews Earth & Environment, 1, 117–133, https://doi.org/10.1038/s43017-019-0013-6, 2020.
Jordan, T. A., Thompson, S., Kulessa, B., and Ferraccioli, F.: Geological sketch map and implications for ice flow of Thwaites Glacier, West Antarctica, from integrated aerogeophysical observations, Science Advances, 9, eadf2639, https://doi.org/10.1126/sciadv.adf2639, 2023.
Klose, C. D.: Self-organizing maps for geoscientific data analysis: geological interpretation of multidimensional geophysical data, Computational Geosciences, 10, 265–277, https://doi.org/10.1007/s10596-006-9022-x, 2006.
Koellner, S., Parizek, B. R., Alley, R. B., Muto, A., and Holschuh, N.: The impact of spatially-variable basal properties on outlet glacier flow, Earth and Planetary Science Letters, 515, 200–208, https://doi.org/10.1016/j.epsl.2019.03.026, 2019.
Kohonen, T.: The self-organizing map. Proceedings of the IEEE, 78, 1464–1480, https://doi.org/10.1109/5.58325, 1990.
Leitchenkov, G. L., Antonov, A. V., Luneov, P. I., and Lipenkov, V. Y.: Geology and environments of subglacial Lake Vostok. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20140302, https://doi.org/10.1098/rsta.2014.0302, 2016.
Li, L., Aitken, A. R., Lindsay, M. D., and Kulessa, B.: Sedimentary basins reduce stability of Antarctic ice streams through groundwater feedbacks, Nature Geoscience, 15, 645–650, https://doi.org/10.1038/s41561-022-00992-5, 2022.
Li, X., Sun, B., Siegert, M. J., Bingham, R. G., Tang, X., Zhang, D., Cui, X. and Zhang, X.: Characterization of subglacial landscapes by a two-parameter roughness index. Journal of Glaciology, 56, 831–836. https://doi.org/10.3189/002214310794457326, 2010.
Li, L., Xiao, E., Wei, X., Qiu, N., Latif, K., Guo, J., and Sun, B.: Crustal Imaging across the Princess Elizabeth Land, East Antarctica from 2D Gravity and Magnetic Inversions, Remote Sensing, 15, 5523, https://doi.org/10.3390/rs15235523, 2023.
Li, X.: Curvature of a geometric surface and curvature of gravity and magnetic anomalies, Geophysics, 80, G15–G26, https://doi.org/10.1190/geo2014-0108.1, 2015.
Liebsch, J.: Combined analysis of airborne geophysical data using machine learning to obtain sub-ice geology in East Antarctica, Master thesis at Kiel University, unpublished, 2023.
Liebsch, J.: Codes and training data for Self-Organizing Maps to characterize subglacial bedrock properties based on gravity, magnetic and radar data, Zenodo [code], https://doi.org/10.5281/zenodo.17250123, 2025.
Lösing, M. and Ebbing, J.: Predicting geothermal heat flow in Antarctica with a machine learning approach, Journal of Geophysical Research: Solid Earth, 126, e2020JB021499, https://doi.org/10.1029/2020JB021499, 2021.
Lowe, M., Jordan, T., Ebbing, J., Koglin, N., Ruppel, A., Moorkamp, M., Läufer, A., Green, C., Liebsch, J., Ginga, M., and Larter, R.: Comparing geophysical inversion and petrophysical measurements for northern Victoria Land, Antarctica, Geophysical Journal International, 239, 276–291, https://doi.org/10.1093/gji/ggae272, 2024a.
Lowe, M., Jordan, T., Moorkamp, M., Ebbing, J., Green, C., Lösing, M., Riley, T., and Larter, R.: The 3D crustal structure of the Wilkes Subglacial Basin, East Antarctica, using variation of information joint inversion of gravity and magnetic data, Journal of Geophysical Research: Solid Earth, 129, e2023JB027794, https://doi.org/10.1029/2023JB027794, 2024b.
MacGregor, J. A., Boisvert, L. N., Medley, B., Petty, A. A., Harbeck, J. P., Bell, R. E., Blair, J. B., Blanchard-Wrigglesworth, E., Buckley, E. M., Christoffersen, M. S., Cochran, J. R., Csathó, B. M., De Marco, E. L., Dominguez, R. T., Fahnestock, M. A., Farrell, S. L., Gogineni, S. P., Greenbaum, J. S., Hansen, C. M., Hofton, M. A., Holt, J. W., Jezek, K. C., Koenig, L. S., Kurtz, N. T., Kwok, R., Larsen, C. F., Leuschen, C. J., Locke, C. D., Manizade, S. S., Martin, S., Neumann, T. A., Nowicki, S. M. J., Paden, J. D., Richter-Menge, J. A., Rignot, E. J., Rodríguez-Morales, F., Siegfried, M. R., Smith, B. E., Sonntag, J. G., Studinger, M., Tinto, K. J., Truffer, M., Wagner, T. P., Woods, J. E., Young, D. A., and Yungel, J. K.: The scientific legacy of NASA's Operation IceBridge, Reviews of Geophysics, 59, e2020RG000712, https://doi.org/10.1029/2020RG000712, 2021.
MacGregor, J. A., Colgan, W. T., Paxman, G. J. G., Tinto, K. J., Csathó, B., Darbyshire, F. A., Fahnestock, M. A., Kokfelt, T. F., MacKie, E. J., Morlighem, M., and Sergienko, O. V.: Geologic provinces beneath the Greenland Ice Sheet constrained by geophysical data synthesis, Geophysical Research Letters, 51, e2023GL107357, https://doi.org/10.1029/2023GL107357, 2024.
Matsuoka, K.: Pitfalls in radar diagnosis of ice-sheet bed conditions: Lessons from englacial attenuation models, Geophysical Research Letters, 38, https://doi.org/10.1029/2010GL046205, 2011.
McCormack, F. S., Roberts, J. L., Dow, C. F., Stål, T., Halpin, J. A., Reading, A. M., and Siegert, M. J.: Fine-scale geothermal heat flow in Antarctica can increase simulated subglacial melt estimates, Geophysical Research Letters, 49, e2022GL098539, https://doi.org/10.1029/2022GL098539, 2022.
McLean, M. A., Wilson, C. J. L., Boger, S. D., Betts, P. G., Rawling, T. J., and Damaske, D.: Basement interpretations from airborne magnetic and gravity data over the Lambert Rift region of East Antarctica, Journal of Geophysical Research: Solid Earth, 114, https://doi.org/10.1029/2008JB005650, 2009.
Morlighem, M.: MEaSUREs BedMachine Antarctica, Version 3, Bed Elevation, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado, USA, https://doi.org/10.5067/FPSU0V1MWUB6, 2022.
Morlighem, M., Rignot, E., Binder, T., Blankenship, D., Drews, R., Eagles, G., Eisen, O., Ferraccioli, F., Forsberg, R., Fretwell, P., Goel, V., Greenbaum, J. S., Gudmundsson, H., Guo, J., Helm, V., Hofstede, C., Howat, I., Humbert, A., Jokat, W., Karlsson, N. B., Lee, W. S., Matsuoka, K., Millan, R., Mouginot, J., Paden, J., Pattyn, F., Roberts, J., Rosier, S., Ruppel, A., Seroussi, H., Smith, E. C., Steinhage, D., Sun, B., van den Broeke, M. R., van Ommen, T. D., van Wessem, M., and Young, D. A.: Deep glacial troughs and stabilizing ridges unveiled beneath the margins of the Antarctic ice sheet, Nature Geoscience, 13, 132–137, https://doi.org/10.1038/s41561-019-0510-8, 2020.
Nagy, D., Papp, G., and Benedek, J.: The gravitational potential and its derivatives for the prism, Journal of Geodesy, 74, 552–560, https://doi.org/10.1007/s001900000116, 2000.
Rezvanbehbahani, S., Stearns, L. A., Kadivar, A., Walker, J. D., and van der Veen, C. J.:. Predicting the geothermal heat flux in Greenland: A machine learning approach. Geophysical Research Letters, 44, 12–271, https://doi.org/10.1002/2017GL075661, 2017.
Rippin, D. M., Bingham, R. G., Jordan, T. A., Wright, A. P., Ross, N., Corr, H. F., Ferraccioli, F., Le Brocq, A. M., Rose, K. C., and Siegert, M. J.: Basal roughness of the Institute and Möller Ice Streams, West Antarctica: Process determination and landscape interpretation, Geomorphology, 214, 139–147, https://doi.org/10.1016/j.geomorph.2014.01.021, 2014.
Salem, A., Williams, S., Fairhead, D., Smith, R., and Ravat, D.: Interpretation of magnetic data using tilt-angle derivatives, Geophysics, 73, L1–L10, https://doi.org/10.1190/1.2799992, 2008.
Scheinert, M., Ferraccioli, F., Schwabe, J., Bell, R., Studinger, M., Damaske, D., Jokat, W., Aleshkova, N., Jordan, T., Leitchenkov, G., Blanklenship, D. D., Damiani, T. M., Young, D., Cochran, J. R., and Richter, T. D.: New Antarctic gravity anomaly grid for enhanced geodetic and geophysical studies in Antarctica, Geophysical Research Letters, 43, 600–610, https://doi.org/10.1002/2015GL067439, 2016.
Shepherd, T., Bamber, J. L., and Ferraccioli, F.: Subglacial geology in Coats Land, East Antarctica, revealed by airborne magnetics and radar sounding, Earth and Planetary Science Letters, 244, 323–335, https://doi.org/10.1016/j.epsl.2006.01.068, 2006.
Stål, T., Reading, A. M., Halpin, J. A., and Whittaker, J. M.: Antarctic geothermal heat flow model: Aq1, Geochemistry, Geophysics, Geosystems, 22, e2020GC009428, https://doi.org/10.1029/2020GC009428, 2021.
Taylor, G.: Physiography and glacial geology of East Antarctica, The Geographical Journal, 44, 365–382, 1914.
Vettigli, G.: MiniSom: minimalistic and NumPy-based implementation of the Self Organizing Map, GitHub [code], https://github.com/JustGlowing/minisom/ (last access: 10 November 2025), 2018.
Wu, G., Ferraccioli, F., Zhou, W., Yuan, Y., Gao, J., and Tian, G.: Tectonic Implications for the Gamburtsev Subglacial Mountains, East Antarctica, from Airborne Gravity and Magnetic Data, Remote Sensing, 15, 306, https://doi.org/10.3390/rs15020306, 2023.
Zoet, L. K. and Iverson, N. R.: A slip law for glaciers on deformable beds, Science, 368, 76–78, https://doi.org/10.1126/science.aaz1183, 2020.
Short summary
The evolution of the Antarctic ice sheets depends, in addition to factors representing the warming climate, on the earth structure beneath the ice. What’s beneath the ice is largely inaccessible for direct sampling, but can be interpreted with the use of airborne measurements. We apply an unsupervised machine learning method to such data in East Antarctica to test whether this can ease interpretation and hence our understanding of what rocks types are beneath the ice.
The evolution of the Antarctic ice sheets depends, in addition to factors representing the...