Articles | Volume 16, issue 11
https://doi.org/10.5194/se-16-1421-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-16-1421-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Passive seismic imaging of the Lower Palaeozoic in the Sudret area of Gotland, Sweden
Zhihui Wang
Chinese Academy of Geological Sciences, Beijing, 100037, China
Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden
Christopher Juhlin
CORRESPONDING AUTHOR
Department of Earth Sciences, Uppsala University, Uppsala, 75236, Sweden
Peter Hedin
Geological Survey of Sweden, Kungsängstull 4, Uppsala, 75319, Sweden
Mikael Erlström
Department of Geology, Lund University, Lund, 22362, Sweden
Daniel Sopher
Geological Survey of Sweden, Kungsängstull 4, Uppsala, 75319, Sweden
Related authors
Zhihui Wang, Christopher Juhlin, Qingtian Lü, Xiaoming Ruan, Zhendong Liu, Chenghua Yu, and Mingchun Chen
Solid Earth, 16, 761–773, https://doi.org/10.5194/se-16-761-2025, https://doi.org/10.5194/se-16-761-2025, 2025
Short summary
Short summary
Sinkholes and caves underground pose challenges for various industries in the karst area, particularly those, such as construction, agriculture, and infrastructure development, dependent on stable ground conditions. In this study, we applied seismic reflection, a geophysical method, to delineate shallow subsurface complex geological structures and to better understand limestone cave formation in Shenzhen, China.
Christopher Juhlin, Mikael Erlström, Peter Hedin, Bojan Brodic, and Daniel Sopher
Solid Earth, 16, 865–876, https://doi.org/10.5194/se-16-865-2025, https://doi.org/10.5194/se-16-865-2025, 2025
Short summary
Short summary
Geological storage of CO2 has emerged again in recent years as a complement to reducing CO2 emissions to the atmosphere. The Swedish government recently gave the task of further studying the potential for CO2 storage within Swedish territory to the Geological Survey of Sweden. We report here on results from investigations on southern Gotland island. We find that we can map several geological formations of interest and that the rock is seismically anisotropic.
Christopher Juhlin, Rodolphe Lescoutre, and Bjarne Almqvist
Solid Earth, 16, 775–784, https://doi.org/10.5194/se-16-775-2025, https://doi.org/10.5194/se-16-775-2025, 2025
Short summary
Short summary
Reflection seismic data can provide high-resolution images of the Earth's crust and allow a better understanding of crustal structure on all continents. In this paper we revisit reflection seismic data that were acquired previously across the central part of the Scandinavian Peninsula. Merging individual components of the data set in a more optimal manner resulted in a new image of the crust below the Scandinavian Caledonides with a revised interpretation of the crustal structure in the west.
Zhihui Wang, Christopher Juhlin, Qingtian Lü, Xiaoming Ruan, Zhendong Liu, Chenghua Yu, and Mingchun Chen
Solid Earth, 16, 761–773, https://doi.org/10.5194/se-16-761-2025, https://doi.org/10.5194/se-16-761-2025, 2025
Short summary
Short summary
Sinkholes and caves underground pose challenges for various industries in the karst area, particularly those, such as construction, agriculture, and infrastructure development, dependent on stable ground conditions. In this study, we applied seismic reflection, a geophysical method, to delineate shallow subsurface complex geological structures and to better understand limestone cave formation in Shenzhen, China.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, and Michael Kühn
Adv. Geosci., 58, 87–91, https://doi.org/10.5194/adgeo-58-87-2022, https://doi.org/10.5194/adgeo-58-87-2022, 2022
Henning Lorenz, Jan-Erik Rosberg, Christopher Juhlin, Iwona Klonowska, Rodolphe Lescoutre, George Westmeijer, Bjarne S. G. Almqvist, Mark Anderson, Stefan Bertilsson, Mark Dopson, Jens Kallmeyer, Jochem Kück, Oliver Lehnert, Luca Menegon, Christophe Pascal, Simon Rejkjær, and Nick N. W. Roberts
Sci. Dril., 30, 43–57, https://doi.org/10.5194/sd-30-43-2022, https://doi.org/10.5194/sd-30-43-2022, 2022
Short summary
Short summary
The Collisional Orogeny in the Scandinavian Caledonides project provides insights into the deep structure and bedrock of a ca. 400 Ma old major orogen to study deformation processes that are hidden at depth from direct access in modern mountain belts. This paper describes the successful operations at the second site. It provides an overview of the retrieved geological section that differs from the expected and summarises the scientific potential of the accomplished data sets and drill core.
Monika Ivandic, Ayse Kaslilar, and Christopher Juhlin
Adv. Geosci., 56, 163–169, https://doi.org/10.5194/adgeo-56-163-2022, https://doi.org/10.5194/adgeo-56-163-2022, 2022
Short summary
Short summary
Seismic imaging while drilling (SWD) technology offers possibilities of imaging ahead of the drill-bit, which is valuable information for optimizing drilling efficiency. An SWD field test was carried out in August 2020 at an exploration drilling test site in Örebro, Sweden, with the aim to determine if the signals from hammer drilling can be used for seismic imaging around the drill-bit. A comparison with the seismic data generated with a conventional seismic source shows reasonable agreement.
Viktor J. Bruckman, Gregor Giebel, Christopher Juhlin, Sonja Martens, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 56, 13–18, https://doi.org/10.5194/adgeo-56-13-2021, https://doi.org/10.5194/adgeo-56-13-2021, 2021
Puy Ayarza, José Ramón Martínez Catalán, Ana Martínez García, Juan Alcalde, Juvenal Andrés, José Fernando Simancas, Immaculada Palomeras, David Martí, Irene DeFelipe, Chris Juhlin, and Ramón Carbonell
Solid Earth, 12, 1515–1547, https://doi.org/10.5194/se-12-1515-2021, https://doi.org/10.5194/se-12-1515-2021, 2021
Short summary
Short summary
Vertical incidence seismic profiling on the Iberian Massif images a mid-crustal-scale discontinuity at the top of the reflective lower crust. This feature shows that upper- and lower-crustal reflections merge into it, suggesting that it has often behaved as a detachment. The orogen-scale extension of this discontinuity, present in Gondwanan and Avalonian affinity terranes into the Iberian Massif, demonstrates its relevance, leading us to interpret it as the Conrad discontinuity.
Cited articles
Alcalde, J., Marzán, I., Saura, E., Martí, D., Ayarza, P., Juhlin, C., Pérez-Estaún, A., and Carbonell, R.: 3D geological characterization of the Hontomín CO2 storage site, Spain: Multidisciplinary approach from seismic, well-log and regional data, Tectonophysics, 627, 6–25, https://doi.org/10.1016/j.tecto.2014.04.025, 2014.
Anthonsen, K. L., Aagaard, P., Bergmo, P. E. S., Erlström, M., Fareide, J. I., Gislason, S. R., Mortensen, G. M., and Snæbjörnsdottir, S.Ó.: CO2 storage potential in the Nordic region, Energy Procedia, 37, 5080–5092, https://doi.org/10.1016/j.egypro.2013.06.421, 2013.
Bakulin, A. and Calvert, R.: The virtual source method: Theory and case study, Geophysics, 71, SI139–SI150, https://doi.org/10.1190/1.2216190, 2006.
Bertoldi, A., Gaffet, S., Prevedelli, M., and Smith D. A.: Forecasting ocean wave-induced seismic noise, Sci. Rep., 14, 21002, https://doi.org/10.1038/s41598-024-71628-4, 2024.
Boullenger, B., Verdel, A., Paap, B., Thorbecke, J., and Draganov, D.: Studying CO2 storage with ambient-noise seismic interferometry: A combined numerical feasibility study and field-data example for Ketzin, Germany, Geophysics, 80, Q1–Q13, https://doi.org/10.1190/geo2014-0181.1, 2015.
Campillo, M. and Paul, A.: Long-range correlations in the diffuse seismic coda, Science, 299, 547–549, https://doi.org/10.1126/science.1078551, 2003.
Cao, H. and Askari, R.: Comparison of seismic interferometry techniques for the retrieval of seismic body waves in CO2 sequestration monitoring, Journal of Geophysics and Engineering, 16, 1094–1115, https://doi.org/10.1093/jge/gxz079, 2019.
Cheraghi, S., Craven, J. A., and Bellefleur, G.: Feasibility of virtual source reflection seismology using interferometry for mineral exploration: A test study in the Lalor Lake volcanogenic massive sulphide mining area, Manitoba, Canada, Geophysical Prospecting, 63, 833–848, https://doi.org/10.1111/1365-2478.12244, 2015.
Cheraghi, S., White, D. J., Draganov, D., Bellefleur, G., Craven, J. A., and Roberts, B.: Passive seismic reflection interferometry: A case study from the Aquistore CO2 storage site, Saskatchewan, Canada, Geophysics, 82, B79–B93, https://doi.org/10.1190/geo2016-0370.1, 2017.
Claerbout, J. F.: Synthesis of a layered medium from its acoustic transmission response, Geophysics, 33, 264–269, https://doi.org/10.1190/1.1439927, 1968.
Cole, S. P.: Passive seismic and drill-bit experiments using 2-D arrays, California, Stanford University, SEP-86, https://sep.sites.stanford.edu/publications/theses/passive-seismic-and-drill-bit-experiments-using-2-d-arrays-sep-86-1995 (last access: 7 November 2025), 1995.
De Ridder, S. and Biondi, B.: Continuous passive seismic monitoring of CCS projects by correlating seismic noise – A feasibility study, 74th Annual International Conference and Exhibition, EAGE, Extended Abstracts, P253, 2012.
Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K.: Reflection images from ambient seismic noise, Geophysics, 74, A63–A67, https://doi.org/10.1190/1.3193529, 2009.
Draganov, D., Campman, X., Thorbecke, J., Verdel, A., and Wapenaar, K.: Seismic exploration-scale velocities and structure from ambient seismic noise (>1 Hz), J. Geophys. Res.-Sol. Ea., 118, 4345–4360, https://doi.org/10.1002/jgrb.50339, 2013, 2013.
Erlström, M. and Sopher, D.: Geophysical well log-motifs, lithology, stratigraphical aspects and correlation of the Ordovician succession in the Swedish part of the Baltic Basin. International Journal of Earth Sciences, 108, 1387–1407, https://doi.org/10.1007/s00531-019-01712-y, 2019.
Erlström, M., Rosberg, J.-E., Dahlqvist, P., Hjerne, C.-E., and Lorenz, H.: Scientific core drilling of the Lower Palaeozoic succession in the Swedish sector of the Baltic Sea – investigation of the CO2 storage potential, EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024, EGU24-5974, https://doi.org/10.5194/egusphere-egu24-5974, 2024.
Gassenmeier, M., Sens-Schönfelder, C., Delatre, M., and Korn, M.: Monitoring of environmental influences on seismic velocity at the geological storage site for CO2 in Ketzin (Germany) with ambient seismic noise, Geophysical Journal International, 200, 524–533, https://doi.org/10.1093/gji/ggu413, 2015.
Gouédard, P., Stehly, L., Brenguier, F., Campillo, M., Colin de Verdière, Y., Larose, E., Margerin, L., Roux, P., Sánchez-Sesma, F. J., Shapiro, N. M., and Weaver, R. L.: Cross-correlation of random fields: Mathematical approach and applications, Geophysical Prospecting, 56, 375–393, https://doi.org/10.1111/j.1365-2478.2007.00684.x, 2008.
Harris, K., White, D., and Samson, C.: Imaging the Aquistore reservoir after 36 kilotonnes of CO2 injection using distributed acoustic sensing, Geophysics, 82, M81–M96, https://doi.org/10.1190/geo2017-0174.1, 2017.
Hassing, S. H. W., Draganov, D., Janssen, M., Barnhoorn, A., Wolf, K.-H. A. A., van den Berg, J., Friebel, M., van Otten, G., Poletto, F., Bellezza, C., Barison, E., Brynjarsson, B., Hjörleifsdóttir, V., Obermann, A., Sánchez-Pastor, P., and Durucan, S.: Imaging CO2 reinjection into basalts at the Carbfix2 reinjection reservoir (Hellisheiði, Iceland) with body-wave seismic interferometry, Geophysical Prospecting, 72, 1919–1933, https://doi.org/10.1111/1365-2478.13472, 2024.
Huang, F., Bergmann, P., Juhlin, C., Ivandic, M., Lüth, S., Ivanova, A., Kempka, T., Henninges, J., Sopher, D., and Zhang, F.: The first post-injection seismic monitor survey at the Ketzin pilot CO2 storage site: Results from time-lapse analysis, Geophysical Prospecting, 66, 62–84, https://doi.org/10.1111/1365-2478.12497, 2016.
Ikeda, T., Tsuji, T., Takanashi, M., Kurosawa, I., Nakatsukasa, M., Kato, A., Worth, K., White, D., and Roberts, B.: Temporal variation of the shallow subsurface at the Aquistore CO2 storage site associated with environmental influences using a continuous and controlled seismic source, Journal of Geophysical Research: Solid Earth, 122, 2859–2872, https://doi.org/10.1002/2016JB013691, 2017.
Ivandic, M., Bergmann, P., Kummerow, J., Huang, F., Juhlin, C., and Lüth, S.: Monitoring CO2 saturation using time-lapse amplitude versus offset analysis of 3D seismic data from the Ketzin CO2 storage pilot site, Germany, Geophysical Prospecting, 66, 1568–1585, https://doi.org/10.1111/1365-2478.12666, 2018.
Juhlin, C., Giese, R., Zinck-Jørgensen, K., Cosma, C., Kazemeini, H., Juhojuntti, N., Lüth, S., Norden, B., and Förster, A.: 3D baseline seismics at Ketzin, Germany: The CO2SINK project, Geophysics, 72, B121–B132, https://doi.org/10.1190/1.2754667, 2007.
Juhlin, C., Erlström, M., Hedin, P., Brodic, B., and Sopher, D.: Reflection seismic investigations on south Gotland, Sweden, to evaluate CO2 storage strategies, Solid Earth, 16, 865–876, https://doi.org/10.5194/se-16-865-2025, 2025.
Lüth, S., Bergmann, P., Huang, F., Ivandic, M., Ivanova, A., Juhlin, C., and Kempka, T.: 4D seismic monitoring of CO2 storage during injection and post-closure at the Ketzin pilot site, Energy Procedia, 114, 5761–5767, https://doi.org/10.1016/j.egypro.2017.03.1714, 2017.
Meles, G. A., Löer, K., Ravasi, M., Curtis, A., and da Costa Filho, C. A.: Internal multiple prediction and removal using Marchenko autofocusing and seismic interferometry, Geophysics, 80, A7–A11, https://doi.org/10.1190/geo2014-0408.1, 2015.
Nakata, N., Snieder, R., Tsuji, T., Larner, K., and Matsuoka, T.: Shear wave imaging from traffic noise using seismic interferometry by cross-coherence, Geophysics, 76, SA97–SA106, https://doi.org/10.1190/geo2010-0188.1, 2011.
Nakata, N., Chang, J. P., Lawrence, J. F., and Boué, P.: Body wave extraction and tomography at Long Beach, California, with ambient-noise interferometry, Journal of Geophysical Research: Solid Earth, 120, 1159–1173, https://doi.org/10.1002/2015JB011870, 2015.
Niemi, A., Bear, J., and Bensabat, J.: Geological storage of CO2 in deep saline formations, Geological Storage of CO2 in Deep Saline Formations, 2017.
Nimiya, H., Ikeda, T., and Tsuji, T.: Temporal changes in anthropogenic seismic noise levels associated with economic and leisure activities during the COVID-19 pandemic. Sci Rep, 11, 20439, https://doi.org/10.1038/s41598-021-00063-6, 2021.
Olivier, G., Brenguier, F., Campillo, M., Lynch, R., and Roux, P.: Body-wave reconstruction from ambient seismic noise correlations in an underground mine, Geophysics, 80, KS11–KS25, https://doi.org/10.1190/geo2014-0299.1, 2015.
Oren, C. and Nowack, R. L.: Seismic body-wave interferometry using noise autocorrelations for crustal structure, Geophysical Journal International, 208, 321–332, https://doi.org/10.1093/gji/ggw394, 2017.
Papadopoulou, M., Zappalá, S., Malehmir, A., Gregersen, U., Hjelm, L., Nielsen, L., and Haspang, M. P.: Innovative land seismic investigations for CO2 geologic storage in Denmark, Geophysics, 88, B251–B266, https://doi.org/10.1190/geo2022-0693.1, 2023.
Papadopoulou, M., Zappalá, S., Malehmir, A., Kucinskaite, K., Westgate, M., Gregersen, U., Funck, T., Smit, F., and Vosgerau, H.: Advancements in seismic imaging for geological carbon storage: Study of the Havnsø structure, Denmark, International Journal of Greenhouse Gas Control, 137, https://doi.org/10.1016/j.ijggc.2024.104204, 2024.
Pevzner, R., Caspari, E., Gurevich, B., Dance, T., and Cinar, Y.: Feasibility of CO2 plume detection using 4D seismic: CO2CRC Otway project case study – Part 2: Detectability analysis, Geophysics, 80, B105–B114, https://doi.org/10.1190/geo2014-0460.1, 2015.
Prieto, G. A., Lawrence, J. F., and Beroza, G. C.: Anelastic Earth structure from the coherency of the ambient seismic field, Journal of Geophysical Research: Solid Earth, 114, https://doi.org/10.1029/2008JB006067, 2009.
Riahi, N., Bokelmann, G., Sala, P., and Saenger, E. H.: Time-lapse analysis of ambient surface wave anisotropy: A three-component array study above an underground gas storage, Journal of Geophysical Research: Solid Earth, 118, 5339–5351, https://doi.org/10.1002/jgrb.50375, 2013.
Rickett, J. and Claerbout, J.: Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring, The Leading Edge, 18, 957–960, https://doi.org/10.1190/1.1438420, 1999.
Roach, L. A. N., White, D. J., and Roberts, B.: Assessment of 4D seismic repeatability and CO2 detection limits using a sparse permanent land array at the Aquistore CO2 storage site, Geophysics, 80, WA1–WA13, https://doi.org/10.1190/geo2014-0201.1, 2015.
Schuster, G. T.: Theory of daylight/interferometric imaging – Tutorial, 63rd EAGE Conference & Exhibition, European Association of Geagers & Engineers, Amsterdam, the Netherlands, https://doi.org/10.3997/2214-4609-pdb.15.A-32, 2001.
Shapiro, N. M., Campillo, M., Stehly, L., and Ritzwoller, M. H.: High-resolution surface-wave tomography from ambient seismic noise, Science, 307, 1615–1618, https://doi.org/10.1126/science.1108339, 2005.
Shogenova, A., Nordback, N., Sopher, D., Shogenov, K., Niemi, A., Juhlin, C., Sliaupa, S., Ivandic, M., Wojcicki, A., Ivask, J., Klimkowski, L., and Nagy, S.: Carbon Neutral Baltic Sea Region by 2050: Myth or Reality?, 1 April 2021, Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15–18 March 2021, https://doi.org/10.2139/ssrn.3817722, 2021.
Snieder, R.: Extracting the Green's function from the correlation of coda waves: A derivation based on stationary phase, Physical Review E, 69, 046610, https://doi.org/10.1103/PhysRevE.69.046610, 2004.
Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I., and Wapenaar, K.: A comparison of strategies for seismic interferometry, Surveys in Geophysics, 30, 50–523, https://doi.org/10.1007/s10712-009-9069-z, 2009.
Sopher, D., Juhlin, C., and Erlström, M.: A probabilistic assessment of the effective CO2 storage capacity within the Swedish sector of the Baltic Basin, International Journal of Greenhouse Gas Control, 30, 148–170, https://doi.org/10.1016/j.ijggc.2014.09.009, 2014.
Wang, Y. and Lawton, D. C.: Time-lapse attenuation variations using distributed acoustic sensing vertical seismic profile data during CO2 injection at Cami Field Research Station, Alberta, Canada, Geophysics, 89, N31–N44, https://doi.org/10.1190/geo2022-0731.1, 2024.
Wapenaar, K. and Fokkema, J.: Green's function representations for seismic interferometry, Geophysics, 71, SI33–SI46, https://doi.org/10.1190/1.2213955, 2006.
Wapenaar, K., Thorbecke, J., and Draganov, D.: Relations between reflection and transmission responses of three-dimensional inhomogeneous media, Geophysical Journal International, 156, 179–194, https://doi.org/10.1111/j.1365-246X.2003.02152.x, 2004.
White, D. J., Roach, L. A. N., and Roberts, B.: Time-lapse seismic performance of a sparse permanent array: experience from the Aquistore CO2 storage site, Geophysics, 80, WA35–WA48, https://doi.org/10.1190/geo2014-0239.1, 2015.
White, D., Bellefleur, G., Dodds, K., and Movahedzadeh, Z.: Toward improved distributed acoustic sensing sensitivity for surface-based reflection seismics: Configuration tests at the Aquistore CO2 storage site, Geophysics, 87, P1–P14, https://doi.org/10.1190/geo2021-0120.1, 2022.
Wilczynski, Z., Kaslilar, A., Malehmir, A., Manzi, M., Vivin, L., Lepine, J., Valishin, O., and Hogdahl, K.: Ambient noise surface-wave imaging in a hardrock environment: implications for mineral exploration, Geophysical Journal International, 240, 571–590, https://doi.org/10.1093/gji/ggae392, 2025.
Xu, Z., Juhlin, C., Gudmundsson, O., Zhang, F., Yang, C., Kashubin, A., and Lüth, S.: Reconstruction of subsurface structure from ambient seismic noise: an example from Ketzin, Germany, Geophysical Journal International, 189, 1085–1102, https://doi.org/10.1111/j.1365-246X.2012.05411.x, 2012.
Zappalà, S., Malehmir, A., Papadopoulou, M., Gregersen, U., Funck, Clausen, O. R., and Nørmark, E.: Combined onshore and offshore wide-scale seismic data acquisition and imaging for carbon capture and storage exploration in Havnsø, Denmark, Geophysics, 89, B257–B272, https://doi.org/10.1190/geo2023-0503.1, 2024.
Zhang, F., Juhlin, C., Niemi, A., Huang, F., and Bensabat, J.: A feasibility and efficiency study of seismic waveform inversion for time-lapse monitoring of onshore CO2 geological storage sites using reflection seismic acquisition geometries, International Journal of Greenhouse Gas Control, 48, 134–141, https://doi.org/10.1016/j.ijggc.2015.11.015, 2016.
Zhang, Y. Li, Y., Zhang, H., and Ku, T.: Near-surface site investigation by seismic interferometry using urban traffic noise in Singapore, Geophysics, 84, B169–B180, https://doi.org/10.1190/geo2017-0798.1, 2019.
Zhao, D., Wang, G., Wang, S., and Sun, R.: The application of genetic algorithm to Rayleigh wave inversion, Geophysical & Geochemical Exploration, 19, 178–185, 1995 (in Chinese).
Short summary
Passive seismic exploration is an environmentally, friendly and cost effective technique, as it uses ambient noise as a source. As part of a feasibility study for storage of CO2 below the Baltic Sea, our studies show that passive seismic results correlate well with active seismic data and the borehole section and reveal some potential deep geological information which the active data could not provide. In some cases, it may have the potential to replace active seismic imaging.
Passive seismic exploration is an environmentally, friendly and cost effective technique, as it...
Special issue