Articles | Volume 16, issue 2
https://doi.org/10.5194/se-16-97-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-16-97-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Insights into the tectonic evolution of the Svecofennian orogeny based on in situ Lu–Hf dating of garnet and apatite from Olkiluoto, southwestern Finland
Geological Survey of Finland, P.O. Box 96, 02151 Espoo, Finland
Department of Geology and Mineralogy, Åbo Akademi University, Akatemiakatu 1, 20500 Turku, Finland
Kathryn Cutts
Geological Survey of Finland, P.O. Box 96, 02151 Espoo, Finland
Stijn Glorie
Department of Earth Sciences, University of Adelaide, Adelaide, SA 5005, Australia
Esa Heilimo
Department of Geography and Geology, University of Turku, Akatemiakatu 1, 20500 Turku, Finland
Ester M. Jolis
Geological Survey of Finland, P.O. Box 96, 02151 Espoo, Finland
Radoslaw M. Michallik
Geological Survey of Finland, P.O. Box 96, 02151 Espoo, Finland
Related authors
Nikolas Ovaskainen, Pietari Skyttä, Nicklas Nordbäck, and Jon Engström
Solid Earth, 14, 603–624, https://doi.org/10.5194/se-14-603-2023, https://doi.org/10.5194/se-14-603-2023, 2023
Short summary
Short summary
We studied bedrock fracturing at Åland Islands from bedrock outcrops,
digital elevation models and geophysics using multiple scales of observation.
Using the results we can compare properties of the fractures of different sizes
to find similarities and differences; e.g. we found that glacial erosion has a
probable effect on the study of larger bedrock structures. Furthermore, we
collected data from 100 to 500 m long fractures, which have previously
proved to be difficult to sample.
Jon Engström, Mira Markovaara-Koivisto, Nikolas Ovaskainen, Nicklas Nordbäck, Markku Paananen, Ismo Aaltonen, Annu Martinkauppi, Heidi Laxström, and Henrik Wik
EGUsphere, https://doi.org/10.5194/egusphere-2023-448, https://doi.org/10.5194/egusphere-2023-448, 2023
Preprint archived
Short summary
Short summary
The main purpose of this nation-wide lineament study of whole Finland is to identify potential brittle bedrock structures. The source data used for the interpretation are a light detection and ranging (LiDAR) -based hillshaded ground elevation model, a seabed elevation model (bathymetry) and several aerogeophysical rasters. The data can be used for a preliminary mapping of bedrock structures, such as shear and fault zones, that directly influence bedrock fracturing at a regional scale.
Alexander T. De Vries Van Leeuwen, Stijn Glorie, Martin Hand, Jacob Mulder, and Sarah E. Gilbert
Geochronology Discuss., https://doi.org/10.5194/gchron-2024-29, https://doi.org/10.5194/gchron-2024-29, 2024
Preprint under review for GChron
Short summary
Short summary
In this contribution we demonstrate in situ monazite Lu–Hf dating and compare results with U–Th–Pb dating. We present data from monazite reference materials and complex samples to demonstrate the viability of this method. We show that in situ Lu–Hf dating of monazite can resolve multiple age populations and may find use where the U–Th–Pb system is compromised by Pb-loss, non-radiogenic Pb contamination, excess 206 Pb, low U contents, or a combination of these factors.
Krisztián Szentpéteri, Kathryn Cutts, Stijn Glorie, Hugh O'Brien, Sari Lukkari, Radoslaw M. Michallik, and Alan Butcher
Eur. J. Mineral., 36, 433–448, https://doi.org/10.5194/ejm-36-433-2024, https://doi.org/10.5194/ejm-36-433-2024, 2024
Short summary
Short summary
In situ Lu–Hf geochronology of garnet is applied to date a Finnish lithium–caesium–tantalum (LCT) pegmatite from the Somero–Tammela pegmatite region. The age obtained was 1801 ± 53 Ma, which is consistent with zircon ages of 1815–1740 Ma obtained from the same pegmatite. We show the in situ Lu–Hf method is a fast way of obtaining reliable age dates from LCT pegmatites.
Stijn Glorie, Sarah E. Gilbert, Martin Hand, and Jarred C. Lloyd
Geochronology, 6, 21–36, https://doi.org/10.5194/gchron-6-21-2024, https://doi.org/10.5194/gchron-6-21-2024, 2024
Short summary
Short summary
Radiometric dating methods, involving laser ablation as the sample introduction, require robust calibrations to reference materials with similar ablation properties to the analysed samples. In the case of the rubidium–strontium dating method, calibrations are often conducted to nano powder with different ablation characteristics than the crystalline minerals. We describe the limitations of this approach and recommend an alternative calibration method involving natural minerals.
Nikolas Ovaskainen, Pietari Skyttä, Nicklas Nordbäck, and Jon Engström
Solid Earth, 14, 603–624, https://doi.org/10.5194/se-14-603-2023, https://doi.org/10.5194/se-14-603-2023, 2023
Short summary
Short summary
We studied bedrock fracturing at Åland Islands from bedrock outcrops,
digital elevation models and geophysics using multiple scales of observation.
Using the results we can compare properties of the fractures of different sizes
to find similarities and differences; e.g. we found that glacial erosion has a
probable effect on the study of larger bedrock structures. Furthermore, we
collected data from 100 to 500 m long fractures, which have previously
proved to be difficult to sample.
Jon Engström, Mira Markovaara-Koivisto, Nikolas Ovaskainen, Nicklas Nordbäck, Markku Paananen, Ismo Aaltonen, Annu Martinkauppi, Heidi Laxström, and Henrik Wik
EGUsphere, https://doi.org/10.5194/egusphere-2023-448, https://doi.org/10.5194/egusphere-2023-448, 2023
Preprint archived
Short summary
Short summary
The main purpose of this nation-wide lineament study of whole Finland is to identify potential brittle bedrock structures. The source data used for the interpretation are a light detection and ranging (LiDAR) -based hillshaded ground elevation model, a seabed elevation model (bathymetry) and several aerogeophysical rasters. The data can be used for a preliminary mapping of bedrock structures, such as shear and fault zones, that directly influence bedrock fracturing at a regional scale.
Alexander Simpson, Stijn Glorie, Martin Hand, Carl Spandler, Sarah Gilbert, and Brad Cave
Geochronology, 4, 353–372, https://doi.org/10.5194/gchron-4-353-2022, https://doi.org/10.5194/gchron-4-353-2022, 2022
Short summary
Short summary
The article demonstrates a new technique that can be used to determine the age of calcite crystallisation using the decay of 176Lu to 176Hf. The technique is novel because (a) Lu–Hf radiometric dating is rarely applied to calcite and (b) this is the first instance where analysis has been conducted by ablating the sample with a laser beam rather than bulk dissolution. By using laser ablation the original context of the sample is preserved.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Geochronology
Dating tectonic activity in the Lepontine Dome and Rhone-Simplon Fault regions through hydrothermal monazite-(Ce)
Temporospatial variation in the late Mesozoic volcanism in southeast China
Geochronological and thermometric evidence of unusually hot fluids in an Alpine fissure of Lauzière granite (Belledonne, Western Alps)
Christian A. Bergemann, Edwin Gnos, Alfons Berger, Emilie Janots, and Martin J. Whitehouse
Solid Earth, 11, 199–222, https://doi.org/10.5194/se-11-199-2020, https://doi.org/10.5194/se-11-199-2020, 2020
Short summary
Short summary
Metamorphic domes are areas in a mountain chain that were unburied and where deeper parts of the crust rose to the surface. The Lepontine Dome in the Swiss and Italian Alps is such a place, and it is additionally bordered on two sides by shear zones where crustal blocks moved past each other. To determine when these tectonic movements happened, we measured the ages of monazite crystals that form in fluid-filled pockets inside the rocks during these movements of exhumation and deformation.
Xianghui Li, Yongxiang Li, Jingyu Wang, Chaokai Zhang, Yin Wang, and Ling Liu
Solid Earth, 10, 2089–2101, https://doi.org/10.5194/se-10-2089-2019, https://doi.org/10.5194/se-10-2089-2019, 2019
Short summary
Short summary
Western Pacific plate subduction played a key role in the late Mesozoic geologic evolution and volcanism in East Asia. New and published zircon U–Pb ages of extrusive rocks are compiled in SE China. Results show that the volcanism mainly spanned ~95 Myr (mainly 70 Myr, Late Jurassic–Early Cretaceous) and migrated northwest from the coast inland, implying the Paleo-Pacific Plate subducted northwestward and the roll-back subduction did not begin until the Aptian (~125 Ma) of the mid-Cretaceous.
Emilie Janots, Alexis Grand'Homme, Matthias Bernet, Damien Guillaume, Edwin Gnos, Marie-Christine Boiron, Magali Rossi, Anne-Magali Seydoux-Guillaume, and Roger De Ascenção Guedes
Solid Earth, 10, 211–223, https://doi.org/10.5194/se-10-211-2019, https://doi.org/10.5194/se-10-211-2019, 2019
Short summary
Short summary
This geochronological and thermometric study reveals unusually hot fluids in an Alpine-type fissure of granite from the external crystalline massif (Western Alps). The fluid is estimated to be 150-250 °C hotter than the host rock and requires a dynamic fluid pathway at mid-crustal conditions in the ductile regime. This fluid circulation resets the zircon fission track thermochronometer, but only at the fissure contact. Thermal disturbances due to advective heating appear to be localized.
Cited articles
Aaltonen, I., Engström, J., Front, K., Gehör, S., Kosunen, P., Kärki, A., Mattila, J., Paananen, M., and Paulamäki, S.: Geology of Olkiluoto, Posiva Report 2016-16. Posiva Oy, Eurajoki, 404 pp., https://www.posiva.fi/en/index/media/reports.html (last access: 3 February 2025), 2016.
Bergman, S., Högdahl, K., Nironen, M., Ogenhall, E., Sjöström, H., Lundqvist, L., and Lahtinen, R.: Timing of Palaeoproterozoic intra-orogenic sedimentation in the central Fennoscandian Shield; evidence from detrital zircon in metasandstone, Precambrian Res., 161, 231–249, https://doi.org/10.1016/j.precamres.2007.08.007, 2008.
Brown, D. A., Simpson, A., Hand, M., Morrisey, L. J., Gilbert, S., Tamblyn, R., and Glorie, S.: Laser-ablation Lu–Hf dating reveals Laurentian garnet in subducted rocks from southern Australia, Geology, 50, 837–842, https://doi.org/10.1130/G49784.1, 2022.
Buntin, S., Malehmir, A., Koyi, H., Högdahl, K., Malinowski, M., Larsson, S. Å., Thybo, H., Juhlin, C., Korja, A., and Górszczyk, A.: Emplacement and 3D geometry of crustal-scale saucer-shaped intrusions in the Fennoscandian Shield, Nat. Sci. Rep., 9, 10498, https://doi.org/10.1038/s41598-019-46837-x, 2019.
Caddick, M. J., Konpoasek, J., and Thompson, A. B.: Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism, J. Metamorph. Geol., 51, 2327–2347, https://doi.org/10.1093/petrology/egq059, 2010.
Chardon, D., Gapais, D., and Cagnard, F.: Flow of ultra-hot orogens: A view from the Precambrian, clues for the Phanerozoic, Tectonophysics, 477, 105–118, https://doi.org/10.1016/j.tecto.2009.03.008, 2009.
Chew, D. M. and Spikings, R. A.: Apatite U–Pb Thermochronology: A Review, Minerals, 11, 1095, https://doi.org/10.3390/min11101095, 2021.
Chew, D. M., Petrus, J. A., and Kamber, B. S.: U–Pb LA–ICPMS dating using accessory mineral standards with variable common Pb, Chem. Geol., 363, 185, https://doi.org/10.1016/j.chemgeo.2013.11.006, 2014.
Chopin, F., Korja, A., Nikkilä, K., Hölttä, P., Korja, T., Zaher, M. A., Kurhila, M., Eklund, O., and Rämö, O. T.: The Vaasa Migmatitic Complex (Svecofennian Orogen, Finland): Buildup of a LP-HT Dome During Nuna Assembly, Tectonics, 39, e2019TC005583. https://doi.org/10.1029/2019TC005583, 2020.
Collins, W. J.: Hot orogens, tectonic switching, and creation of continental crust, Geology 30, 535–538, https://doi.org/10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2, 2002.
de Capitani, C. and Petrakakis, K.: The computation of equilibrium assemblage diagrams with Theriak/Domino software, Am. Mineral., 95, 1006–1016, https://doi.org/10.2138/am.2010.3354, 2010.
Ehlers, C., Lindroos, A., and Selonen, O.: The late Svecofennian granite-migmatite zone of southern Finland – a belt of transpressive deformation and granite emplacement, Precambrian Res., 64, 295–309, https://doi.org/10.1016/0301-9268(93)90083-E, 1993.
Engström, J., Kärki, A., Paulamäki, S., and Mänttäri, I.: Palaeoproterozoic structural evolution of polyphase migmatites in Olkiluoto, SW Finland, Bull. Geol. Soc. Finl., 94, 119–144, https://doi.org/10.17741/bgsf/94.2.002, 2022.
Engström, J., Cutts, K., Glorie, S., Heilimo, E., Jolis, E., and Michallik, R.: In situ Lu-Hf dating of garnet and apatite from Olkiluoto, southwestern Finland, EarthChem [data set], https://doi.org/10.60520/IEDA/113675, 2025.
Gaál, G. and Gorbatschev, R.: An Outline of the Precambrian Evolution of the Baltic Shield, Precambrian Res., 17, 149–159, https://doi.org/10.1016/0301-9268(87)90044-1, 1987.
Geological Survey of Finland: Geological bedrock map of Finland, https://hakku.gtk.fi/en (last access: 3 February 2025), 2022.
Gillespie, J., Glorie, S., Khudoley, A., and Collins, A.: Detrital apatite U–Pb and trace element analysis as a provenance tool: insights from the Yenisey Ridge (Siberia), Lithos, 314–315, 140–155, https://doi.org/10.1016/j.lithos.2018.05.026, 2018.
Glorie, S., Gillespie, J., Simpson, A., Gilbert, S., Khudoley, A., Priyatkina, N., Hand, M., and Kirkland, C. L.: Detrital apatite Lu–Hf and U–Pb geochronology applied to the southwestern Siberian margin, Terra Nova, 34, 201–209, https://doi.org/10.1111/ter.12580, 2022.
Glorie, S., Hand, M., Mulder, J., Simpson, A., Emo, R. B., Kamber, B., Fernie, N., Nixon, A., and Gilbert, S.: Robust laser ablation Lu–Hf dating of apatite: an empirical evaluation, Geol. Soc. Lond. Spec. Publ., 537, 165–184, https://doi.org/10.1144/SP537-2022-205, 2024a.
Glorie, S., Simpson, A., Gilbert, S. E., Hand, M., and Müller, A. B.: Testing the reproducibility of in situ Lu–Hf dating using Lu-rich garnet from the Tørdal pegmatites, southern Norway, Chem. Geol., 653, 122038, https://doi.org/10.1016/j.chemgeo.2024.122038, 2024b.
Glorie, S. M., Jepson, G., Konopelko, D., Mirkamalov, R., Meeuws, F., Gilbert, S., Gillespie, J., Collins, A., Xiao, W., Dewaele, S., and De Grave, J.: Thermochronological and geochemical footprints of post-orogenic fluid alteration recorded in apatite: implications for mineralisation in the Uzbek Tian Shan, Gondwana Res., 71, 1–15, https://doi.org/10.1016/j.gr.2019.01.011, 2019.
Heeremans, M., Stel, H., Van Der Beek, P., and Lankreijer, A.: Tectono-magmatic control on vertical dip slip basement faulting: An example from the Fennoscandian Shield, Terra Nova, 8, 129–140, https://doi.org/10.1111/j.1365-3121.1996.tb00737.x, 1996.
Heilimo, E., Mikkola, P., Ahven, M., Huhma, H., Lahaye, Y., and Virtanen, V. J.: Evidence of crustal growth during the Svecofennian orogeny: New isotopic data from the central parts of the Paleoproterozoic Central Finland Granitoid Complex, Precambrian Res., 395, 107125, https://doi.org/10.1016/j.precamres.2023.107125, 2023.
Hermansson, T., Stephens, M. B., Corfu, F., Page, L. M., and Andersson, J.: Migratory tectonic switching, western Svecofennian orogen, central Sweden: Constraints from zircon and titanite geochronology, Precambrian Res., 161, 250–278, https://doi.org/10.1016/j.precamres.2007.08.008, 2008.
Hietanen, A.: Generation of potassium-poor magmas in the northern Sierra Nevada and the Svecofennian in Finland, J. Res. US Geol. Surv., 1975, 631–645, 1975.
Högdahl, K. and Bergman, S.: Chapter 5 Paleoproterozoic (1.9–1.8 Ga), syn-orogenic magmatism and sedimentation in the Ljusdal lithotectonic unit, Svecokarelian orogen, Geol. Soc. Lond. Mem., 50, 131–153, https://doi.org/10.1144/M50-2016-30, 2020.
Högdahl, K., Majka, J., Sjöström, H., Nilsson, K. P., Claesson, S., and Koneèný, P.: Reactive monazite and robust zircon growth in diatexites and leucogranites from a hot, slowly cooled orogen: implications for the Palaeoproterozoic tectonic evolution of the central Fennoscandian Shield, Sweden, Contrib. Mineral. Petr. 163, 167–188, https://doi.org/10.1007/s00410-011-0664-x, 2012.
Högdahl, K., Sjöström, H., Andersson, U. B., and Ahl, M.: Continental margin magmatism and migmatisation in the west-central Fennoscandian Shield, Lithos, 102, 435–459, https://doi.org/10.1016/j.lithos.2007.07.019, 2008.
Holland, T. and Powell, R.: Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation, Contrib. Mineral. Petrol., 145, 492–501, https://doi.org/10.1007/s00410-003-0464-z, 2003.
Holland, T. J. B. and Powell, R.: An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids, J. Metamorph. Geol., 29, 333–383, https://doi.org/10.1111/j.1525-1314.2010.00923.x, 2011.
Hölttä, P. and Heilimo, E.: Metamorphic Map of Finland, Spec. Pap.-Geol. Surv. Finl., 60, 75–126, 2017.
Hölttä, P., Huhma, H., Lahaye, Y., Mänttäri, I., Lukkari, S., and O'Brien, H.: Paleoproterozoic metamorphism in the northern Fennoscandian Shield: age constraints revealed by monazite, Int. Geol. Rev., 62, 360–387, https://doi.org/10.1080/00206814.2019.1611488, 2020.
Irvine, T. N. and Baragar, W. R. A.: A Guide to the Chemical Classification of the Common Volcanic Rocks, Can. J. Earth Sci., 8, 523–548, https://doi.org/10.1139/e71-055, 1971.
Jørgensen, T. R. C., Tinkham, D. K., and Lesher, C. M.: Low-P and high-T metamorphism of basalts: Insights from the Sudbury impact melt sheet aureole and thermodynamic modelling, J. Metamorph. Geol., 37, 271–313, https://doi.org/10.1111/jmg.12460, 2019.
Kähkönen, Y.: Chapter 8 Svecofennian supracrustal rocks, in: Developments in Precambrian Geology, Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield, edited by: Lehtinen, M., Nurmi, P. A., and Rämö, O. T., Elsevier, 343–405, https://doi.org/10.1016/S0166-2635(05)80009-X, 2005.
Kara, J., Leskelä, T., Väisänen, M., Skyttä, P., Lahaye, Y., Tiainen, M., and Leväniemi, H.: Early Svecofennian rift-related magmatism: Geochemistry, U–Pb–Hf zircon isotope data and tectonic setting of the Au-hosting Uunimäki gabbro, SW Finland, Precambrian Res., 364, 106364, https://doi.org/10.1016/j.precamres.2021.106364, 2021.
Kärki, A.: Migmatites and Migmatite-Like Rocks of Olkiluoto, Working Report No. 2015–03, Posiva Working Report, Posiva Oy, Eurajoki, https://www.posiva.fi/en/index/media/reports.html (last access: 3 February 2025), 2015.
Kärki, A. and Paulamäki, S.: Petrology of Olkiluoto, Posiva Report No. 2006–02, Posiva Oy, Olkiluoto, https://www.posiva.fi/en/index/media/reports.html (last access: 3 February 2025), 2006.
Kohonen, J. and Rämö, O. T.: Chapter 13 Sedimentary rocks, diabases, and late cratonic evolution, in: Developments in Precambrian Geology, Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield, edited by: Lehtinen, M., Nurmi, P. A., and Rämö, O. T., Elsevier, 563–603, https://doi.org/10.1016/S0166-2635(05)80014-3, 2005.
Kohonen, J., Lahtinen, R., Luukas, J., and Nironen, M.: Classification of regional-scale tectonic map units in Finland, Geol. Surv. Finl. Bull., 33–80, https://doi.org/10.30440/bt412.2, 2021.
Koistinen, T., Bogatchev, V., Stephens, M. B., Nordgulen, O., Wennerström, M., and Korhonen, J.: Geological map of the Fennoscandian Shield scale 1:2 000 000, Geological Survey of Finland, Trond-heim: Geological Survey of Norway, Uppsala: GeologicalSurvey of Sweden, Moscow: Ministry of Natural Resources of Russia, https://hakku.gtk.fi/en (last access: 3 February 2025), 2001.
Korja, A. and Heikkinen, P.: The accretionary Svecofennian orogen – insight from the BABEL profiles, Precambrian Res., 136, 241–268, https://doi.org/10.1016/j.precamres.2004.10.007, 2005.
Korsman, K., Koistinen, T., Kohonen, J., Wennerström, M., Ekdahl, E., Honkamo, M., and Idman, H.: Suomen kallioperäkartta = Berggrundskarta över Finland = Bedrock map of Finland, https://hakku.gtk.fi/en (last access: 3 February 2025), 1997.
Korsman, K., Korja, T., Pajunen, M., Virransalo, P., and GGT/SVEKA Working Group: The GGT/SVEKA Transect: Structure and Evolution of the Continental Crust in the Paleoproterozoic Svecofennian Orogen in Finland, Int. Geol. Rev., 41, 287–333, https://doi.org/10.1080/00206819909465144, 1999.
Kurhila, M., Mänttäri, I., Vaasjoki, M., Tapani Rämö, O., and Nironen, M.: U–Pb geochronological constraints of the late Svecofennian leucogranites of southern Finland, Precambrian Res., 190, 1–24, https://doi.org/10.1016/j.precamres.2011.07.008, 2011.
Lahtinen, R., Korja, A., and Nironen, M.: Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield, in: Developments in Precambrian Geology, Paleoproterozoic tectonic evolution, Chap. 11, Elsevier, https://doi.org/10.1016/S0166-2635(05)80012-X, 2005.
Lahtinen, R., Huhma, H., Sipilä, P., and Vaarma, M.: Geochemistry, U–Pb geochronology and Sm–Nd data from the Paleoproterozoic Western Finland supersuite – A key component in the coupled Bothnian oroclines, Precambrian Res., 299, 264–281, https://doi.org/10.1016/j.precamres.2017.07.025, 2017.
Lahtinen, R., Salminen, P. E., Sayab, M., Huhma, H., Kurhila, M., and Johnston, S. T.: Age and structural constraints on the tectonic evolution of the Paleoproterozoic Saimaa orocline in Fennoscandia, Precambrian Res., 369, 106477, https://doi.org/10.1016/j.precamres.2021.106477, 2022.
Lahtinen, R., Köykkä, J., Salminen, J., Sayab, M., and Johnston, S. T.: Paleoproterozoic tectonics of Fennoscandia and the birth of Baltica, Earth-Sci. Rev., 246, 104586, https://doi.org/10.1016/j.earscirev.2023.104586, 2023.
Lanari, P., Vidal, O., De Andrade, V., Dubacq, B., Lewin, E., Grosch, E. G., and Schwartz, S.: XMapTools: A MATLAB©-based program for electron microprobe X-ray image processing and geothermobarometry, Comput. Geosci., 62, 227–240, https://doi.org/10.1016/j.cageo.2013.08.010, 2014.
Lane, K. M.: Metamorphic and geochronological constraints on the evolution of the Kalinjala Shear Zone, Eyre Peninsula, PhD thesis, University of Adelaide, http://hdl.handle.net/2440/96684 (last access: 3 February 2025), 2011.
Li, Y. and Vermeesch, P.: Short communication: Inverse isochron regression for Re–Os, K–Ca and other chronometers, Geochronology, 3, 415–420, https://doi.org/10.5194/gchron-3-415-2021, 2021.
Luth, S., Torgersen, E., and Köykkä, J.: Lithotectonic map of Fennoscandia, in: 36th Nordic Geological Winter Meeting, Göteborg, edited by: Regnéll, C., Zack, T., Holme, K., and Andersson, J., Nordic Gelogical Winter Meeting 2024, Gothenburg, 10–12 January 2024, 558 pp., ISBN 978-91-987833-4-6 https://geologiskaforeningen.se/wp-content/uploads/2024/04/GF_SP5_2024_abstract-volume.pdf (last access: 3 February 2025), 2024.
Mäkitie, H., Sipilä, P., Kujala, H., Lindberg, A., and Kotilainen, A.: Formation mechanism of the Vaasa Batholith in the Fennoscandian shield: Petrographic and geochemical constraints, Bull. Geol. Soc. Finl., 84, 141–166, https://doi.org/10.17741/bgsf/84.2.003, 2012.
Mänttäri, I., Talikka, M., Paulamäki, S., and Mattila, J.: U–Pb ages for tonalitic gneiss, pegmatitic granite, and diabase dyke, Olkiluoto study site, Eurajoki, SW Finland, Working Report No. 2006–12, Posiva Working Report, Posiva Oy, Eurajoki, https://www.posiva.fi/en/index/media/reports.html (last access: 3 February 2025), 2006.
Mark, C., O'Sullivan, G., Glorie, S., Simpson, A., Andò, S., Barbarano, M., Stutenbecker, L., Daly, J. S., and Gilbert, S.: Detrital Garnet Geochronology by In Situ U–Pb and Lu–Hf Analysis: A Case Study From the European Alps, J. Geophys. Res.-Earth, 128, e2023JF007244, https://doi.org/10.1029/2023JF007244, 2023.
McDonough, W. F. and Sun, S.: The composition of the Earth, Chem. Geol., 120, 223–253, https://doi.org/10.1016/0009-2541(94)00140-4, 1995.
Middlemost, E. A. K.: Naming materials in the magma/igneous rock system, Earth-Sci. Rev., 37, 215–224, https://doi.org/10.1016/0012-8252(94)90029-9, 1994.
Mouri, H., Korsman, K., and Huhma, H.: Tectono-metamorphic evolution and timing of the melting processes in the Svecofennian Tonalite-Trondhjemite Migmatite Belt: An example from Luopioinen, Tampere area, southern Finland, Bull. Geol. Soc. Finl., 71, 31–56, https://doi.org/10.17741/bgsf/71.1.003, 1999.
Mouri, H., Väisänen, M., Huhma, H., and Korsman, K.: Sm–Nd garnet and U–Pb monazite dating of high-grade metamorphism and crustal melting in the West Uusimaa area, southern Finland, GFF, 127, 123–128, https://doi.org/10.1080/11035890501272123, 2005.
Nebel, O., Morel, M., and Vroon, P.: Isotope Dilution Determinations of Lu, Hf, Zr, Ta and W, and Hf Isotope Compositions of NIST SRM 610 and 612 Glass Wafers, Geostand. Geoanal. Res., 33, 487–499, 2009.
Nironen, M.: The Svecofennian Orogen: A tectonic model, Precambrian Res., 86, 21–44, https://doi.org/10.1016/S0301-9268(97)00039-9, 1997.
Nironen, M.: Structural and magmatic evolution in the Loimaa area, southwestern Finland, Bull. Geol. Soc. Finl., 71, 57–71, https://doi.org/10.17741/bgsf/71.1.004, 1999.
Nironen, M.: Chapter 10 Proterozoic orogenic granitoid rocks, in: Developments in Precambrian Geology, Precambrian Geology of Finland Key to the Evolution of the Fennoscandian Shield, edited by: Lehtinen, M., Nurmi, P. A., and Rämö, O. T., Elsevier, 443–479, https://doi.org/10.1016/S0166-2635(05)80011-8, 2005.
Nironen, M.: Bedrock of Finland at the scale 1:1 000 000 – Major stratigraphic units, metamorphism and tectonic evolution, Geological Survey of Finland, Special Paper 60, ISBN 978-952-217-380-5, https://minsysfin.gtk.fi/wp-content/uploads/sp_060.pdf (last access: 3 February 2025), 2017.
Nordbäck, N., Mattila, J., Zwingmann, H., and Viola, G.: Precambrian fault reactivation revealed by structural and K–Ar geochronological data from the spent nuclear fuel repository in Olkiluoto, southwestern Finland, Tectonophysics, 824, 229208, https://doi.org/10.1016/j.tecto.2022.229208, 2022.
Nordbäck, N., Skyttä, P., Engström, J., Ovaskainen, N., Mattila, J., and Aaltonen, I.: Mesoproterozoic Strike-Slip Faulting within the Åland Rapakivi Batholith, Southwestern Finland, Tektonika, 2, 1–26, https://doi.org/10.55575/tektonika2024.2.1.51, 2024.
Norris, A. and Danyushevsky, L.: Towards estimating the complete uncertainty budget of quantified results measured by LA-ICP-MS, Goldschmidt, Boston, USA, Poster 195 in session 06j, 16–17 August 2018, https://goldschmidtabstracts.info/abstracts/abstractView?id=2018003403 (last access: 3 February 2025), 2018.
O'Sullivan, G., Chew, D., Kenny, G., Henrichs, I., and Mulligan, D.: The trace element composition of apatite and its application to detrital provenance studies, Earth-Sci. Rev. 201, 103044, https://doi.org/10.1016/j.earscirev.2019.103044, 2020.
Pitkälä, I., Kara, J., Leskelä, T., Skyttä, P., Väisänen, M., Leväniemi, H., Hokka, J., Tiainen, M., and Lahaye, Y.: Shear zones and structural analysis of the Loimaa area, SW Finland, in: Lithosphere 2018 – Tenth Symposium on the Structure, Composition and Evolution of the Lithosphere in Fennoscandia, Programme and extended Abstracts, Institute of Seismology University of Helsinki report S-67, https://www.seismo.helsinki.fi/ilp/lito2018/Lito2018_Abstract_Volume_color.pdf (last access: 3 February 2025), 2018.
Pouchou, J. L. and Pichoir, F.: Basic expression of “PAP” computation for quantitative EPMA, in: 11th International Congress on X – Ray Optics and Microanalysis (ICXOM), London Canada, 4–8 August 1986, edited by: Brown, J. D. and Packwood, R. H., 249–253, https://search.worldcat.org/title/222411343 (last access: 3 February 2025), 1986.
Reimers, S., Engström, J., and Riller, U.: The Kynsikangas shear zone, Southwest Finland: Importance for understanding deformation kinematics and rheology of lower crustal shear zones, in: Lithosphere 2018 – Tenth Symposium on the Structure, Composition and Evolution of the Lithosphere in Fennoscandia, Programme and extended Abstracts, Institute of Seismology University of Helsinki Report S-67, https://www.seismo.helsinki.fi/ilp/lito2018/Lito2018_Abstract_Volume_color.pdf (last access: 3 February 2025), 2018.
Saalmann, K., Mänttäri, I., Ruffet, G., and Whitehouse, M. J.: Age and tectonic framework of structurally controlled Palaeoproterozoic gold mineralization in the Häme belt of southern Finland, Precambrian Res., 174, 53–77, https://doi.org/10.1016/j.precamres.2009.06.005, 2009.
Saalmann, K., MäNttäRi, I., Peltonen, P., Whitehouse, M. J., GröNholm, P., and Talikka, M.: Geochronology and structural relationships of mesothermal gold mineralization in the Palaeoproterozoic Jokisivu prospect, southern Finland, Geol. Mag., 147, 551–569, https://doi.org/10.1017/S0016756809990628, 2010.
Saukko, A., Ahläng, C., Nikkilä, K., Soesoo, A., and Eklund, O.: Double Power-Law in Leucosome Width Distribution: Implications for Recognizing Melt Movement in Migmatites, Front. Earth Sci., 8, 591871, https://doi.org/10.3389/feart.2020.591871, 2020.
Simpson, A., Gilbert, S., Tamblyn, R., Hand, M., Spandler, C., Gillespie, J., Nixon, A., and Glorie, S.: In-situ LuHf geochronology of garnet, apatite and xenotime by LA ICP MS/MS, Chem. Geol., 577, 120299, https://doi.org/10.1016/j.chemgeo.2021.120299, 2021.
Simpson, A., Glorie, S., Hand, M., Spandler, C., and Gilbert, S.: Garnet Lu–Hf speed dating: A novel method to rapidly resolve polymetamorphic histories, Gondwana Res., 121, 215–234, https://doi.org/10.1016/j.gr.2023.04.011, 2023.
Skyttä, P. and Mänttäri, I.: Structural setting of late Svecofennian granites and pegmatites in Uusimaa Belt, SW Finland: Age constraints and implications for crustal evolution, Precambrian Res., 164, 86–109, https://doi.org/10.1016/j.precamres.2008.04.001, 2008.
Smit, M. A., Vrijmoed, J. C., Scherer, E. E., Mezger, K., Kooijman, E., Schmitt-Kielman, M., Tual, L., Guilmette, C., and Ratschbacher, L.: Retentiveness of rare earth elements in garnet with implications for garnet Lu–Hf chronology, J. Metamorph. Geol., 42, 1–25, https://doi.org/10.1111/jmg.12769, 2024.
Söderlund, U., Patchett, P. J., Vervoort, J. D., and Isachsen, C. E.: The 176Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions, Earth Planet. Sc. Lett., 219, 311–324, https://doi.org/10.1016/S0012-821X(04)00012-3, 2004.
Spencer, C. J., Kirkland, C. L., Roberts, N. M. W., Evans, N. J., and Liebmann, J.: Strategies towards robust interpretations of in situ zircon Lu–Hf isotope analyses, Geosci. Front., 11, 843–853, https://doi.org/10.1016/j.gsf.2019.09.004, 2020.
Stephens, M. B.: Chapter 1 Introduction to the lithotectonic framework of Sweden and organization of this Memoir, Geol. Soc. Lond. Mem., 50, 1–15, https://doi.org/10.1144/M50-2019-21, 2020.
Tamblyn, R., Hand, M., Simpson, A., Gilbert, S., Wade, B., and Glorie, S.: In situ laser ablation Lu–Hf geochronology of garnet across the Western Gneiss Region: campaign-style dating of metamorphism, J. Geol. Soc., 179, jgs2021-094, https://doi.org/10.1144/jgs2021-094, 2022.
Thompson, J., Meffre, S., Maas, R., Kamenetsky, V., Kamenetsky, M., Goemann, K., Ehrig, K., and Danyushevsky, L.: Matrix effects in measurements during LA-ICP-MS analysis of the mineral apatite, J. Anal. Atom. Spectrom., 31, 1206–1215, https://doi.org/10.1039/C6JA00048G, 2016.
Thomson, S. N., Gehrels, G. E., Ruiz, J., and Buchwaldt, R.: Routine low-damage apatite U–Pb dating using laser ablation–multicollector–ICPMS, Geochem. Geophy. Geosy., 13, Q0AA21, https://doi.org/10.1029/2011GC003928, 2012.
Torvela, T. and Kurhila, M.: How does orogenic crust deform? Evidence of crustal-scale competent behaviour within the partially molten middle crust during orogenic compression, Precambrian Res., 342, 105670, https://doi.org/10.1016/j.precamres.2020.105670, 2020.
Torvela, T. and Kurhila, M.: Timing of syn-orogenic, high-grade transtensional shear zone formation in the West Uusimaa Complex, Finland, Bull. Geol. Soc. Finl., 18, 5–22, https://doi.org/10.17741/bgsf/94.1.001, 2022.
Torvela, T., Mänttäri, I., and Hermansson, T.: Timing of deformation phases within the South Finland shear zone, SW Finland, Precambrian Res., 160, 277–298, https://doi.org/10.1016/j.precamres.2007.08.002, 2008.
Tuisku, P. and Kärki, A.: Metamorphic Petrology of Olkiluoto, Working Report No. 2010–54, Posiva Working Report. Posiva Oy, Eurajoki, https://www.posiva.fi/en/index/media/reports.html (last access: 3 February 2025), 2010.
Väisänen, M. and Hölttä, P.: Structural and metamorphic evolution of the Turku migmatite complex, southwestern Finland, Bull. Geol. Soc. Finl., 71, 177–218, https://doi.org/10.17741/bgsf/71.1.009, 1999.
Väisänen, M. and Skyttä, P.: Late Svecofennian shear zones in southwestern Finland, GFF, 129, 55–64, https://doi.org/10.1080/11035890701291055, 2007
Väisänen, M., Mänttäri, I., and Hölttä, P.: Svecofennian magmatic and metamorphic evolution in southwestern Finland as revealed by U–Pb zircon SIMS geochronology, Precambrian Res., 116, 111–127, https://doi.org/10.1016/S0301-9268(02)00019-0, 2002.
Väisänen, M., Eklund, O., Lahaye, Y., O'Brien, H., Fröjdö, S., Högdahl, K., and Lammi, M.: Intra-orogenic Svecofennian magmatism in SW Finland constrained by LA-MC-ICP-MS zircon dating and geochemistry, GFF, 134, 99–114, https://doi.org/10.1080/11035897.2012.680606, 2012.
Väisänen, M., Simelius, C., O'Brien, H., Kyllästinen, M., and Mattila, J.: Late Svecofennian mafic magmatism in southern Finland, in: Eighth Symposium on Structure, Composition and Evolution of the Lithosphere in Fennoscandia Programme and extended Abstracts, p. 107, https://www.seismo.helsinki.fi/pdf/Lito2014.pdf (last access: 3 February 2025), 2014.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geosci. Front, 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018
White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E., and Green, E. C. R.: New mineral activity–composition relations for thermodynamic calculations in metapelitic systems, J. Metamorph. Geol., 32, 261–286, https://doi.org/10.1111/jmg.12071, 2014a.
White, R. W., Powell, R., and Johnson, T. E.: The effect of Mn on mineral stability in metapelites revisited: new a–x relations for manganese-bearing minerals, J. Metamorph. Geol., 32, 809–828, https://doi.org/10.1111/jmg.12095, 2014b.
Short summary
This paper describes migmatites and associated rocks in SW Finland that have been studied using the new in situ garnet and apatite Lu–Hf geochronology method. The metamorphic constraints and age presented in this paper enhance our understanding of the geological evolution in SW Finland. The results reveal detailed temporal constraints for the tectonic evolution that can be linked to major events in adjacent tectonic blocks in both Finland and Sweden during the Svecofennian orogeny.
This paper describes migmatites and associated rocks in SW Finland that have been studied using...