Articles | Volume 17, issue 2
https://doi.org/10.5194/se-17-203-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-17-203-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Petrogenesis and tectonic setting of late Paleoproterozoic diorites in the Trans-North China Orogen
Zhiyi Wang
State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Institute of Earth and Environmental Sciences, Albert-Ludwig University Freiburg, 79104 Freiburg, Germany
Jun He
CORRESPONDING AUTHOR
State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Wolfgang Siebel
Institute of Earth and Environmental Sciences, Albert-Ludwig University Freiburg, 79104 Freiburg, Germany
Shuhao Tang
State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Yiru Ji
State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Jianfeng He
State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Fukun Chen
State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
Cited articles
Asmerom, Y., Snow, J. K., Holm, D. K., Jacobsen, S. B., Wernicke, B. P., and Lux, D. R.: Rapid uplift and crustal growth in extensional environments: An isotopic study from the Death Valley region, California, Geology, 18, 223–226, https://doi.org/10.1130/0091-7613(1990)018<0223:RUACGI>2.3.CO;2, 1990.
Bailey, E. H. and Ragnarsdottir, K. V.: Uranium and thorium solubilities in subduction zone fluids, Earth Planet. Sci. Lett., 124, 119–129, https://doi.org/10.1016/0012-821X(94)00071-9, 1994.
Beard, J. S. and Lofgren, G. E.: Dehydration melting and water-saturated melting of basaltic and andesitic greenstones and amphibolites at 1, 3, and 6.9 kb, J. Petrol., 32, 365–401, https://doi.org/10.1093/petrology/32.2.365, 1991.
Bonin, B.: Do coeval mafic and felsic magmas in post-collisional to within-plate regimes necessarily imply two contrasting, mantle and crustal sources? A review, Lithos, 78, 1–24, https://doi.org/10.1016/j.lithos.2004.04.042, 2004.
Carley, T. L., Miller, C. F., Wooden, J. L., Padilla, A. J., Schmitt, A. K., Economos, R. C., Bindeman, I. N., and Jordan, B. T.: Iceland is not a magmatic analog for the Hadean: evidence from the zircon record, Earth Planet. Sc. Lett., 405, 85–97, https://doi.org/10.1016/j.epsl.2014.08.015, 2014.
Castillo, P., Janney, P., and Solidum, R.: Petrology and geochemistry of Camiguin Island, southern Philippines: insights to the source of adakites and other lavas in a complex arc setting, Contrib. Mineral. Petrol., 134, 33–51, https://doi.org/10.1007/s004100050467%C2%A3%C2%AC1999.
Chen, F., Hegner, E., and Todt, W.: Zircon ages, Nd isotopic and chemical compositions of orthogneisses from the Black Forest, Germany – evidence for a Cambrian magmatic arc, Int. J. Earth Sci., 88, 791–802, https://doi.org/10.1007/s005310050306, 2000.
Chen, F., Li, X. H., Wang, X. L., Li, Q. L., and Siebel, W.: Zircon age and Nd-Hf isotopic composition of the Yunnan Tethyan belt, southwestern China, Int. J. Earth Sci., 96, 1179–1194, https://doi.org/10.1007/s00531-006-0146-y, 2007.
Chen, L., Zheng, Y. F., Xu, Z., and Zhao, Z. F.: Generation of andesite through partial melting of basaltic metasomatites in the mantle wedge: Insight from quantitative study of Andean andesites, Geosci. Front., 12, 101124, https://doi.org/10.1016/j.gsf.2020.12.005, 2021.
Cui, M. L., Zhang, B. L., Peng, P., Zhang, L. C., Shen, X. L., Guo, Z. H., and Huang, X. F.: Zircon/baddeleyite U-Pb dating for the Paleoproterozoic intermediate-acid intrusive rocks in Xiaoshan Mountains, west of Henan Province and their constraints on the age of the Xiong'er Volcanic Province, Acta Petrol. Sin., 26, 1541–1549, 2010 (in Chinese with English abstract).
Cui, M. L., Zhang, B. L., and Zhang, L. C.: U–Pb dating of baddeleyite and zircon from the Shizhaigou diorite in the southern margin of North China Craton: Constraints on the timing and tectonic setting of the Paleoproterozoic Xiong'er group, Gondwana Res., 20, 184–193, https://doi.org/10.1016/j.gr.2011.01.010, 2011.
Defant, M. and Drummond, M.: Derivation of some modern arc magmas by melting of young subducted lithosphere, Nature, 347, 662–665, https://doi.org/10.1038/347662a0, 1990.
Deng, X. Q., Peng, T. P., and Zhao, T. P.: Geochronology and Geochemistry of the Late Paleoproterozoic Aluminous A-Type Granite in the Xiaoqinling Area along the Southern Margin of the North China Craton: Petrogenesis and Tectonic Implications, Precambrian Res., 285, 127–146, https://doi.org/10.1016/j.precamres.2016.09.013, 2016a
Deng, X. Q., Zhao, T. P., and Peng, T. P.: Age and geochemistry of the early Mesoproterozoic A-type granites in the southern margin of the North China Craton: Constraints on their petrogenesis and tectonic implications, Precambrian Research, 283, 68–88, https://doi.org/10.1016/j.precamres.2016.07.018, 2016b.
Diwu, C. R., Sun, Y., Zhao, Y., and Lai, S. C.: Early Paleoproterozoic (2.45–2.20 Ga) magmatic activity during the period of global magmatic shutdown: Implications for the crustal evolution of the southern North China Craton, Precambrian Res., 255, 627–640, https://doi.org/10.1016/j.precamres.2014.08.001, 2014.
Diwu, C. R., Liu, X., and Sun, Y.: The composition and evolution of the Taihua Complex in the southern North China Craton, Acta Petrol. Sin., 34, 999–1018, 2018 (in Chinese with English abstract).
Fan, Y. H., Zhu, X. Y., Duan, Q. S., Ma, J. F., Jia, C. Y., Liu, S. Q., and Zhao, T. P.: Discovery of 1.79 Ga dacite porphyry in the Taiyueshan Mts: Constraints on the genesis of the southern rift system in the North China Craton, Acta Petrologica Sinica, 40, 1327–1342, https://doi.org/10.18654/1000-0569/2024.04.17, 2024 (in Chinese with English abstract).
Gao, J. F., Zhou, M. F., Robinson, P. T., Wang, C. Y., Zhao, J. H., and Malpas, J.: Magma mixing recorded by Sr isotopes of plagioclase from dacites of the Quaternary Tengchong volcanic field, SE Tibetan Plateau, J. Asian Earth Sci., 98, 1–17, https://doi.org/10.1016/j.jseaes.2014.10.036, 2015.
Geng, Y. S., Yang, C. H., and Wan, Y. S.: Paleoproterozoic granitic magmatism in Lüliang area, North China Craton: constraint from isotopic geochronology, Acta Petrologica Sinica, 22, 305–314, 2006 (in Chinese with English abstract).
Geng, Y. S., Du, L. L., and Ren, L. D.: Growth and reworking of the early Precambrian continental crust in the North China Craton: Constraints from zircon Hf isotopes, Gondwana Res., 21, 517–529, https://doi.org/10.1016/j.gr.2011.07.006, 2012.
Gorton, M. P. and Schandl, E. S.: From continents to island arcs: A geochemical index of tectonic setting for arc-related and within-plate felsic to intermediate volcanic rocks, Can. Mineral., 38, 1065–1073, https://doi.org/10.2113/gscanmin.38.5.1065, 2000.
Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F., Wooden, J. L., Cheadle, M. J., Hanghøj, K., and Schwartz, J. J.: Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance, Geology, 35, 643–646, https://doi.org/10.1130/G23603A.1, 2007.
Hawkesworth, C. J., Norry, M. J., Roddick, J. C., Baker, P. E., Francis, P. W., and Thorpe, R. S.: 143Nd 144Nd, 87Sr 86Sr, and incompatible element variations in calc-alkaline andesites and plateau lavas from South America, Earth Planet. Sci. Lett., 42, 45–57, https://doi.org/10.1016/0012-821X(79)90189-4, 1979.
Hawkesworth, C. J. and Kemp, A. I. S.: Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution, Chem. Geol., 226, 144–162, https://doi.org/10.1016/j.chemgeo.2005.09.018, 2006.
He, J., Qi, Y., Fan, X., and Chen, F.: Petrogenesis of the Taishanmiao A-type granite in the eastern Qinling orogenic belt: Implications for tectonic transition and mineralization in the Late Cretaceous, J. Geol., 129, 97–114, https://doi.org/10.1086/713726, 2021.
He, Y. H., Zhao, G. C., Sun, M., and Wilde, S. A.: Geochemistry, isotope systematics and petrogenesis of the volcanic rocks in the Zhongtiao Mountain: An alternative interpretation for the evolution of the southern margin of the North China Craton, Lithos, 102, 158–178, https://doi.org/10.1016/j.lithos.2007.09.004, 2008.
He, Y. H., Zhao, G. C., Sun, M., and Xia, X.: SHRIMP and LA-ICP-MS zircon geochronology of the Xiong'er volcanic rocks: Implications for the Paleo-Mesoproterozoic evolution of the southern margin of the North China Craton, Precambrian Res., 168, 213–222, https://doi.org/10.1016/j.precamres.2008.09.011, 2009.
He, Y. H., Zhao, G. C., Sun, M., and Han, Y. G.: Petrogenesis and tectonic setting of volcanic rocks in the Xiaoshan and Waifangshan areas along the southern margin of the North China Craton: Constraints from bulk-rock geochemistry and Sr–Nd isotopic composition, Lithos, 114, 186–199, https://doi.org/10.1016/j.lithos.2009.08.008, 2010.
Hickey, R. L. and Frey, F. A.: Geochemical characteristics of boninite series volcanics: implications for their source, Geochim. Cosmochim. Acta, 46, 2099–2115, https://doi.org/10.1016/0016-7037(82)90188-0, 1982.
HIGS (Henan Institute of Geological Survey): Sheet I-49-(23) (Lushan) scale 1:200 000 geological map of the Henan Province. Bureau of Geology and Mineral Resources of Henan Province, Zhengzhou, Henan, Map, 2001 (in Chinese).
Hou, G. T., Li, J. H., Yang, M. H., Yao, W. H., Wang, C. C., and Wang, Y. X.: Geochemical constraints on the tectonic environment of the Late Paleoproterozoic mafic dyke swarms in the North China Craton, Gondwana Res., 13, 103–116, https://doi.org/10.1016/j.gr.2007.06.005, 2008.
Hoskin, P. W. O., Kinny, P. D., Wyborn, D., and Chappell, B. W.: Identifying accessory mineral saturation during differentiation in granitoid magmas: an integrated approach, J. Petrol., 41, 1365–1396, https://doi.org/10.1093/petrology/41.9.1365, 2000.
Hu, G. H., Hu, J. L., Chen, W., and Zhao, T. P.: Geochemistry and tectonic setting of the 1.78 Ga mafic dyke swarms in the Mt. Zhongtiao and Mt. Song areas, the southern margin of the North China Craton, Acta Petrologica Sinica, 26, 1563–1576, 2010 (in Chinese with English abstract).
Hu, G. Y., Zeng, L. S., Gao, L. E., Liu, Q. P., Chen, H., and Guo, Y. S.: Diverse magma sources for the Himalayan leucogranites: Evidence from B-Sr-Nd isotopes, Lithos, 314/315, 88–99, https://doi.org/10.1016/j.lithos.2018.05.022, 2018.
Huang, X. L., Xu, Y. G., and Liu, D. Y.: Geochronology, petrology and geochemistry of the granulite xenoliths from Nushan, east China: implication for a heterogeneous lower crust beneath the Sino-Korean Craton, Geochim. Cosmochim. Acta, 68, 127–149, https://doi.org/10.1016/S0016-7037(03)00416-2, 2004.
Jackson, M. D., Cheadle, M. J., and Atherton, M. P.: Quantitative modeling of granitic melt generation and segregation in the continental crust, J. Geophys. Res.-Sol. Ea., 108, 2332, https://doi.org/10.1029/2001JB001050, 2003.
Jia, C. Z.: Petro-geochemistry of volcanic rocks in the Xiong'er Group: implications for tectonic setting, Henan Geol., 2, 39–43 (in Chinese with English abstract), 1985.
Jochum, K. P., Seufert, H. M., Spettel, B., and Palme, H.: The solar-system abundances of Nb, Ta, and Y, and the relative abundances of refractory lithophile elements in differentiated planetary bodies, Geochim. Cosmochim. Acta, 50, 1173–1183, https://doi.org/10.1016/0016-7037(86)90400-X, 1986.
Kelemen, P. B.: Genesis of high Mg# andesites and the continental crust, Contrib. Mineral. Petrol., 120, 1–19, https://doi.org/10.1007/BF00311004, 1995.
Kröner, A., Compston, W., Zhang, G.-W., Guo, A.-L., and Todt, W.: Age and tectonic setting of Late Archean greenstone-gneiss terrain in Henan Province, China, as revealed by single-grain zircon dating, Geology, 16, 211–215, https://doi.org/10.1130/0091-7613(1988)016<0211:AATSOL>2.3.CO;2, 1988.
Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., and Zanettin, B.: A Chemical Classification of Volcanic-Rocks Based on the Total Alkali Silica Diagram, J. Petrol., 27, 745–750, https://doi.org/10.1093/petrology/27.3.745, 1986.
Li, X. P., Yang, Z. Y., Zhao, G. C., Grapes, R., and Guo, J. H.: Geochronology of khondalite-series rocks of the Jining Complex: Confirmation of depositional age and tectonometamorphic evolution of the North China craton, Int. Geol. Rev., 53, 1194–1211, https://doi.org/10.1080/00206810903548984, 2011.
Liu, A. L., Hai, L. F., Liu, J. K., Zhang X. J., Li H. F., Zhao F. S., Zhao G. L., and Bai J. H.: Geochronology, Geochemistry, and Sr-Nd-Hf Isotopes of the Diorite Porphyrites from the Weining Beishan Area, Ningxia Hui Autonomous Region: Constraints on Their Source and Tectonic Implications, J. Earth Sci., 35, 462–475, https://doi.org/10.1007/s12583-021-1491-2, 2024.
Liu, D. Y., Nutman, A. P., Compston, W., Wu, J. S., and Shen, Q. H.: Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean Craton, Geology, 20, 339–342, https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2, 1992.
Liu, Y. S., Hu, Z. C., Zong, K. Q., Gao, C. G., Gao, S., Xu, J. A., and Chen, H. H.: Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS, Chin. Sci. Bull., 55, 1535–1546, https://doi.org/10.1007/s11434-010-3052-4, 2010 (in Chinese with English abstract).
Lu, S. N., Zhao, G. C., Wang, H. C., and Hao, G. J.: Precambrian metamorphic basement and sedimentary cover of the North China Craton: A review, Precambrian Res., 160, 77–93, 2008.
Luo, Y., Sun, M., Zhao, G. C, Li, S. Z., Xu, P., Ye, K., and Xia, X. P.: LA-ICP-MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton: constraints on the evolution of the Jiao-Liao-Ji Belt, Precambrian Res., 134, 349–371, https://doi.org/10.1016/j.precamres.2004.07.002, 2004.
Ma, J. F., Qu, C. H., Zhou, Y. Y., and Zhao, T. P.: The genesis of ca. 1.78 Ga granitoids in the Xiong'er large igneous province: Implications for continental crust generation, Geol. Soc. Am. Bull., 135, 3213–3227, https://doi.org/10.1130/B36694.1, 2023a.
Ma, J. F., Wang, X. L., Yang, A. Y., and Zhao, T. P.: Tracking crystal-melt segregation and accumulation in the intermediate magma reservoir, Geophys. Res. Lett., 50, e2022GL102540, https://doi.org/10.1029/2022GL102540, 2023b.
Maniar, P. D. and Piccoli, P. M.: Tectonic discrimination of granitoids, Geol. Soc. Am. Bull., 101, 635–643, https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2, 1989.
Pan, Z. J., Zhang, Q., Chen, G., Jiao, S. T., Du, X. L., Miao, X. Q., Wang, J. R., and An, Y.: Relation between Mesozoic magmatism and plate subduction in eastern China: Comparison among Zhejiang-Fujian, Japan arc and Andes arc, Acta Petrol. Sin., 33, 1507–1523, 2017 (in Chinese with English abstract).
Peacock, S. M., Rushmer, T., and Thompson, A. B.: Partial melting of subducting oceanic crust, Earth Planet. Sc. Lett., 121, 227–244, https://doi.org/10.1016/0012-821X(94)90042-6, 1994.
Pearce, J. A.: Role of the sub-continental lithosphere in magma genesis at active continental margins, in: Continental Basalts and Mantle Xenoliths, edited by: Hawkesworth, C. J. and Norry, M. J., Shiva Publishing Ltd., Nantwich, 230–249, ISBN: 978-0906812341, 1983.
Pearce, J. A. and Peate, D. W.: Tectonic implications of the composition of volcanic arc magmas, Annu. Rev. Earth Planet. Sc., 23, 251–285, https://doi.org/10.1146/annurev.ea.23.050195.001343, 1995.
Peccerillo, A. and Taylor, S. R.: Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, northern Turkey, Contrib. Mineral. Petrol., 58, 130–143, https://doi.org/10.1007/BF00384745, 1976.
Peng, P., Zhai, M. G., Zhang, H. F., Zhao, T. P., and Ni, Z. Y.: Geochemistry and geological significance of the 1.8 Ga mafic dyke swarms in the North China Craton: an example from the juncture of Shanxi, Hebei and Inner Mongolia, Acta Petrol. Sin., 20, 439–456, 2004 (in Chinese with English abstract).
Peng, P., Zhai, M. G., Guo, J. H., Kusky, T., and Zhao, T. P.: Nature of mantle source contributions and crystal differentiation in the petrogenesis of the 1.78 Ga mafic dykes in the central North China craton, Gondwana Res., 12, 29–46, https://doi.org/10.1016/j.gr.2006.10.022, 2007.
Peng, P., Zhai, M. G., Ernst, R. E., Guo, J. H., Liu, F., and Hu, B.: A 1.78 Ga large igneous province in the North China craton: The Xiong'er Volcanic Province and the North China dyke swarm, Lithos, 101, 260–280, https://doi.org/10.1016/j.lithos.2007.07.006, 2008.
Petford, N. and Atherton, M.: Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca Batholith, Peru. J. Petrol., 37, 1491–1521, https://doi.org/10.1093/petrology/37.6.1491, 1996.
Rapp, R. P. and Watson, E. B.: Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling, J. Petrol., 36, 891–931, https://doi.org/10.1093/petrology/36.4.891, 1995.
Reubi, O. and Blundy, J.: A dearth of intermediate melts at subduction zone volcanoes and the petrogenesis of arc andesites, Nature, 461, 1269–1273, https://doi.org/10.1038/nature08510, 2009.
Roberts, M. P. and Clemens, J. D.: Origin of high-potassium, calc-alkaline, I-type granitoids, Geology, 21, 825–828, https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2, 1993.
Schulz, B., Klemd, R., and Brätz, H.: Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement, Geochim. Cosmochim. Acta, 70, 697–710, https://doi.org/10.1016/j.gca2005.10.001, 2006.
Shannon, R. D.: Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A, 32, 751–767, https://doi.org/10.1107/S0567739476001551, 1976.
Shen, F. N.: The discovery of unconformity within the Taihua Group and definition of its stratigraphic sequence in the Lushan area, Henan. Reg. Geol. China, 2, 135–140, 1994 (in Chinese with English abstract).
Siebel, W., Reitter, E., Wenzel, T., and Blaha U.: Sr isotope systematics of K-feldspars in plutonic rocks revealed by the Rb–Sr microdrilling technique, Chem. Geol., 222, 183–199, https://doi.org/10.1016/j.chemgeo.2005.06.012, 2005.
Stern, C. and Kilian, R.: Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone, Contrib. Mineral. Petrol., 123, 263–281, https://doi.org/10.1007/s004100050155, 1996.
Streck, M. J., Leeman, W. P., and Chesley, J.: High-magnesian andesite from Mount Shasta: A product of magma mixing and contamination, not a primitive mantle melt, Geology, 35, 351–354, https://doi.org/10.1130/G23286A.1, 2007.
Sun, Q. Y., Zhou, Y. Y., Wang, W., Li, C. D., and Zhao, T. P.: Formation and evolution of the Paleoproterozoic meta-mafic and associated supracrustal rocks from the Lushan Taihua Complex, southern North China Craton: Insights from zircon U-Pb geochronology and whole-rock geochemistry, Precambrian Res., 303, 428–444, https://doi.org/10.1016/j.precamres.2017.05.018, 2017.
Sun, S. S. and McDonough, W. F.: Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes, Geol. Soc. Lon. Spec. Publ., 42, 313–345, https://doi.org/10.1144/GSL.SP.1989.042.01.19, 1989.
Vermeesch, P.: IsoplotR: A free and open toolbox for geochronology, Geoscience Frontiers, 9, 1479–1493, https://doi.org/10.1016/j.gsf.2018.04.001, 2018.
Wan, Y. S., Wlide, S., Liu, D. Y., Yang, C. X., Song, B., and Yin, X. Y.: Further evidence for ∼ 1.85 Ga metamorphism in the Central Zone of the North China Craton: SHRIMP U–Pb dating of zircon from metamorphic rocks in the Lushan area, Henan Province, Gondwana Res., 9, 189–197, https://doi.org/10.1016/j.gr.2005.06.010, 2006
Wang, C. M., Lu, Y. J., He, X. Y., Wang, Q. H., and Zhang, J.: The Paleoproterozoic diorite dykes in the southern margin of the North China Craton: Insight into rift-related magmatism, Precambrian Res., 277, 26–46, https://doi.org/10.1016/j.precamres.2016.02.009, 2016.
Wang, J. L., Zhang, H. F., Zhang, J., Santosh, M., and Bao, Z. A.: Highly heterogeneous Pb isotope composition in the Archean continental lower crust: Insights from the high-grade metamorphic suite of the Taihua Group, Southern North China Craton, Precambrian Res., 350, 105927, https://doi.org/10.1016/j.precamres.2020.105927, 2020.
Wang, M. X., Wang Z. Y., Zhao J. X., Qi, Z. Q., He, J., and Chen, F. K.: Petrogenesis and Geologic Implication of the Late Paleoproterozoic A-type Xiaohe Pluton along the Southern Margin of the North China Craton, Geol. J. China Univ., 29, 809–830, 2023a (in Chinese with English abstract).
Wang, X., Zhu, W., Luo, M., Ren, X., and Cui, X.: Approximately 1.78 Ga mafic dykes in the Lüliang Complex, North China Craton: Zircon ages and Lu-Hf isotopes, geochemistry, and implications, Geochem. Geophy. Geosy., 15, 3123–3144, https://doi.org/10.1002/2014GC005378, 2014.
Wang, X., Huang, X., and Yang, F.: Revisiting the Lushan-Taihua Complex: New perspectives on the Late Mesoarchean-Early Neoarchean crustal evolution of the southern North China Craton, Precambrian Res., 325, 132–149, https://doi.org/10.1016/j.precamres.2019.02.020, 2019.
Wang, X. L., Jiang, S. Y., and Dai, B. Z.: Melting of enriched Archean subcontinental lithospheric mantle: Evidence from the ca. 1760 Ma volcanic rocks of the Xiong'er Group, southern margin of the North China Craton, Precambrian Res., 182, 204–216, https://doi.org/10.1016/j.precamres.2010.08.007, 2010.
Wang, Y., Zhao, G., Cawood, P. A., Fan, W., Peng, T., and Sun, L.: Geochemistry of Paleoproterozoic (∼ 1770 Ma) mafic dikes from the Trans-North China Orogen and tectonic implications, J. Asian Earth Sci., 33, 61–77, https://doi.org/10.1016/j.jseaes.2007.10.018, 2008.
Wang, Y. J., Fan, W. M., Zhang, Y., Guo, F., Zhang, H., and Peng, T.: Geochemical, 40Ar/39Ar geochronological and Sr-Nd isotopic constraints on the origin of Paleoproterozoic mafic dikes from the southern Taihang Mountains and implications for the ca. 1800 Ma event of the North China Craton, Precambrian Res., 135, 55–77, https://doi.org/10.1016/j.precamres.2004.07.005, 2004.
Wang, Z. Y., Cheng, H., Zhao, J. X., Ye, R. S., Li, W. Y., He, J. F., and Chen, F. K.: Sr-Nd-Pb isotopic composition of the Chinese national standard igneous rock powders measured by thermal ionization mass spectrometry, Geol. J. China Univ., 29, 679–692, 2023b (in Chinese with English abstract).
Wang, Z. Y., Zhao, J. X., Qi, Z. Q., Huo, D. Y., Siebel, W., He, J., Li, S. Q., and Chen, F. C.: Two stages of late Paleoproterozoic A-type granites at the southern North China Craton: Geochemical constraints and implications for supercontinent breakup, Precambrian Research, 411, 107500, https://doi.org/10.1016/j.precamres.2024.107500, 2024.
Wolf, M., Romer, R. L., and Glodny, J.: Isotope disequilibrium during partial melting of metasedimentary rocks, Geochim. Cosmochim. Acta, 257, 163–183, https://doi.org/10.1016/j.gca.2019.05.008, 2019.
Wolf, M. B. and Wyllie, P. J.: Garnet growth during amphibolite anatexis: Implications of a garnetiferous restite, J. Geol., 101, 357–373, https://doi.org/10.1086/648229, 1993.
Xu, J. H., Jiang, Y. P., Hu, S. L., Zhang, Z. W., Wu, C. Q., Zheng, C. F., Li, X. Y., Jin, Z. R., Zhang, S. S., and Zhou, Y. T.: Petrogenesis and Tectonic Implications of the Paleoproterozoic A-Type Granites in the Xiong'ershan Area along the Southern Margin of the North China Craton, J. Earth Sci., 35, 416–429, https://doi.org/10.1007/s12583-021-1424-0, 2024.
Xu, Y. H., Zhao, T. P., Zhang, Y. X., and Chen, W.: Geochemical characteristics and geological significance of the detrital rocks from the Dagushi Formation of the Paleoproterozoic Xiong'er Group in the southern North China Craton, Geological Review, 54, 316–326, https://doi.org/10.3321/j.issn:0371-5736.2008.03.004, 2008.
Xue, L. W., Yuan, Z. L., Zhang, M. S., and Qiang, L. Z.: The Sm-Nd isotope ages of Tai-hua Group in the Lushan area and their implications, Geochimica, 24, 92–97, 1995 (in Chinese with English abstract).
Yang, J. H., Cawood, P. A., Du, Y. S., Huang, H., Huang, H. W., and Tao, P.: Large Igneous Province and magmatic arc sourced Permian–Triassic volcanogenic sediments in China, Sedimentary Geol., 261/262, 120–131, https://doi.org/10.1016/j.sedgeo.2012.03.018, 2012.
Yang, Z. M., Lu, Y. J., Hou, Z. Q., and Chang, Z. S.: High-Mg diorite from Qulong in southern Tibet: implications for the genesis of adakite-like intrusions and associated porphyry Cu deposits in collisional orogens, J. Petrol., 56, 227–254, https://doi.org/10.1093/petrology/egu076, 2015.
Zeng, L. S., Asimow, P. D., and Saleeby, J. B.: Coupling of anatectic reactions and dissolution of accessory phases and the Sr and Nd isotope systematics of anatectic melts from a metasedimentary source, Geochim. Cosmochim. Acta, 69, 3671–3682, https://doi.org/10.1016/j.gca2005.02.035, 2005.
Zhai, M. G.: Tectonic evolution and metallogenesis of North China Craton, Mineral Deposits, 29, 24–36, 2010 (in Chinese with English abstract).
Zhai, M. G.: Cratonization and the Ancient North China Continent: A summary and review, Sci China Earth Sci., 54, 1110–1120, https://doi.org/10.1007/s11430-011-4250-x, 2011 (in Chinese with English abstract).
Zhao, G. C. and Zhai, M. G.: Lithotectonic elements of Precambrian basement in the North China Craton: Review and tectonic implications, Gondwana Res., 23, 1207–1240, https://doi.org/10.1016/j.gr.2012.08.016, 2013.
Zhao, G. C., Cawood, P. A., Wilde, S. A., Min, S., and Lu, L. Z.: Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution, Precambrian Res., 103, 55–88, https://doi.org/10.1016/S0301-9268(00)00076-0, 2000a.
Zhao, G. C., Wilde, S. A., Cawood, P. A., and Lu, L. Z.: Petrology and P-T path of the Fuping mafic granulites: implications for tectonic evolution of the central zone of the North China Craton, J. Metamorphic, Geol., 18, 375–391, https://doi.org/10.1046/j.1525-1314.2000.00264.x, 2000b.
Zhao, G. C., Wilde, S. A., Cawood, P. A., and Sun, M.: Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P–T path constraints and tectonic evolution, Precambrian Res., 107, 45–73, https://doi.org/10.1016/S0301-9268(00)00154-6, 2001.
Zhao, G. C., Sun, M., Wilde, S. A., and Li Sanzhong.: Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res., 136, 177–202, https://doi.org/10.1016/j.precamres.2004.10.002, 2005.
Zhao, G. C., Wilde, S. A., Sun, M., Li, S., Li, X., and Zhang, J.: SHRIMP U–Pb zircon ages of granitoid rocks in the Lüliang Complex: Implications for the accretion and evolution of the Trans-North China Orogen, Precambrian Research, 160, 213–226, https://doi.org/10.1016/j.precamres.2007.07.004, 2008.
Zhao, G. C., He, Y. H., and Sun, M.: Xiong'er volcanic belt at the North China Craton: The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent, Gondwana Res., 16, 170–181, https://doi.org/10.1016/j.gr.2009.02.004, 2009.
Zhao, J., Zhang, C., Guo, X., and Liu, X.: The late-Paleoproterozoic I- and A-type granites in Lüliang Complex, North China Craton: New evidence on post-collisional extension of Trans-North China Orogen, Precambrian Research, 318, 70–88, https://doi.org/10.1016/j.precamres.2018.09.007, 2018.
Zhao, T. P.: The characteristic and genesis of Proterozoic potassic volcanic rock in southern margin of the North plate, Doctoral dissertation, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 102 pp., 2000.
Zhao, T. P., Xu, Y. H., and Zhai, M. G.: Petrogenesis and tectonic setting of the Paleoproterozoic Xiong'er Group in the southern part of the North China Craton: A review, Geol. J. China Univ., 13, 191–206, 2007 (in Chinese with English abstract).
Zhao, T. P., Zhou, M. F., Zhai, M. G., and Xia, B.: Paleoproterozoic rift-related volcanism of the Xiong'er Group, North China Craton: Implications for the breakup of Columbia, Int. Geol. Rev., 44, 336–351, https://doi.org/10.2747/0020-6814.44.4.336, 2002.
Zhao, T. P., Zhai, M. G., Xia, B., Li, H. M., and Zhang, Y. X.: Zircon U-Pb SHRIMP dating for the volcanic rocks of the Xiong'er Group: Constraints on the initial formation age of the cover of the North China Craton, Chin. Sci. Bull., 49, 2495–2502, 2004 (in Chinese with English abstract).
Zhang, G. W., Bai, Y. B., Sun, Y., Guo, A. L., Zhou, D. W., and Li, T. H.: Composition and evolution of the Archaean crust in central Henan, China, Precambrian Res., 27, 7–35, https://doi.org/10.1016/0301-9268(85)90004-X, 1985.
Zou, X. Y., Qin, K. Z., Han, X. L., Li, G. M., Evans, N. J., Li, Z. Z., and Yang, W.: Insight into zircon REE oxy-barometers: A lattice strain model perspective, Earth Planet. Sc. Lett., 506, 87–96, https://doi.org/10.1016/j.epsl.2018.10.031, 2019.
Short summary
Our study investigates ca. 1.78 Ga Jiguanshan diorite in the North China Craton. We found that Paleoproterozoic diorites across the craton share similar compositions and formed from melted deep crust, differing from volcanic and mafic rocks of the same age. Geochemical analysis reveals these diorites formed during crustal stretching, marking a tectonic shift from orogenic-related to within-plate settings. This provides key evidence for understanding how tectonic setting evolved after collisions.
Our study investigates ca. 1.78 Ga Jiguanshan diorite in the North China Craton. We found that...