Articles | Volume 17, issue 2
https://doi.org/10.5194/se-17-225-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-17-225-2026
© Author(s) 2026. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mineralogic controls on fault displacement-height relationships
Southwest Research Institute, 6220 Culebra Rd, San Antonio, Texas, USA
David A. Ferrill
Southwest Research Institute, 6220 Culebra Rd, San Antonio, Texas, USA
Kevin J. Smart
Southwest Research Institute, 6220 Culebra Rd, San Antonio, Texas, USA
Michael J. Hartnett
Southwest Research Institute, 6220 Culebra Rd, San Antonio, Texas, USA
now at: bonsAI LLC, San Antonio, Texas, USA
Related authors
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Clare E. Bond and Adam J. Cawood
Geosci. Commun., 4, 233–244, https://doi.org/10.5194/gc-4-233-2021, https://doi.org/10.5194/gc-4-233-2021, 2021
Short summary
Short summary
Virtual outcrop models are increasingly used in geoscience teaching, but their efficacy as a training tool for 3D thinking has been little tested. We find that using a virtual outcrop increases the participants' ability to choose the correct geological block model. That virtual outcrops are viewed positively, but only in a blended learning environment and not as a replacement for fieldwork, and virtual outcrop use could improve equality, diversity and inclusivity in geoscience.
Adam J. Cawood, Hannah Watkins, Clare E. Bond, Marian J. Warren, and Mark A. Cooper
Solid Earth, 14, 1005–1030, https://doi.org/10.5194/se-14-1005-2023, https://doi.org/10.5194/se-14-1005-2023, 2023
Short summary
Short summary
Here we test conceptual models of fracture development by investigating fractures across multiple scales. We find that most fractures increase in abundance towards the fold hinge, and we interpret these as being fold related. Other fractures at the site show inconsistent orientations and are unrelated to fold formation. Our results show that predicting fracture patterns requires the consideration of multiple geologic variables.
Clare E. Bond and Adam J. Cawood
Geosci. Commun., 4, 233–244, https://doi.org/10.5194/gc-4-233-2021, https://doi.org/10.5194/gc-4-233-2021, 2021
Short summary
Short summary
Virtual outcrop models are increasingly used in geoscience teaching, but their efficacy as a training tool for 3D thinking has been little tested. We find that using a virtual outcrop increases the participants' ability to choose the correct geological block model. That virtual outcrops are viewed positively, but only in a blended learning environment and not as a replacement for fieldwork, and virtual outcrop use could improve equality, diversity and inclusivity in geoscience.
Cited articles
Alcalde, J., Bond, C. E., Johnson, G., Ellis, J. F., and Butler, R. W. H.: Impact of seismic image quality on fault interpretation uncertainty, GSA Today, 27, 4–10, 2017.
Allan, U. S.: Model for hydrocarbon migration and entrapment within faulted structures, AAPG Bull., 73, 803–811, 1989.
Aydin, A. and Basu, A.: The Schmidt hammer in rock material characterization, Eng. Geol., 81, 1–14, 2005.
Bauer, H., Schröckenfuchs, T. C., and Decker, K.: Hydrogeological properties of fault zones in a karstified carbonate aquifer (Northern Calcareous Alps, Austria), Hydrogeol. J., 24, 1147–1170, 2016.
Barton, C. A., Zoback, M. D., and Moos, D.: Fluid flow along potentially active faults in crystalline rock, Geology, 23, 683–686, 1995.
Bond, C. E.: Uncertainty in structural interpretation: Lessons to be learnt, J. Struct. Geol., 74, 185–200, 2015.
Bowness, N. P., Cawood, A. J., Ferrill, D. A., Smart, K. J., and Bellow, H. B.: Mineralogy controls fracture containment in mechanically layered carbonates, Geol. Mag., 159, 1855–1873, 2022.
Bürgmann, R., Pollard, D. D., and Martel, S. J.: Slip distributions on faults: effects of stress gradients, inelastic deformation, heterogeneous host-rock stiffness, and fault interaction, J. Struct. Geol., 16, 1675–1690, 1994.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and permeability structure, Geology, 24, 1025–1028, 1996.
Cartwright, J. A., Trudgill, B. D., and Mansfield, C. S.: Fault growth by segment linkage: an explanation for scatter in maximum displacement and trace length data from the Canyonlands Grabens of SE Utah, J. Struct. Geol., 17, 1319–1326, 1995.
Cawood, A. J. and Bond, C. E.: 3D mechanical stratigraphy of a deformed multi-layer: Linking sedimentary architecture and strain partitioning, J. Struct. Geol., 106, 54–69, 2018.
Cawood, A. J. and Bond, C. E.: Broadhaven revisited: a new look at models of fault–fold interaction, in: Folding and Fracturing of Rocks: 50 Years of Research since the Seminal Text Book of J. G. Ramsay, edited by: Bond, C. E. and Lebit, H. D., Geol. Soc. Lond. Spec. Publ., 487, 105–126, 2020.
Cawood, A. J., Bond, C. E., Howell, J. A., Butler, R. W. H., and Totake, Y.: LiDAR, UAV or compass-clinometer? Accuracy, coverage and the effects on structural models, J. Struct. Geol., 98, 67–82, 2017.
Cawood, A. J., Ferrill, D. A., Morris, A. P., Norris, D., McCallum, D., Gillis, E., and Smart, K. J.: Tectonostratigraphic evolution of the Orphan Basin and Flemish Pass region – Part 1: Results from coupled kinematic restoration and crustal area balancing, Mar. Pet. Geol., 128, 105042, https://doi.org/10.1016/j.marpetgeo.2021.105042, 2021.
Cawood, A. J., Ferrill, D. A., Norris, D., Bowness, N. P., Glass, E. J., Smart, K. J., Morris, A. P., and Gillis, E.: Crustal structure and tectonic evolution of the Newfoundland Ridge, Fogo Basin, and southern Newfoundland transform margin, Mar. Pet. Geol., 105764, https://doi.org/10.1016/j.marpetgeo.2022.105764, 2022.
Childs, C., Walsh, J. J., Manzocchi, T., Strand, J., Nicol, A., Tomasso, M., Schöpfer, M. P. J., and Aplin, A. C.: Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand, in: Structurally Complex Reservoirs, edited by: Jolley, S. J., Barr, D., Walsh, J. J., and Knipe, R. J., Geol. Soc. Lond. Spec. Publ., 292, 235–258, 2007.
Clark, R. M. and Cox, S. J. D.: A modern regression approach to determining fault displacement-length scaling relationships, J. Struct. Geol., 18, 147–152, 1996.
Cowie, P. A. and Scholz, C. H.: Displacement-length scaling relationship for faults: data synthesis and discussion, J. Struct. Geol., 14, 1149–1156, 1992.
Cox, S. F.: Coupling between deformation, fluid pressures, and fluid flow in ore-producing hydrothermal systems at depth in the crust, in: Economic Geology One Hundredth Anniversary Volume, edited by: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., and Richards, J. P., Soc. Econ. Geol., 39–76, 2005.
Deng, H., Zhang, C., and Koyi, H. A.: Identifying the characteristic signatures of fold-accommodation faults, J. Struct. Geol., 56, 1–19, 2013.
Dimmen, V., Rotevatn, A., and Lecomte, I.: Imaging of small-scale faults in seismic reflection data: Insights from seismic modelling of faults in outcrop, Mar. Pet. Geol., 147, 105980, https://doi.org/10.1016/j.marpetgeo.2022.105980, 2023.
Doelling, H. H.: Geology of Arches National Park, Utah Geol. Miner. Surv., Map 74, 2 sheets, scale 1:50 000, 1985.
Doelling, H. H., Ross, M. L., and Mulvey, W. E.: Geologic map of the Moab 7.5′ Quadrangle, Grand County, Utah, Utah Geol. Surv., Map 181, 2 sheets, scale 1:24 000, 2002.
Duffy, O. B., Bell, R. E., Jackson, C. A. L., Gawthorpe, R. L., and Whipp, P. S.: Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea, J. Struct. Geol., 80, 99–119, 2015.
Evans, J. P., Forster, C. B., and Goddard, J. V.: Permeability of fault-related rocks, and implications for hydraulic structure of fault zones, J. Struct. Geol., 19, 1393–1404, 1997.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton, Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent developments concerning the structure, mechanics and fluid flow properties of fault zones, J. Struct. Geol., 32, 1557–1575, 2010.
Ferrill, D. A. and Morris, A. P.: Dilational normal faults, J. Struct. Geol., 25, 183–196, 2003.
Ferrill, D. A. and Morris, A. P.: Fault zone deformation controlled by carbonate mechanical stratigraphy, Balcones fault system, Texas, AAPG Bull., 92, 359–380, 2008.
Ferrill, D. A., Morris, A. P., and McGinnis, R. N.: Crossing conjugate normal faults in field exposures and seismic data, AAPG Bull., 93, 1471–1488, 2009.
Ferrill, D. A., Morris, A. P., and McGinnis, R. N.: Extensional fault-propagation folding in mechanically layered rocks: the case against the frictional drag mechanism, Tectonophysics, 576–577, 78–85, 2012.
Ferrill, D. A., Morris, A. P., Wigginton, S. S., Smart, K. J., McGinnis, R. N., and Lehrmann, D.: Deciphering thrust fault nucleation and propagation and the importance of footwall synclines, J. Struct. Geol., 85, 1–11, 2016.
Ferrill, D. A., Evans, M. A., McGinnis, R. N., Morris, A. P., Smart, K. J., Wigginton, S. S., Gulliver, K. D. H., Lehrmann, D., de Zoeten, E., and Sickmann, Z.: Fault zone processes in mechanically layered mudrock and chalk, J. Struct. Geol., 97, 118–143, 2017a.
Ferrill, D. A., Morris, A. P., McGinnis, R. N., Smart, K. J., Wigginton, S. S., and Hill, N. J.: Mechanical stratigraphy and normal faulting, J. Struct. Geol., 94, 275–302, 2017b.
Ferrill, D. A., Smart, K. J., Cawood, A. J., and Morris, A. P.: The fold-thrust belt stress cycle: Superposition of normal, strike-slip, and thrust faulting deformation regimes, J. Struct. Geol., 148, 104362, https://doi.org/10.1016/j.jsg.2021.104362, 2021.
Fisher, Q. J. and Knipe, R. J.: The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf, Mar. Pet. Geol., 18, 1063–1081, 2001.
Fossen, H., Johansen, T. E. S., Hesthammer, J., and Rotevatn, A.: Fault interaction in porous sandstone and implications for reservoir management; examples from southern Utah, AAPG Bull., 89, 1593–1606, 2005.
Foxford, K. A., Garden, I. R., Guscott, S. C., Burley, S. D., Lewis, J. J. M., Walsh, J. J., and Watterson, J.: The field geology of the Moab fault, in: Geology and Resources of the Paradox Basin, Utah Geological Association, 25, 265–283, 1996.
Foxford, K. A., Walsh, J. J., Watterson, J., Garden, I. R., Guscott, S. C., and Burley, S. D.: Structure and content of the Moab fault zone, Utah, U.S.A., and its implications for fault seal prediction, in: Faulting, fault sealing and fluid flow in hydrocarbon reservoirs, edited by: Jones, G., Fisher, Q. J., and Knipe, R. J., Geol. Soc. Lond. Spec. Publ., 147, 87–103, 1998.
Gan, Q. and Elsworth, D.: Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs, J. Geophys. Res. Solid Earth, 119, 3340–3353, 2014.
Gartrell, A., Zhang, Y., Lisk, M., and Dewhurst, D.: Fault intersections as critical hydrocarbon leakage zones: integrated field study and numerical modelling of an example from the Timor Sea, Australia, Mar. Pet. Geol., 21, 1165–1179, 2004.
Garven, G.: Continental-scale groundwater flow and geologic processes, Annu. Rev. Earth Planet. Sci., 23, 89–118, 1995.
Gautschi, A.: Hydrogeology of a fractured shale (Opalinus Clay): Implications for deep geological disposal of radioactive wastes, Hydrogeol. J., 9, 97–107, 2001.
Gross, M. R., Gutierrez-Alonso, G., Bai, T., Wacker, M. A., Collinsworth, K. B., and Behl, R. J.: Influence of mechanical stratigraphy and kinematics on fault scaling relations, J. Struct. Geol., 19, 171–183, 1997.
James, M. R. and Robson, S.: Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application, J. Geophys. Res. Earth Surf., 117, F03017, https://doi.org/10.1029/2011JF002289, 2012.
James, M. R., Robson, S., and Smith, M. W.: 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys, Earth Surf. Process. Landforms, 42, 1769–1788, 2017.
Katz, O., Reches, Z. E., and Roegiers, J. C.: Evaluation of mechanical rock properties using a Schmidt Hammer, Int. J. Rock Mech. Min. Sci., 37, 723–728, 2000.
Kim, Y.-S. and Sanderson, D. J.: The relationship between displacement and length of faults: a review, Earth-Sci. Rev., 68, 317–334, 2005.
Kim, Y.-S., Andrews, J. R., and Sanderson, D. J.: Reactivated strike–slip faults: examples from north Cornwall U.K., Tectonophysics, 340, 173–194, 2001.
Lathrop, B. A., Jackson, C. A., Bell, R. E., and Rotevatn, A.: Displacement/length scaling relationships for normal faults; a review, critique, and revised compilation, Front. Earth Sci., 10, 907543, https://doi.org/10.3389/feart.2022.907543, 2022.
Maclay, R. W. and Small, T. A.: Hydrostratigraphic subdivisions and fault barriers of the Edwards Aquifer, south-central Texas, U.S.A., J. Hydrol., 61, 127–146, 1983.
Marrett, R. and Allmendinger, R. W.: Estimates of strain due to brittle faulting: sampling of fault populations, J. Struct. Geol., 13, 735–738, 1991.
McConnell, D. A., Kattenhorn, S. A., and Benner, L. M.: Distribution of fault slip in outcrop-scale fault-related folds, Appalachian Mountains, J. Struct. Geol., 19, 257–267, 1997.
Michie, E. A. H., Mulrooney, M. J., and Braathen, A.: Fault interpretation uncertainties using seismic data, and the effects on fault seal analysis: a case study from the Horda Platform, with implications for CO2 storage, Solid Earth, 12, 1259–1286, https://doi.org/10.5194/se-12-1259-2021, 2021.
Morris, A. P., Ferrill, D. A., and McGinnis, R. N.: Fault frequency and strain, Lithosphere, 1, 105–109, 2009a.
Morris, A. P., Ferrill, D. A., and McGinnis, R. N.: Mechanical stratigraphy and faulting in Cretaceous carbonates, AAPG Bull., 93, 1459–1470, 2009b.
Morris, A. P., McGinnis, R. N., and Ferrill, D. A.: Fault displacement gradients on normal faults and associated deformation, AAPG Bull., 98, 1161–1184, 2014.
Muraoka, H. and Kamata, H.: Displacement distribution along minor fault traces, J. Struct. Geol., 5, 483–495, 1983.
Nesbit, P. R., Hubbard, S. M., and Hugenholtz, C. H.: Direct georeferencing UAV-SfM in high-relief topography: accuracy assessment and alternative ground control strategies along steep inaccessible rock slopes, Remote Sens., 14, 490, https://doi.org/10.3390/rs14030490, 2022.
Peacock, D. C. P.: Displacement and segment linkage in strike-slip fault zones, J. Struct. Geol., 13, 1025–1035, 1991.
Peacock, D. C. P. and Sanderson, D. J.: Displacement and segment linkage and relay ramps in normal fault zones, J. Struct. Geol., 13, 721–733, 1991.
Peacock, D. C. P. and Sanderson, D. J.: Effects of propagation rate on displacement variations along faults, J. Struct. Geol., 18, 311–320, 1996.
Petrie, E. S., Skurtveit, E., Faleide, T. S., Halvorsen, K., Smith, S. A., and Arvesen, B. C.: Development of fluid pathways and associated diagenetic variations in a natural CO2 leaking fault zone, Lithosphere, 20 pp., https://doi.org/10.2113/2023/lithosphere_2023_335, 2023.
Reeher, L. J., Hughes, A. N., Davis, G. H., Kemeny, J. M., and Ferrill, D. A.: Finding the right place in Mohr circle space: Geologic evidence and implications for applying a non-linear failure criterion to fractured rock, J. Struct. Geol., 166, 104773, https://doi.org/10.1016/j.jsg.2022.104773, 2023.
Roche, V., Homberg, C., and Rocher, M.: Fault displacement profiles in multilayer systems: from fault restriction to fault propagation, Terra Nova, 24, 499–504, 2012.
Roelofse, C., Alves, T. M., and Gafeira, J.: Structural controls on shallow fluid flow and associated pockmark fields in the East Breaks area, northern Gulf of Mexico, Mar. Pet. Geol., 112, 104074, https://doi.org/10.1016/j.marpetgeo.2019.104074, 2020.
Scholz, C. H. and Cowie, P. A.: Determination of geologic strain from fault slip data, Nature, 346, 837–839, 1990.
Sibson, R. H. and Scott, J.: Stress/fault controls on the containment and release of overpressured fluids: examples from gold-quartz vein systems in Juneau, Alaska; Victoria, Australia and Otago, New Zealand, Ore Geol. Rev., 13, 293–306, 1998.
Smart, K. J., Ferrill, D. A., and Morris, A. P.: Geomechanical insights on the importance of mechanical stratigraphy to hydraulic fracture containment, AAPG Bull., 107, 1811–1835, 2023.
Solum, J. G., van der Pluijm, B. A., and Peacor, D. R.: Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah, J. Struct. Geol., 27, 1563–1576, 2005.
Torabi, A. and Berg, S. S.: Scaling of fault attributes: A review, Mar. Pet. Geol., 28, 1444–1460, 2011.
Vialle, S., Ajo-Franklin, J., and Carey, J. W. (Eds.): Geological Carbon Storage: Subsurface Seals and Caprock Integrity, John Wiley & Sons, ISBN 9781119118640, 2018.
Williams, G. and Chapman, T.: Strains developed in the hangingwalls of thrusts due to their slip/propagation rate: a dislocation model, J. Struct. Geol., 5, 563–571, 1983.
Yielding, G., Needham, T., and Jones, H.: Sampling of fault populations using sub-surface data: a review, J. Struct. Geol., 18, 135–146, 1996.
Short summary
We studied faults in Utah to understand how rock type controls fault dimensions. Using photogrammetry, field mapping, and mineral data, we found faults grow differently in weak and strong rocks because of variable mineralogy. For equivalent displacements, faults tend to be shorter in clay-rich layers and taller in rocks containing strong minerals. We built a model to predict hidden fault height from mineralogy and applied it to seismic data, showing fault dimensions are often underestimated.
We studied faults in Utah to understand how rock type controls fault dimensions. Using...