Articles | Volume 9, issue 4
https://doi.org/10.5194/se-9-1035-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-1035-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Structure of the central Sumatran subduction zone revealed by local earthquake travel-time tomography using an amphibious network
Dynamics of the Ocean Floor, GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Frederik Tilmann
Helmholtz-Zentrum Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany
Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany
Tim Henstock
Ocean and Earth Science, University of Southampton European Way, Southampton, SO14 3ZH, UK
Andreas Rietbrock
Karlsruhe Institute of Technology, Geophysical Institute, Karlsruhe, Germany
Danny Natawidjaja
RC Geotechnology, Indonesian Institute of Sciences (LIPI), Bandung, Indonesia
Heidrun Kopp
Dynamics of the Ocean Floor, GEOMAR, Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Department of Geosciences, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Related authors
Felix N. Wolf, Dietrich Lange, Anke Dannowski, Martin Thorwart, Wayne Crawford, Lars Wiesenberg, Ingo Grevemeyer, Heidrun Kopp, and the AlpArray Working Group
Solid Earth, 12, 2597–2613, https://doi.org/10.5194/se-12-2597-2021, https://doi.org/10.5194/se-12-2597-2021, 2021
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during SE migration of the Calabrian subduction zone. Using ambient seismic noise from stations on land and at the ocean bottom, we calculated a 3D shear-velocity model of the Ligurian Basin. In keeping with existing 2D studies, we find a shallow crust–mantle transition at the SW basin centre that deepens towards the northeast, Corsica, and the Liguro-Provençal coast. We observe a separation of SW and NE basins. We do not observe high crustal vP/vS ratios.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Anke Dannowski, Heidrun Kopp, Ingo Grevemeyer, Dietrich Lange, Martin Thorwart, Jörg Bialas, and Martin Wollatz-Vogt
Solid Earth, 11, 873–887, https://doi.org/10.5194/se-11-873-2020, https://doi.org/10.5194/se-11-873-2020, 2020
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during the SE migration of the Calabrian subduction zone. Seismic travel time tomography reveals the absence of oceanic crust, documenting that the extension of continental lithosphere stopped before seafloor spreading initiated. The extension led to extreme crustal thinning and possibly exhumed mantle accompanied by syn-rift sedimentation. Our new interpretation of the crust's nature is important for plate reconstruction modelling related to the Alpine orogen.
Dino Bindi, Riccardo Zaccarelli, Angelo Strollo, Domenico Di Giacomo, Andres Heinloo, Peter Evans, Fabrice Cotton, and Frederik Tilmann
Earth Syst. Sci. Data, 16, 1733–1745, https://doi.org/10.5194/essd-16-1733-2024, https://doi.org/10.5194/essd-16-1733-2024, 2024
Short summary
Short summary
The size of an earthquake is often described by a single number called the magnitude. Among the possible magnitude scales, the seismic moment (Mw) and the radiated energy (Me) scales are based on physical parameters describing the rupture process. Since these two magnitude scales provide complementary information that can be used for seismic hazard assessment and for seismic risk mitigation, we complement the Mw catalog disseminated by the GEOFON Data Centre with Me values.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Felix N. Wolf, Dietrich Lange, Anke Dannowski, Martin Thorwart, Wayne Crawford, Lars Wiesenberg, Ingo Grevemeyer, Heidrun Kopp, and the AlpArray Working Group
Solid Earth, 12, 2597–2613, https://doi.org/10.5194/se-12-2597-2021, https://doi.org/10.5194/se-12-2597-2021, 2021
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during SE migration of the Calabrian subduction zone. Using ambient seismic noise from stations on land and at the ocean bottom, we calculated a 3D shear-velocity model of the Ligurian Basin. In keeping with existing 2D studies, we find a shallow crust–mantle transition at the SW basin centre that deepens towards the northeast, Corsica, and the Liguro-Provençal coast. We observe a separation of SW and NE basins. We do not observe high crustal vP/vS ratios.
Martin Thorwart, Anke Dannowski, Ingo Grevemeyer, Dietrich Lange, Heidrun Kopp, Florian Petersen, Wayne C. Crawford, Anne Paul, and the AlpArray Working Group
Solid Earth, 12, 2553–2571, https://doi.org/10.5194/se-12-2553-2021, https://doi.org/10.5194/se-12-2553-2021, 2021
Short summary
Short summary
We analyse broadband ocean bottom seismometer data of the AlpArray OBS network in the Ligurian Basin. Two earthquake clusters with thrust faulting focal mechanisms indicate compression of the rift basin. The locations of seismicity suggest reactivation of pre-existing rift structures and strengthening of crust and uppermost mantle during rifting-related extension. Slightly different striking directions of faults may mimic the anti-clockwise rotation of the Corsica–Sardinia block.
Yueyang Xia, Jacob Geersen, Dirk Klaeschen, Bo Ma, Dietrich Lange, Michael Riedel, Michael Schnabel, and Heidrun Kopp
Solid Earth, 12, 2467–2477, https://doi.org/10.5194/se-12-2467-2021, https://doi.org/10.5194/se-12-2467-2021, 2021
Short summary
Short summary
The 2 June 1994 Java tsunami earthquake ruptured in a seismically quiet subduction zone and generated a larger-than-expected tsunami. Here, we re-process a seismic line across the rupture area. We show that a subducting seamount is located up-dip of the mainshock in a region that did not rupture during the earthquake. Seamount subduction modulates the topography of the marine forearc and acts as a seismic barrier in the 1994 earthquake rupture.
Anke Dannowski, Heidrun Kopp, Ingo Grevemeyer, Dietrich Lange, Martin Thorwart, Jörg Bialas, and Martin Wollatz-Vogt
Solid Earth, 11, 873–887, https://doi.org/10.5194/se-11-873-2020, https://doi.org/10.5194/se-11-873-2020, 2020
Short summary
Short summary
The Ligurian Sea opened ~30–15 Ma during the SE migration of the Calabrian subduction zone. Seismic travel time tomography reveals the absence of oceanic crust, documenting that the extension of continental lithosphere stopped before seafloor spreading initiated. The extension led to extreme crustal thinning and possibly exhumed mantle accompanied by syn-rift sedimentation. Our new interpretation of the crust's nature is important for plate reconstruction modelling related to the Alpine orogen.
Anke Dannowski, Heidrun Kopp, Frauke Klingelhoefer, Dirk Klaeschen, Marc-André Gutscher, Anne Krabbenhoeft, David Dellong, Marzia Rovere, David Graindorge, Cord Papenberg, and Ingo Klaucke
Solid Earth, 10, 447–462, https://doi.org/10.5194/se-10-447-2019, https://doi.org/10.5194/se-10-447-2019, 2019
Short summary
Short summary
The nature of the Ionian Sea crust has been the subject of scientific debate for more than 30 years. Seismic data, recorded on ocean bottom instruments, have been analysed and support the interpretation of the Ionian Abyssal Plain as a remnant of the Tethys oceanic lithosphere with the Malta Escarpment as a transform margin and a Tethys opening in the NNW–SSE direction.
R. Kind, T. Eken, F. Tilmann, F. Sodoudi, T. Taymaz, F. Bulut, X. Yuan, B. Can, and F. Schneider
Solid Earth, 6, 971–984, https://doi.org/10.5194/se-6-971-2015, https://doi.org/10.5194/se-6-971-2015, 2015
Short summary
Short summary
We observed with seismic data in the entire region of Turkey and surroundings the lithosphere–asthenosphere boundary (LAB). It is located generally between 80 and 100km depth outside the subduction zone. No change of the LAB depth was observed across the North and East Anatolian faults. The LAB of the subducting African plate is observed down to about 150km depth from the Aegean to the east of Cyprus, with a tear at Cyprus.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Seismics, seismology, paleoseismology, geoelectrics, and electromagnetics | Discipline: Geophysics
Numerical modeling of stresses and deformation in the Zagros–Iranian Plateau region
Reflection tomography by depth warping: a case study across the Java trench
Impact of Timanian thrust systems on the late Neoproterozoic–Phanerozoic tectonic evolution of the Barents Sea and Svalbard
Forearc density structure of the overriding plate in the northern area of the giant 1960 Valdivia earthquake
Early Cenozoic Eurekan strain partitioning and decoupling in central Spitsbergen, Svalbard
Multi-scale analysis and modelling of aeromagnetic data over the Bétaré-Oya area in eastern Cameroon, for structural evidence investigations
Mantle flow below the central and greater Alpine region: insights from SKS anisotropy analysis at AlpArray and permanent stations
A Python framework for efficient use of pre-computed Green's functions in seismological and other physical forward and inverse source problems
Seismic attenuation and dispersion in poroelastic media with fractures of variable aperture distributions
Structural expression of a fading rift front: a case study from the Oligo-Miocene Irbid rift of northwest Arabia
Srishti Singh and Radheshyam Yadav
Solid Earth, 14, 937–959, https://doi.org/10.5194/se-14-937-2023, https://doi.org/10.5194/se-14-937-2023, 2023
Short summary
Short summary
We use numerical models to study the stresses arising from gravitational potential energy (GPE) variations and shear tractions associated with mantle convection in the Zagros–Iran region. The joint models predicted consistent deviatoric stresses that can explain most of the deformation indicators. Stresses associated with mantle convection are found to be higher than those from GPE, thus indicating the deformation in this region may primarily be caused by the mantle, except in eastern Iran.
Yueyang Xia, Dirk Klaeschen, Heidrun Kopp, and Michael Schnabel
Solid Earth, 13, 367–392, https://doi.org/10.5194/se-13-367-2022, https://doi.org/10.5194/se-13-367-2022, 2022
Short summary
Short summary
Geological interpretations based on seismic depth images depend on an accurate subsurface velocity model. Reflection tomography is one method to iteratively update a velocity model based on depth error analysis. We used a warping method to estimate closely spaced data-driven depth error displacement fields. The application to a multichannel seismic line across the Sunda subduction zone illustrates the approach which leads to more accurate images of complex geological structures.
Jean-Baptiste P. Koehl, Craig Magee, and Ingrid M. Anell
Solid Earth, 13, 85–115, https://doi.org/10.5194/se-13-85-2022, https://doi.org/10.5194/se-13-85-2022, 2022
Short summary
Short summary
The present study shows evidence of fault systems (large cracks in the Earth's crust) hundreds to thousands of kilometers long and several kilometers thick extending from northwestern Russia to the northern Norwegian Barents Sea and the Svalbard Archipelago using seismic, magnetic, and gravimetric data. The study suggests that the crust in Svalbard and the Barents Sea was already attached to Norway and Russia at ca. 650–550 Ma, thus challenging existing models.
Andrei Maksymowicz, Daniela Montecinos-Cuadros, Daniel Díaz, María José Segovia, and Tomás Reyes
Solid Earth, 13, 117–136, https://doi.org/10.5194/se-13-117-2022, https://doi.org/10.5194/se-13-117-2022, 2022
Short summary
Short summary
This work analyses the density structure of the continental forearc in the northern segment of the 1960 Mw 9.6 Valdivia earthquake. Results show a segmentation of the continental wedge along and perpendicular to the margin. The extension of the less rigid basement units conforming the marine wedge and Coastal Cordillera domain could modify the process of stress loading during the interseismic periods. This analysis highlights the role of the overriding plate on the seismotectonic process.
Jean-Baptiste P. Koehl
Solid Earth, 12, 1025–1049, https://doi.org/10.5194/se-12-1025-2021, https://doi.org/10.5194/se-12-1025-2021, 2021
Short summary
Short summary
By using seismic data and fieldwork, this contribution shows that soft, coal-rich sedimentary rocks absorbed most of early Cenozoic, Eurekan, contractional deformation in central Spitsbergen, thus suggesting that no contractional deformation event is needed in the Late Devonian to explain the deformation differences among late Paleozoic sedimentary rocks. It also shows that the Billefjorden Fault Zone, a major crack in the Earth's crust in Svalbard, is probably segmented.
Christian Emile Nyaban, Théophile Ndougsa-Mbarga, Marcelin Bikoro-Bi-Alou, Stella Amina Manekeng Tadjouteu, and Stephane Patrick Assembe
Solid Earth, 12, 785–800, https://doi.org/10.5194/se-12-785-2021, https://doi.org/10.5194/se-12-785-2021, 2021
Short summary
Short summary
A multi-scale analysis of aeromagnetic data combining tilt derivative, Euler deconvolution, upward continuation, and 2.75D modelling was applied over Cameroon between the latitudes 5°30'–6° N and the longitudes 13°30'–14°45' E. Major families of faults oriented ENE–WSW, E–W, NW–SE, and N–S with a NE–SW prevalence were mapped. Depths of interpreted faults range from 1000 to 3400 m, mylonitic veins were identified, and 2.75D modelling revealed fault depths greater than 1200 m.
Laura Petrescu, Silvia Pondrelli, Simone Salimbeni, Manuele Faccenda, and the AlpArray Working Group
Solid Earth, 11, 1275–1290, https://doi.org/10.5194/se-11-1275-2020, https://doi.org/10.5194/se-11-1275-2020, 2020
Short summary
Short summary
To place constraints on the mantle deformation beneath the Central Alps and the greater Alpine region, we analysed the appropriate seismic signal recorded by more than 100 stations, belonging to AlpArray and to other permanent networks. We took a picture of the imprinting that Alpine orogen history and related subductions left at depth, with a mainly orogen-parallel mantle deformation from Western Alps to Eastern Alps, but also N to S from the Po Plain to the Rhine Graben.
Sebastian Heimann, Hannes Vasyura-Bathke, Henriette Sudhaus, Marius Paul Isken, Marius Kriegerowski, Andreas Steinberg, and Torsten Dahm
Solid Earth, 10, 1921–1935, https://doi.org/10.5194/se-10-1921-2019, https://doi.org/10.5194/se-10-1921-2019, 2019
Short summary
Short summary
We present an open-source software framework for fast and flexible forward modelling of seismic and acoustic wave phenomena and elastic deformation. It supports a wide range of applications across volcanology, seismology, and geodesy to study earthquakes, volcanic processes, landslides, explosions, mine collapses, ground shaking, and aseismic faulting. The framework stimulates reproducible research and open science through the exchange of pre-calculated Green's functions on an open platform.
Simón Lissa, Nicolás D. Barbosa, J. Germán Rubino, and Beatriz Quintal
Solid Earth, 10, 1321–1336, https://doi.org/10.5194/se-10-1321-2019, https://doi.org/10.5194/se-10-1321-2019, 2019
Short summary
Short summary
We quantify the effects that 3-D fractures with realistic distributions of aperture have on seismic wave attenuation and velocity dispersion. Attenuation and dispersion are caused by fluid pressure diffusion between the fractures and the porous background. We show that (i) both an increase in the density of contact areas and a decrease in their correlation length reduce attenuation and (ii) a simple planar fracture can be used to emulate the seismic response of realistic fracture models.
Reli Wald, Amit Segev, Zvi Ben-Avraham, and Uri Schattner
Solid Earth, 10, 225–250, https://doi.org/10.5194/se-10-225-2019, https://doi.org/10.5194/se-10-225-2019, 2019
Short summary
Short summary
Plate-scale rifting is frequently expressed by the subsidence of structural basins along an axis, but postdating tectonic and magmatic activity mostly obscures them. A 3-D subsurface imaging and facies analysis down to 1 km reveals uniquely preserved Galilean basins subsiding along a failing rift front in two main stages. Rifting within a large releasing jog (20–9 Ma), followed by localized grabenization off the Dead Sea fault plate boundary (9–5 Ma), prevents them from dying out peacefully.
Cited articles
Aki, K. and Lee, W. H. K.: Determination of three-dimensional velocity anomalies under a seismic array using first P-arrival times from local earthquakes, 1. A homogeneous initial model, J. Geophys. Res., 81, 4.381–4.399, https://doi.org/10.1029/JB081i023p04381, 1976.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B., Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S-H., Ladner, R., Marks, K., Nelson, S., Pharaoh, A., Sharman, G., Trimmer, R., VonRosenburg, J., Wallace, G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371, https://doi.org/10.1080/01490410903297766, 2009.
Bilek, S. L., Engdahl, E. R., DeShon, H. R., and El Hariri, M.: The 25 October 2010 Sumatra tsunami earthquake: Slip in a slow patch, Geophys. Res. Lett., 38, L14306, https://doi.org/10.1029/2011GL047864, 2011.
Bloch, W., Kummerow, J., Salazar, P., Wigger, P., and Shapiro, S. A.: High-resolution image of the North Chilean subduction zone: seismicity, reflectivity and fluids, Geophys. J. Int., 197, 1744–1749, https://doi.org/10.1093/gji/ggu084, 2014.
Brisbourne, A.: How to store and share geophysical data, Astron. Geophys., 53, 4.19–4.20, 2012.
Cande, S. C., LaBrecque, J. L., Larson, R. L., Pitman, W. C., Golovchenko, X., and Haxby, W. F.: Magnetic lineations of World's Ocean Basins (one chart), Amer. Ass. Petrol. Geol., Tulsa, 1989.
Carlson, R. L. and Miller, D. J.: Mantle wedge water contents estimated from seismic velocities in partially serpentinized periodites, Geophys. Res. Lett., 30, 1250, https://doi.org/10.1029/2002GL016600, 2003.
Chlieh, M., Avouac, J.-P., Hjorleifsdottir, V., Song, T.-R. A., Ji, C., Sieh, K., Sladen, A., Hebert, H., Prawirodirdjo, L., Bock, Y., and Galetzka, J.: Coseismic Slip and Afterslip of the Great Mw 9.15 Sumatra-Andaman Earthquake of 2004, B. Seismol. Soc. Am., 97, S152–S173, https://doi.org/10.1785/0120050631, 2007.
Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H., and Galetzka, J.: Heterogeneous coupling of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements, J. Geophys. Res., 113, B05305, https://doi.org/10.1029/2007JB004981, 2008.
Collings, R. E., Lange, D., Rietbrock, A., Tilmann, F., Natawidjaja, D. H., Suwargadi, B., Miller, M., and Saul, J.: Structure and seismogenic properties of the Mentawai segment of the Sumatra subduction zone revealed by local earthquake travel time tomography, J. Geophys. Res., 117, B01312, https://doi.org/10.1029/2011JB008469, 2012.
Crow, M. J. and Barber, A. J: Map: Simplified geological map of Sumatra Geological Society, London, Memoirs, 2005, 31:NP, https://doi.org/10.1144/GSL.MEM.2005.031.01.17, 2005.
Dean, S. M., McNeill, L. C., Henstock, T. J., Bull, J. M., Gulick, S. P. S., Austin, J. A., Bangs, N. L. B., Djajadihardja, Y. S., and Permana, H.: Contrasting Décollement and Prism Properties over the Sumatra 2004–2005 Earthquake Rupture Boundary, Science, 329, 207–210, https://doi.org/10.1126/science.1189373, 2010.
DeShon, H. R. and Schwartz, S. Y.: Evidence for serpentinization of the forearc mantle wedge along the Nicoya Peninsula, Costa Rica, Geophys. Res. Lett, 31, L21611, https://doi.org/10.1029/2004GL021179, 2004.
Dessa, J. X., Klingelhoefer, F., Graindorge, D., Andre, C., Permana, H., Gutscher, M. A., Chauhan, A., and Singh, S. S.: Megathrust earthquakes can nucleate in the forearc mantle: Evidence from the 2004 Sumatra events, Geology, 37, 659–662, https://doi.org/10.1130/G25653A.1, 2009.
Diament, M., Harjono, H., Karta, K., Deplus, C., Dahrin, D., Zen, M. T., Gérard, M., Lassal, O., Martin, A., and Malod, J.: Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia, Geology, 20, 259–262, 1992.
Eberhart-Phillips, D.: Three-dimensional structure in northern California coast ranges from inversion of local earthquake arrival time, B. Seismol. Soc. Am., 76, 1.025–1.052, 1986.
Eberhart-Phillips, D.: Three-Dimensional P and S Velocity Structure in the Coalinga Region, California, J. Geophys. Res., 95, 15.343–15.363, https://doi.org/10.1029/JB095iB10p15343, 1990.
Eberhart-Phillips, D.: Local earthquake tomography: earthquake source regions, in: Seismic Tomography: Theory and practice, edited by: Iyer, H. M. and Hirahara, K., Chapman and Hall, London, 630–642, 1993.
Evans, J. R., Eberhart-Phillips, D., and Thurber, C. H.: User's Manual for SIMULPS12 for Imaging Vp and Vp/Vs: A derivative of the “Thurber” tomographic inversion SIMUL3 for local earthquakes and Explosions. U.S. Dept. of the Interior, U.S. Geological Survey; Books and Open-File Reports Section, distributor, open File Report 94–431, 1994.
Fauzi, McCaffrey, R., Wark, D., Sunaryo, and Haryadi, P. Y. P.: Lateral variation in slab orientation beneath Toba Caldera, northern Sumatra, Geophys. Res. Lett., 23, 443–446, https://doi.org/10.1029/96GL00381, 1996.
Franke, D., Schnabel, M., Ladage, S., Tappin, D. R., Neben, S., Djajadihardja, Y. S., Mueller, C., Kopp, H., and Gaedicke, C.: The great Sumatra–Andaman earthquakes – Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes, Earth Planet. Sc. Lett., 269, 118–130, https://doi.org/10.1016/j.epsl.2008.01.047, 2008.
GEOFON Data Centre: GEOFON Seismic Network, Deutsches GeoForschungsZentrum GFZ, Other/Seismic Network, https://doi.org/10.14470/TR560404, 1993.
Graeber, F. and Asch, G.: Three-dimensional models of P wave velocity and P-to-S velocity ratio in the southern central Andes by simultaneous inversion of local earthquake data, J. Geophys. Res., 104, 20.237–20.256, 1999.
Gunawan, A., Tilmann, F., Lange, D., Collings, R., Rietbrock, A., Natawidjaja, D., and Widiyantoro, S.: Moho Depth Estimation beneath Sumatera and Mentawai Islands Using Receiver Functions Recorded with a Temporary Array, EGU General Assembly 2011, Geophysical Research Abstracts, vol. 13, EGU2011-8072, 2011.
Haberland, C., Rietbrock, A., Lange, D., Bataille, K., and Dahm, T.: Structure of the seismogenic zone of the southcentral Chilean margin revealed by local earthquake traveltime tomography, J. Geophys. Res., 114, B01317, https://doi.org/10.1029/2008JB005802, 2009.
Hayes, G. P.,Wald, D. J., and Johnson, R. L.: Slab1.0: A three-dimensional model of global subduction zone geometries, J. Geophys. Res., 117, B01302, https://doi.org/10.1029/2011JB008524, 2012.
Henstock, T. J., McNeill, L. C., Bull, J. M., Cook, B. J., Gulick, S. P. S., Austin, J. A., Permana, H., and Djajadihardja, Y. S.: Downgoing plate topography stopped rupture in the A.D. 2005 Sumatra earthquake, Geology, 44, 71–74, https://doi.org/10.1130/G37258.1, 2016.
Hsu, Y.-J., Simons, M., Avouac, J.-P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L., and Bock, Y.: Frictional Afterslip Following the 2005 Nias-Simeulue Earthquake, Sumatra, Science, 312, 1921–1926, https://doi.org/10.1126/science.1126960, 2006.
Hyndman, R. D., Yamano, M., and Oleskevich, D. A.: The seismogenic zone of subduction thrust faults, Isl. Arc, 6, 244–260, https://doi.org/10.1111/j.1440-1738.1997.tb00175.x, 1997.
Kieckhefer, R. M., Sho, G. G., and Curray J. R.: Seismic refraction studies of the Sunda trench and forearc basin, J. Geophys. Res., 85, 863–889, 1980.
Klingelhoefer, F., Gutscher, M. A., Ladage, S., Dessa, J. X., Graindorge, D., Franke, D., Andre, C., Permana, H., Yudistira, T., and Chauhan, A.: Limits of the seismogenic zone in the epicentral region of the 26 December 2004 great Sumatra-Andaman earthquake: Results from seismic refraction and wide-angle reflection surveys and thermal modeling, J. Geophys. Res., 115, B01304, https://doi.org/10.1029/2009JB006569, 2010.
Kissling, E.: Geotomography with local earthquake data, Rev. Geophys., 26, 659–698, 1988.
Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U.: Initial reference models in local earthquake tomography, J. Geophys. Res., 99, 19.635–19.646, 1994.
Kieling, K., Roessler, D., and Krueger, F. J.: Receiver function study in northern Sumatra and the Malaysian peninsula, J. Seismol., 15, 235–259, https://doi.org/10.1007/s10950-010-9222-7, 2011.
Konca, A. O., Hjorleifsdottir, V., Song, T. R. A., Avouac, J. P., Helmberger, D. V., Ji, C., Sieh, K., Briggs, R., and Meltzner, A.: Rupture Kinematics of the 2005 Mw 8.6 Nias-Simeulue Earthquake from the Joint Inversion of Seismic and Geodetic Data, B. Seismol. Soc. Am., 97, S307–322, 2007.
Konca, A. O., Avouac, J. P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., Li, Z., Galetzka, J., Genrich, J., Chlieh, M., Natawidjaja, D. H., Bock, Y., Fielding, E. J., Ji, C., and Helmberger, D. V.: Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake sequence, Nature, 456, 631–635, 2008.
Koulakov, I., Yudistira, T., Luehr, B.-G., and Wandono: Velocity and vp/vs ratio beneath the Toba caldera complex (Northern Sumatra) from local earthquake tomography, Geophys. J. Int., 177, 1121–1139, https://doi.org/10.1111/j.1365-246X.2009.04114.x, 2009.
Koulakov, I., Kasatkina, E., Shapiro, N. M., Jaupart, C., Vasilevsky, A., Khrepy, S. E., Al-Arifi, N., and Smirnov, S.: The feeder system of the Toba supervolcano from the slab to the shallow reservoir, Nat. Commun., 7, 12228, https://doi.org/10.1038/ncomms12228, 2016.
Lange, D., Rietbrock, A., Haberland, C., Bataille, K., Dahm, T., Tilmann, F., and Flüh, E. R.: Seismicity and geometry of the south Chilean subduction zone (41.5° S–43.5° S): Implications for controlling parameters, Geophys. Res. Lett., 34, L06311, https://doi.org/10.1029/2006GL029190, 2007.
Lange, D., Tilmann, F., Rietbrock, A., Collings, R., Natawidjaja, D. H., Suwargadi, B. W., Barton, P., Henstock, T., and Ryberg, T.: The Fine Structure of the Subducted Investigator Fracture Zone in Western Sumatra as Seen by Local Seismicity, Earth Planet. Sc. Lett., 298, 47–56, https://doi.org/10.1016/j.epsl.2010.07.020, 2010.
Lay, T., Ammon, C. J., Kanamori, H., Yamazaki, Y., Cheung, K. F., and Hutko, A. R.: The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures, Geophys. Res. Lett, 38, L06302, https://doi.org/10.1029/2010GL046552, 2011.
Masturyono, McCaffrey, R., Wark, D. A., Roecker, S. W., Fauzi, Ibrahim, and G., Sukhyar: Distribution of magma beneath the Toba caldera complex, north Sumatra, Indonesia, constrained by three-dimensional P wave velocities, seismicity, and gravity data, Geochem. Geophy. Geosy., 2, https://doi.org/10.1029/2000GC000096, 2001.
Matson, R. and Moore, G. F.: Structural controls on forearc basin subsidence in the central Sumatra forearc basin. In Geology and Geophysics of Continental Margins, Am. Assoc. Petrol. Geol. Memoir, 53, 157–181, 1992.
McCaffrey, R., Zwick, P., Bock, Y., Prawirodirdjo, L., Genrich, J., Stevens, C. W., Puntodewo, S. S. O., and Subarya, C.: Strain partitioning during oblique plate convergence in northern Sumatra: Geodetic and seismologic constraints and numerical modeling, J. Geophys. Res., 105, 28363–28376, 2000.
McCloskey, J., Lange, D., Tilmann, F., Nalbant, S. S., Bell, A. F., Natawidjaja, D. H., and Rietbrock, A.: The September 2009 Padang earthquake, Nat. Geosci., 3, 70–71, https://doi.org/10.1038/ngeo753, 2010.
McNeill, L. C. and Henstock, T. J.: Forearc structure and morphology along the Sumatra-Andaman subduction zone, Tectonics, 33, 112–134, https://doi.org/10.1002/2012TC003264, 2014.
Minshull, T. A., Sinha, M. C., and Peirce, C.: Multi-disciplinary, sub-seabed geophysical imaging – A new pool of 28 seafloor instruments in use by the United Kingdom Ocean Bottom Instrument Consortium, Sea Technol., 46, 27–31, 2004.
Moore, G. F., Billman, H. G., Hehanussa, P. E., and Karig, D. E.: Sedimentology and paleo- bathymetry of Neogene trench-slope deposits, Nias Island, Indonesia, J. Geol., 88, 161–180, https://doi.org/10.1086/628489, 1980.
Moore, G. F., Curray, J. R., and Emmel, F. J.: Sedimentation in the Sunda Trench and forearc region, Geol. Soc. London Spec. Publ., 10, 245–258, 1982.
Muksin, U., Bauer, K., and Haberland, C.: Seismic vp and vp/vs structure of the geothermal area around Tarutung (North Sumatra, Indonesia) derived from local earthquake tomography, J. Volcanol. Geoth. Res., 260, 27–42, https://doi.org/10.1016/j.jvolgeores.2013.04.012, 2013.
Mukti, M. M., Singh, S. C., Deighton, I., Hananto, N. D., Moeremans, R., and Permana, H.: Structural evolution of backthrusting in the Mentawai Fault Zone, offshore Sumatran forearc, Geochem. Geophy. Geosy., 13, https://doi.org/10.1029/2012GC004199, 2012.
Natawidjaja, D. H., Sieh, K., Chlieh, M., Galetzka, J., Suwargadi, B. W., Cheng, H., Edwards, R. L., Avouac, J.-P,. and Ward, S. N.: Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls, J. Geophys. Res, 111, B06403, https://doi.org/10.1029/2005JB004025, 2006.
Newcomb, K. R. and McCann, W. R.: Seismic history and seismotectonics of the Sunda arc, J. Geophys. Res, 92, 421–439, 1986.
Newman, A. V., Hayes, G., Wei, Y., and Convers, J.: The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation, Geophys. Res. Lett., 38, https://doi.org/10.1029/2010GL046498, 2011.
Oleskevich, D. A., Hyndman, R. D., and Wang, K.: The updip and downdip limits to great subduction earthquakes: Thermal and structural models of Cascadia, south Alaska, SW Japan, and Chile, J. Geophys. Res., 104, 14.965–14.991, 1999.
Pesicek, J. D., Thurber, C. H., Zhang, H., DeShon, H. R., Engdahl, E. R., and Widiyantoro, S.: Teleseismic double-difference relocation of earthquakes along the Sumatra-Andaman subduction zone using a 3-D model, J. Geophys. Res., 115, B10303, https://doi.org/10.1029/2010JB007443, 2010.
Rivera, L., Sieh, K., Helmberger, D., and Natawidjaja, D.: A comparative study of the sumatran Subduction-Zone earthquakes of 1935 and 1984, B. Seismol. Soc. Am, 92, 1721–1736, https://doi.org/10.1785/0120010106, 2002.
Ryberg, T. and Haberland, C.: Lake Toba seismic network, Sumatra, Indonesia. Deutsches GeoForschungsZentrum GFZ, Other/Seismic Network, https://doi.org/10.14470/2N934755, 2008.
Sakaguchi, K., Gilbert, H., and Zandt, G.: Converted wave imaging of the Toba Caldera, Indonesia, Geophys. Res. Lett., 33, L20305, https://doi.org/10.1029/2006GL027397, 2006.
Shulgin, A., Kopp, H., Klaeschen, D., Papenberg, C., Tilmann, F., Flueh, E. R., Franke, D., Barckhausen, U., Krabbenhoeft, A., and Djajadihardja,Y.: Subduction system variability across the segment boundary of the 2004/2005 Sumatra megathrust earthquakes, Earth Planet. Sc. Lett., 365, 108–119, https://doi.org/10.1016/j.epsl.2012.12.032, 2013.
Singh, S. C., Hananto, N. D., Chauhan, A. P. S., Permana, H., Denolle, M., Hendriyana, A., and Natawidjaja, D.: Evidence of active backthrusting at the NE Margin of Mentawai Islands, SW Sumatra, Geophys. J. Int., 180, 703–714, https://doi.org/10.1111/j.1365-246X.2009.04458.x, 2010.
Singh, S. C., Hananto, N., Mukti, M., Robinson, D.P., Das, S., Chauhan, A., Carton, H., Gratacos, B., Midnet, S., Djajadihardja, Y., and Harjono, H.: Aseismic zone and earthquake segmentation associated with a deep subducted seamount in Sumatra, Nat. Geosci., 4, 308–311, https://doi.org/10.1038/ngeo1119, 2011.
Sieh, K. and Natawidjaja, D.: Neotectonics of the Sumatran fault, Indonesia, J. Geophys. Res., 105, 28295–28326, 2000.
Sieh, K., Natawidjaja, D. H., Meltzner, A. J., Shen, C., Cheng, H., Li, K., Suwargadi, B. W., Galetzka, J., Philibosian, B., and Edwards, R. L.: Earthquake Supercycles Inferred from Sea-Level Changes Recorded in the Corals of West Sumatra, Science, 322, 1674–1678, https://doi.org/10.1126/science.1163589, 2008.
Stankiewicz, J., Ryberg, T., Haberland, C., Fauzi, and Natawidjaja, D.: Lake toba volcano magma chamber imaged by ambient seismic noise tomography, Geophys. Res. Lett., 37, L17306, https://doi.org/10.1029/2010GL044211, 2010.
Simoes, M., Avouac, J. P., Cattin, R., and Henry, P.: The Sumatra subduction zone: A case for a locked fault zone extending into the mantle, J. Geophys. Res., 109, B10402, https://doi.org/10.1029/2003JB002958, 2004.
Tang, G., Barton, P. J., McNeill, L. C., Henstock, T. J., Tilmann, F., Dean, S. M., Jusuf, M. D., Djajadihardja, Y. S., Permana, H., Klingelhoefer, F., and Kopp, H.: 3-D active source tomography around Simeulue Island offshore Sumatra: Thick crustal zone responsible for earthquake segment boundary, Geophys. Res. Lett., 40, 48–53, https://doi.org/10.1029/2012GL054148, 2013.
Tilmann, F. J., Craig, T. J., Grevemeyer, I., Suwargadi, B., Kopp, H., and Flueh, E.: The updip seismic/aseismic transition of the Sumatra megathrust illuminated by aftershocks of the 2004 Aceh-Andaman and 2005 Nias events, Geophys. J. Int., 181, 1261–1274, https://doi.org/10.1111/j.1365-246X.2010.04597.x, 2010.
Thurber, C. and Eberhart-Phillips, D.: Local earthquake tomography with flexible gridding, Comput. Geosci., 25, 809–818, https://doi.org/10.1016/S0098-3004(99)00007-2, 1999.
Thurber, C. H.: Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, Central California, J. Geophys. Res., 88, 8.226–8.236, https://doi.org/10.1029/JB088iB10p08226, 1983.
Tichelaar, B. W. and Ruff, L. J.: Depth of seismic coupling along subduction zones, J. Geophys. Res., 98, 2.017–2.037, 1993.
Toomey, D. R. and Foulger, G. R.: Tomographic inversion of local earthquake data from the Hengill-Grensdalur central volcano complex, Iceland, J. Geophys. Res., 94, 17.497–17.510.2, 1989.
Um, J. and Thurber, C. H.: A fast algorithm for two-point ray tracing, B. Seismol. Soc., Am, 77, 972–986, 1987.
Vermeesch, P. M., Henstock, T. J., Lange, D., McNeill, L. C., Barton, P. J., Tang, G., Bull, J. M., Tilmann, F., Dean, S. M., Djajadihardja, Y., and Permana, H.: 3-D tomographic seismic imaging of the southern rupture barrier of the great Sumatra-Andaman 2005 earthquake, Geophysical Research Abstracts, Vol. 11, EGU2009-11509, EGU General Assembly Vienna, 2009.
Weller, O., Lange, D., Tilmann, F., Natawidjaja, D., Rietbrock, A., Collings, R., and Gregory, L.: The structure of the Sumatran Fault revealed by local seismicity, Geophys. Res. Lett., 39, L01306, https://doi.org/10.1029/2011GL050440, 2012.
Wiseman, K., Banerjee, P., Sieh, K., Bürgmann, R., and Natawidjaja, D. H.: Another potential source of destructive earthquakes and tsunami offshore of Sumatra, Geophys. Res. Lett., 38, L10311, https://doi.org/10.1029/2011GL047226, 2011.
Wiseman, K., Banerjee, P., Bürgmann, R., Sieh, K., Dreger, D. S., and Hermawan, I.: Source model of the 2009 Mw 7.6 Padang intraslab earthquake and its effect on the Sunda megathrust, Geophys. J. Int., 190, 1710–1722, https://doi.org/10.1111/j.1365-246X.2012.05600.x, 2012.