Articles | Volume 9, issue 4
https://doi.org/10.5194/se-9-879-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-9-879-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Generating porosity during olivine carbonation via dissolution channels and expansion cracks
Department of Geology, University of Maryland, College Park, MD, USA
Wenlu Zhu
Department of Geology, University of Maryland, College Park, MD, USA
Florian Fusseis
School of Geosciences, University of Edinburgh, Edinburgh, UK
Harrison Lisabeth
Department of Geology, University of Maryland, College Park, MD, USA
Department of Geophysics, Stanford University, Stanford, CA, USA
Related authors
Tiange Xing, Hamed O. Ghaffari, Ulrich Mok, and Matej Pec
Solid Earth, 13, 137–160, https://doi.org/10.5194/se-13-137-2022, https://doi.org/10.5194/se-13-137-2022, 2022
Short summary
Short summary
Geological carbon sequestration using basalts provides a solution to mitigate the high CO2 concentration in the atmosphere. Due to the long timespan of the GCS, it is important to understand the long-term deformation of the reservoir rock. Here, we studied the creep of basalt with fluid presence. Our results show presence of fluid weakens the rock and promotes creep, while the composition only has a secondary effect and demonstrate that the governing creep mechanism is subcritical microcracking.
Roberto Emanuele Rizzo, Damien Freitas, James Gilgannon, Sohan Seth, Ian B. Butler, Gina Elizabeth McGill, and Florian Fusseis
Solid Earth, 15, 493–512, https://doi.org/10.5194/se-15-493-2024, https://doi.org/10.5194/se-15-493-2024, 2024
Short summary
Short summary
Here we introduce a new approach for analysing time-resolved 3D X-ray images tracking mineral changes in rocks. Using deep learning, we accurately identify and quantify the evolution of mineral components during reactions. The method demonstrates high precision in quantifying a metamorphic reaction, enabling accurate calculation of mineral growth rates and porosity changes. This showcases artificial intelligence's potential to enhance our understanding of Earth science processes.
Tiange Xing, Hamed O. Ghaffari, Ulrich Mok, and Matej Pec
Solid Earth, 13, 137–160, https://doi.org/10.5194/se-13-137-2022, https://doi.org/10.5194/se-13-137-2022, 2022
Short summary
Short summary
Geological carbon sequestration using basalts provides a solution to mitigate the high CO2 concentration in the atmosphere. Due to the long timespan of the GCS, it is important to understand the long-term deformation of the reservoir rock. Here, we studied the creep of basalt with fluid presence. Our results show presence of fluid weakens the rock and promotes creep, while the composition only has a secondary effect and demonstrate that the governing creep mechanism is subcritical microcracking.
Berit Schwichtenberg, Florian Fusseis, Ian B. Butler, and Edward Andò
Solid Earth, 13, 41–64, https://doi.org/10.5194/se-13-41-2022, https://doi.org/10.5194/se-13-41-2022, 2022
Short summary
Short summary
Hydraulic rock properties such as porosity and permeability are relevant factors that have an impact on groundwater resources, geological repositories and fossil fuel reservoirs. We investigate the influence of chemical compaction upon the porosity evolution in salt–biotite mixtures and related transport length scales by conducting laboratory experiments in combination with 4-D analysis. Our observations invite a renewed discussion of the effect of sheet silicates on chemical compaction.
James Gilgannon, Marius Waldvogel, Thomas Poulet, Florian Fusseis, Alfons Berger, Auke Barnhoorn, and Marco Herwegh
Solid Earth, 12, 405–420, https://doi.org/10.5194/se-12-405-2021, https://doi.org/10.5194/se-12-405-2021, 2021
Short summary
Short summary
Using experiments that simulate deep tectonic interfaces, known as viscous shear zones, we found that these zones spontaneously develop periodic sheets of small pores. The presence of porous layers in deep rocks undergoing tectonic deformation is significant because it requires a change to the current model of how the Earth deforms. Emergent porous layers in viscous rocks will focus mineralising fluids and could lead to the seismic failure of rocks that are never supposed to have this occur.
Jessica A. McBeck, Wenlu Zhu, and François Renard
Solid Earth, 12, 375–387, https://doi.org/10.5194/se-12-375-2021, https://doi.org/10.5194/se-12-375-2021, 2021
Short summary
Short summary
The competing modes of fault network development, including nucleation, propagation, and coalescence, influence the localization and connectivity of fracture networks and are thus critical influences on permeability. We distinguish between these modes of fracture development using in situ X-ray tomography triaxial compression experiments on crystalline rocks. The results underscore the importance of confining stress (burial depth) and fluids on fault network development.
James Gilgannon, Florian Fusseis, Luca Menegon, Klaus Regenauer-Lieb, and Jim Buckman
Solid Earth, 8, 1193–1209, https://doi.org/10.5194/se-8-1193-2017, https://doi.org/10.5194/se-8-1193-2017, 2017
Short summary
Short summary
We examine rocks from the middle crust to explore how fluids circulate and influence a rock’s response to larger-scale tectonic movements. A model is developed in which fluids deep in the Earth migrate to clusters of pores generated during those movements. We document how distinct pores form in a specific order in association with local changes in how quartz deforms. The porosity evolves out of the deformation, changing the rate the rock moved under tectonic forces.
Related subject area
Subject area: Crustal structure and composition | Editorial team: Geochemistry, mineralogy, petrology, and volcanology | Discipline: Mineralogy
Spectral characterisation of hydrothermal alteration associated with sediment-hosted Cu–Ag mineralisation in the central European Kupferschiefer
The acid sulfate zone and the mineral alteration styles of the Roman Puteoli (Neapolitan area, Italy): clues on fluid fracturing progression at the Campi Flegrei volcano
Léa Géring, Moritz Kirsch, Samuel Thiele, Andréa De Lima Ribeiro, Richard Gloaguen, and Jens Gutzmer
Solid Earth, 14, 463–484, https://doi.org/10.5194/se-14-463-2023, https://doi.org/10.5194/se-14-463-2023, 2023
Short summary
Short summary
We apply multi-range hyperspectral imaging on drill core material from a Kupferschiefer-type Cu–Ag deposit in Germany, mapping minerals such as iron oxides, kaolinite, sulfate, and carbonates at millimetre resolution and in a rapid, cost-efficient, and continuous manner to track hydrothermal fluid flow paths and vectors towards base metal deposits in sedimentary basins.
Monica Piochi, Angela Mormone, Harald Strauss, and Giuseppina Balassone
Solid Earth, 10, 1809–1831, https://doi.org/10.5194/se-10-1809-2019, https://doi.org/10.5194/se-10-1809-2019, 2019
Short summary
Short summary
The Campi Flegrei volcano in Italy displays hot fumarolic solfataras famous since Roman times. We use the solfataric mineralizations to investigate the local setting, evolution and geohazards. These provide information on hydrothermal activities that have been stable over the past 20 years. They reflect extreme conditions associated with the fluid overflow from subsurface and surface waters through a fracturing conduit. The solfataras are toxic and represent an extreme environment for life.
Cited articles
Andreani, M., Luquot, L., Gouze, P., Godard, M., Hoise, E., and Gibert, B.: Experimental Study of Carbon Sequestration Reactions Controlled by the Percolation of CO-Rich Brine through Peridotites, Environ. Sci. Technol., 43, 1226–1231, https://doi.org/10.1021/es8018429, 2009.
Bedford, J., Fusseis, F., Leclère, H., Wheeler, J., and Faulkner, D.: A 4D view on the evolution of metamorphic dehydration reactions, Sci. Rep., 7, 6881, https://doi.org/10.1038/s41598-017-07160-5, 2017.
Beinlich, A. and Austrheim, H.: In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts, Chem. Geol., 332–333, 32–44, https://doi.org/10.1016/j.chemgeo.2012.09.015, 2012.
Beinlich, A., Plümper, O., Hövelmann, J., Austrheim, H., and Jamtveit, B.: Massive serpentinite carbonation at Linnajavri, N-Norway, Terra Nova, 24, 446–455, https://doi.org/10.1111/j.1365-3121.2012.01083.x, 2012.
Blackwelder, E.: Exfoliation as a Phase of Rock Weathering, J. Geol., 33, 793–806, 1925.
Christensen, N. I.: Elasticity of Ultrabasic Rocks, J. Geophys. Res., 71, 5921–5931, https://doi.org/10.1029/JZ071i024p05921, 1966.
Cloetens, P., Barrett, R., Baruchel, J., Guigay, J. P., and Schlenker, M.: Phase objects in synchrotron radiation hard x-ray imaging, J. Phys. D. Appl. Phys., 29, 133–146, https://doi.org/10.1088/0022-3727/29/1/023, 1996.
Darcy, H.: Les fontaines publiques de la ville de Dijon, Recherche, 647, available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Les+fontaines+publiques+de+la+ville+de+dijon#0 (last access: 5 July 2018), 1856.
Deschamps, F., Godard, M., Guillot, S., and Hattori, K.: Geochemistry of subduction zone serpentinites: A review, Lithos, 178, 96–127, https://doi.org/10.1016/j.lithos.2013.05.019, 2013.
Eberhardt, E., Stimpson, B., and Stead, D.: Effects of Grain Size on the Initiation and Propagation Thresholds of Stress-induced Brittle Fractures, Rock Mech. Rock Eng., 32, 81–99, https://doi.org/10.1007/s006030050026, 1999.
Edelman, N.: Tension cracks parallel with the axial plane, B. Geol. Soc. Finland, 45, 61–65, 1973.
Emmanuel, S. and Berkowitz, B.: Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration, Earth Planet. Sc. Lett., 243, 657–668, https://doi.org/10.1016/j.epsl.2006.01.028, 2006.
Escartín, J., Hirth, G., and Evans, B.: Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges, Earth Planet. Sc. Lett., 151, 181–189, https://doi.org/10.1016/S0012-821X(97)81847-X, 1997.
Evans, B. W.: Metamorphism of alpine peridotite and serpentinite, Annu. Rev. Earth Pl. Sc., 5, 397–447, https://doi.org/10.1146/annurev.ea.05.050177.002145, 1977.
Falk, E. S. and Kelemen, P. B.: Geochemistry and petrology of listvenite in the Samail ophiolite, Sultanate of Oman: Complete carbonation of peridotite during ophiolite emplacement, Geochim. Cosmochim. Ac., 160, 70–90, https://doi.org/10.1016/j.gca.2015.03.014, 2015.
Fryer, P., Mottl, M., Johnson, L., Haggerty, J., Phipps, S., and Maekawa, H.: Serpentine bodies in the forearcs of western pacific convergent margins: Origin and associated fluids, Geoph. Monog. Series, 88, 259–279, 1995.
Fusseis, F., Schrank, C., Liu, J., Karrech, A., Llana-Fúnez, S., Xiao, X., and Regenauer-Lieb, K.: Pore formation during dehydration of a polycrystalline gypsum sample observed and quantified in a time-series synchrotron X-ray micro-tomography experiment, Solid Earth, 3, 71–86, https://doi.org/10.5194/se-3-71-2012, 2012.
Fusseis, F., Xiao, X., Schrank, C., and De Carlo, F.: A brief guide to synchrotron radiation-based microtomography in (structural) geology and rock mechanics, J. Struct. Geol., 65, 1–16, https://doi.org/10.1016/j.jsg.2014.02.005, 2014a.
Fusseis, F., Steeb, H., Xiao, X., Zhu, W. L., Butler, I. B., Elphick, S., and Mäder, U.: A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions, J. Synchrotron Radiat., 21, 251–253, https://doi.org/10.1107/S1600577513026969, 2014b.
García, N. A., Register, R. A., Vega, D. A., and Gómez, L. R.: Crystallization dynamics on curved surfaces, Phys. Rev. E-Stat. Nonlinear, Soft Matter Phys., 88, 012306, https://doi.org/10.1103/PhysRevE.88.012306, 2013.
Gislason, S. R., Wolff-Boenisch, D., Stefansson, A., Oelkers, E. H., Gunnlaugsson, E., Sigurdardottir, H., Sigfusson, B., Broecker, W. S., Matter, J. M., and Stute, M.: Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project, Int. J. Greenh. Gas Con., 4, 537–545, https://doi.org/10.1016/j.ijggc.2009.11.013, 2010.
Goff, F. and Lackner, K. S.: Carbon dioxide sequestering using ultramafic rocks, Environ. Geosci., 5, 89–101, 1998.
Grandstaff, D. E.: Changes in surface area and morphology and the mechanism of forsterite dissolution, Geochim. Cosmochim. Ac., 42, 1899–1901, https://doi.org/10.1016/0016-7037(78)90245-4, 1978.
Gürsoy, D., De Carlo, F., Xiao, X., and Jacobsen, C.: TomoPy: A framework for the analysis of synchrotron tomographic data, J. Synchrotron. Radiat., 21, 1188–1193, https://doi.org/10.1107/S1600577514013939, 2014.
Hansen, L. D., Dipple, G. M., Gordon, T. M., and Kellett, D. A.: Carbonated serpentinite (listwanite) at Atlin, British Columbia: A geological analogue to carbon dioxide sequestration, Can. Mineral., 43, 225–239, https://doi.org/10.2113/gscanmin.43.1.225, 2005.
He, H., Jin, X., Jing, F., and Ahrens, T. J.: Characteristic of dynamic tensile fracture in augite-peridotite, in: AIP Conference Proceedings, AIP, vol. 370, 593–596, 1996.
Heilbronner, R. and Barrett, S.: Image Analysis in Earth Sciences, Springer, Berlin, Heidelberg, 2014.
Hövelmann, J., Austrheim, H., and Jamtveit, B.: Microstructure and porosity evolution during experimental carbonation of a natural peridotite, Chem. Geol., 334, 254–265, https://doi.org/10.1016/j.chemgeo.2012.10.025, 2012.
Iyer, K., Jamtveit, B., Mathiesen, J., Malthe-Sørenssen, A., and Feder, J.: Reaction-assisted hierarchical fracturing during serpentinization, Earth Planet. Sc. Lett., 267, 503–516, https://doi.org/10.1016/j.epsl.2007.11.060, 2008.
Jamtveit, B., Putnis, C. V., and Malthe-Sørenssen, A.: Reaction induced fracturing during replacement processes, Contrib. Mineral. Petr., 157, 127–133, https://doi.org/10.1007/s00410-008-0324-y, 2009.
Jamtveit, B., Kobchenko, M., Austrheim, H., Malthe-Sørenssen, A., Røyne, A., and Svensen, H.: Porosity evolution and crystallization-driven fragmentation during weathering of andesite, J. Geophys. Res.-Sol. Ea., 116, 1–12, https://doi.org/10.1029/2011JB008649, 2011.
Johannes, W.: An experimental investigation of the system MgO-SiO2-H2O-CO2, Am. J. Sci., 267, 1083–1104, https://doi.org/10.2475/ajs.267.9.1083, 1969.
Kaestner, A., Lehmann, E., and Stampanoni, M.: Imaging and image processing in porous media research, Adv. Water Resour., 31, 1174–1187, https://doi.org/10.1016/j.advwatres.2008.01.022, 2008.
Kelemen, P. B. and Matter, J. M.: In situ carbonation of peridotite for CO2 storage, P. Natl. Acad. Sci. USA, 105, 17295–17300, https://doi.org/10.1073/pnas.0805794105, 2008.
Kelemen, P. B. and Hirth, G.: Reaction-driven cracking during retrograde metamorphism: Olivine hydration and carbonation, Earth Planet. Sc. Lett., 345–348, 81–89, https://doi.org/10.1016/j.epsl.2012.06.018, 2012.
Kelemen, P. B., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J.: Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage, Annu. Rev. Earth Planet. Sc., 39, 545–576, https://doi.org/10.1146/annurev-earth-092010-152509, 2011.
Kelemen, P. B., Savage, H., and Hirth, G.: Reaction-Driven Cracking During Mineral Hydration, Carbonation and Oxidation, edited by: Poromechanics, V., vol. c, American Society of Civil Engineers, Reston, VA, 823–826, https://doi.org/10.1061/9780784412992.099, 2013.
King, H. E., Plümper, O., and Putnis, A.: Effect of Secondary Phase Formation on the Carbonation of Olivine, Environ. Sci. Technol., 44, 6503–6509, https://doi.org/10.1021/es9038193, 2010.
Lisabeth, H., Zhu, W., Xing, T., and De Andrade, V.: Dissolution-Assisted Pattern Formation During Olivine Carbonation, Geophys. Res. Lett., 44, 9622–9631, https://doi.org/10.1002/2017GL074393, 2017a.
Lisabeth, H. P., Zhu, W., Kelemen, P. B., and Ilgen, A.: Experimental evidence for chemo-mechanical coupling during carbon mineralization in ultramafic rocks, Earth Planet. Sc. Lett., 474, 355–367, https://doi.org/10.1016/j.epsl.2017.06.045, 2017b.
Macdonald, A. H. and Fyfe, W. S.: Rate of serpentinization in seafloor environments, Tectonophysics, 116, 123–135, https://doi.org/10.1016/0040-1951(85)90225-2, 1985.
Mani, D., Nirmal Charan, S., and Kumar, B.: Assessment of carbon dioxide sequestration potential of ultramafic rocks in the greenstone belts of southern India, Curr. Sci., 94, 53–60, 2008.
Moore, D. E., Lockner, D. A., Summers, R., Ma, S., and Byerlee, J. D.: Strength of crisolite-serpentinite gouge under hydrothermal conditions: Can it explain a weak San Andreas fault?, Geology, 24, 1041–1044, https://doi.org/10.1130/0091-7613(1996)024<1041:SOCSGU>2.3.CO;2, 1996.
Nasir, S., Al Sayigh, A. R., Al Harthy, A., Al-Khirbash, S., Al-Jaaidi, O., Musllam, A., Al-Mishwat, A., and Al-Bu'saidi, S.: Mineralogical and geochemical characterization of listwaenite from the Semail Ophiolite, Oman, Chem. Erde-Geochem., 67, 213–228, https://doi.org/10.1016/j.chemer.2005.01.003, 2007.
Peuble, S., Andreani, M., Gouze, P., Pollet-Villard, M., Reynard, B., and Van de Moortele, B.: Multi-scale characterization of the incipient carbonation of peridotite, Chem. Geol., 476, 150–160, https://doi.org/10.1016/j.chemgeo.2017.11.013, 2018.
Plummer, P. S. and Gostin, V. A.: Shrinkage cracks: desiccation or synaeresis?, J. Sediment. Petrol., 51, 1147–1156, https://doi.org/10.1306/212F7E4B-2B24-11D7-8648000102C1865D, 1981.
Poiseuille, J. L. M.: Recherches experimentales sur le mouvement des liquides dans les tubes de tres petits diametres, Imprimerie Royale, available at: https://www.irphe.fr/~clanet/otherpaperfile/articles/Poiseuille/poiseuille1840a.pdf (last access: 5 July 2018), 1844.
Power, I. M., Harrison, A. L., Dipple, G. M., Wilson, S. A., Kelemen, P. B., Hitch, M., and Southam, G.: Carbon Mineralization: From Natural Analogues to Engineered Systems, Rev. Mineral. Geochem., 77, 305–360, https://doi.org/10.2138/rmg.2013.77.9, 2013.
Rouméjon, S. and Cannat, M.: Serpentinization of mantle-derived peridotites at mid-ocean ridges: Mesh texture development in the context of tectonic exhumation, Geochem. Geophy. Geosy., 15, 2354–2379, https://doi.org/10.1002/2013GC005148, 2014.
Røyne, A. and Jamtveit, B.: Pore-Scale Controls on Reaction-Driven Fracturing, Rev. Mineral. Geochem., 80, 25–44, https://doi.org/10.2138/rmg.2015.80.02, 2015.
Rudge, J. F., Kelemen, P. B., and Spiegelman, M.: A simple model of reaction-induced cracking applied to serpentinization and carbonation of peridotite, Earth Planet. Sc. Lett., 291, 215–227, https://doi.org/10.1016/j.epsl.2010.01.016, 2010.
Saldi, G. D., Jordan, G., Schott, J., and Oelkers, E. H.: Magnesite growth rates as a function of temperature and saturation state, Geochim. Cosmochim. Ac., 73, 5646–5657, https://doi.org/10.1016/j.gca.2009.06.035, 2009.
Scherer, G. W.: Stress from crystallization of salt, Cem. Concr. Res., 34, 1613–1624, https://doi.org/10.1016/j.cemconres.2003.12.034, 2004.
Singh, S. K.: Relationship among fatigue strength, mean grain size and compressive strength of a rock, Rock Mech. Rock Eng., 21, 271–276, https://doi.org/10.1007/BF01020280, 1988.
Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A.: Fracture initiation during volume increasing reactions in rocks and applications for CO2 sequestration, Earth Planet. Sc. Lett., 389, 132–142, https://doi.org/10.1016/j.epsl.2013.12.039, 2014.
van Noort, R., Wolterbeek, T., Drury, M., Kandianis, M., and Spiers, C.: The Force of Crystallization and Fracture Propagation during In-Situ Carbonation of Peridotite, Minerals, 7, 190, https://doi.org/10.3390/min7100190, 2017.
Velbel, M. A.: Dissolution of olivine during natural weathering, Geochim. Cosmochim. Ac., 73, 6098–6113, https://doi.org/10.1016/j.gca.2009.07.024, 2009.
Velbel, M. A. and Ranck, J. M.: Etch pits on naturally altered olivine from dunites of the Appalachian Blue Ridge Mountains, North Carolina, USA, Mineral. Mag., 72, 145–148, https://doi.org/10.1180/minmag.2008.072.1.145, 2008.
Wells, R. K., Xiong, W., Sesti, E., Cui, J., Giammar, D., Skemer, P., Hayes, S. E., and Conradi, M. S.: Spatially-variable carbonation reactions in polycrystalline olivine, Geochim. Cosmochim. Ac., 204, 252–266, https://doi.org/10.1016/j.gca.2017.02.003, 2017.
Weyl, P. K.: Pressure solution and the force of crystallization: a phenomenological theory, J. Geophys. Res., 64, 2001–2025, https://doi.org/10.1029/JZ064i011p02001, 1959.
Wilson, M. J.: Weathering of the primary rock-forming minerals: processes, products and rates, Clay Miner., 39, 233–266, https://doi.org/10.1180/0009855043930133, 2004.
Wilson, M. J. and Jones, D.: Lichen weathering of minerals: implications for pedogenesis, Geol. Soc. London, Spec. Publ., 11, 5–12, https://doi.org/10.1144/GSL.SP.1983.011.01.01, 1983.
Winkler, E. M. and Singer, P. C.: Crystallization pressure of salts in stone and concrete, Bull. Geol. Soc. Am., 83, 3509–3514, https://doi.org/10.1130/0016-7606(1972)83[3509:CPOSIS]2.0.CO;2, 1972.
Zhu, W., Montesi, L. G. J., and Wong, T. F.: Shear-enhanced compaction and permeability reduction: Triaxial extension tests on porous sandstone, Mech. Mater., 25, 199–214, https://doi.org/10.1016/S0167-6636(97)00011-2, 1997.
Zhu, W., Fusseis, F., Lisabeth, H. P., Xing, T., Xiao, X., De Andrade, V., and Karato, S. I.: Experimental evidence of reaction-induced fracturing during olivine carbonation, Geophys. Res. Lett., 43, 9535–9543, https://doi.org/10.1002/2016GL070834, 2016.
Ziese, F., Maret, G., and Gasser, U.: Heterogeneous nucleation and crystal growth on curved surfaces observed by real-space imaging, J. Phys. Condens. Matter, 25, 375105, https://doi.org/10.1088/0953-8984/25/37/375105, 2013.
Short summary
The olivine carbonation reaction is volume increasing and could prevent further reaction by clogging the fluid pathways. This contradicts the observed fully carbonated outcrops in nature, but the mechanism behind this self-sustainability is poorly understood. Our study reveals that the stretching-induced fracturing and the dissolution channelization are mechanisms that could contribute to the sustainability of carbonation reactions. This study provides new insights on the olivine carbonation.
The olivine carbonation reaction is volume increasing and could prevent further reaction by...