Articles | Volume 10, issue 6
https://doi.org/10.5194/se-10-1905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-1905-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extracting small deformation beyond individual station precision from dense Global Navigation Satellite System (GNSS) networks in France and western Europe
Christine Masson
CORRESPONDING AUTHOR
Géosciences Montpellier, CNRS, University of Montpellier,
Université des Antilles, Montpellier, 34000, France
Stephane Mazzotti
Géosciences Montpellier, CNRS, University of Montpellier,
Université des Antilles, Montpellier, 34000, France
Philippe Vernant
Géosciences Montpellier, CNRS, University of Montpellier,
Université des Antilles, Montpellier, 34000, France
Erik Doerflinger
Géosciences Montpellier, CNRS, University of Montpellier,
Université des Antilles, Montpellier, 34000, France
Related authors
Christine Masson, Stephane Mazzotti, and Philippe Vernant
Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, https://doi.org/10.5194/se-10-329-2019, 2019
Short summary
Short summary
We use statistical analyses of synthetic position time series to estimate the potential precision of GPS velocities. Regression tree analyses show that the main factors controlling the velocity precision are the duration of the series, the presence of offsets, and the noise. Our analysis allows us to propose guidelines which can be applied to actual GPS data that constrain the velocity accuracies.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Amélie Viger, Stéphane Dominguez, Stéphane Mazzotti, Michel Peyret, Maxime Henriquet, Giovanni Barreca, Carmelo Monaco, and Adrien Damon
Solid Earth, 15, 965–988, https://doi.org/10.5194/se-15-965-2024, https://doi.org/10.5194/se-15-965-2024, 2024
Short summary
Short summary
New satellite geodetic data (PS-InSAR) evidence a generalized subsidence and an eastward tilting of southeastern Sicily combined with a local relative uplift along its eastern coast. We perform flexural and elastic modeling and show that the slab pull force induced by the Ionian slab roll-back and extrado deformation reproduce the measured surface deformation. Finally, we propose an original seismic cycle model that is mainly driven by the southward migration of the Ionian slab roll-back.
Oswald Malcles, Philippe Vernant, David Fink, Gaël Cazes, Jean-François Ritz, Toshiyuki Fujioka, and Jean Chéry
Earth Surf. Dynam., 12, 679–690, https://doi.org/10.5194/esurf-12-679-2024, https://doi.org/10.5194/esurf-12-679-2024, 2024
Short summary
Short summary
In the Grands Causses area (Southern France), we study the relationship between the evolution of the river, its incision through time, and the location of the nearby caves. It is commonly accepted that horizontal caves are formed during a period of river stability (no incision) at the elevation of the river. Our original results show that it is wrong in our case study. Therefore, another model of cave formation is proposed that does not rely on direct river control over cave locations.
Oceane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-53, https://doi.org/10.5194/nhess-2024-53, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, volcanic seismicity and a complete revision of the subduction interface zoning.
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, and Vincent Godard
EGUsphere, https://doi.org/10.5194/egusphere-2023-2154, https://doi.org/10.5194/egusphere-2023-2154, 2023
Short summary
Short summary
The Armorican region (NW France), is marked by several old coastal and marine markers that are today located several tens of meters above the sea level. This fact is commonly explained by sea-level variations and complex tectonic processes (e.g. mantle dynamic). In this study we test the role of the erosion and the associated flexural (lithospheric bending) response. We show that this simple model of flexural adjustment is to be taken into account to explain the regional evolution.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth, 14, 1067–1081, https://doi.org/10.5194/se-14-1067-2023, https://doi.org/10.5194/se-14-1067-2023, 2023
Short summary
Short summary
In glaciated regions, induced lithosphere deformation is proposed as a key process contributing to fault activity and seismicity. We study the impact of this effect on fault activity in the Western Alps. We show that the response to the last glaciation explains a major part of the geodetic strain rates but does not drive or promote the observed seismicity. Thus, seismic hazard studies in the Western Alps require detailed modeling of the glacial isostatic adjustment (GIA) transient impact.
Juliette Grosset, Stéphane Mazzotti, and Philippe Vernant
Solid Earth Discuss., https://doi.org/10.5194/se-2021-141, https://doi.org/10.5194/se-2021-141, 2021
Publication in SE not foreseen
Short summary
Short summary
Glacial Isostatic Adjustment is considered as a major process of seismicity in intraplate regions such as Scandinavia and eastern North America. We show that GIA associated with the alpine icecap induces a present-day response in vertical motion and horizontal deformation seen in GNSS strain rate field. We show that GIA induced stress is opposite to strain rate, with the paradoxical consequence that postglacial rebound in the Western Alps can explain the strain rate field but not the seismicity.
Séverine Liora Furst, Samuel Doucet, Philippe Vernant, Cédric Champollion, and Jean-Louis Carme
Solid Earth, 12, 15–34, https://doi.org/10.5194/se-12-15-2021, https://doi.org/10.5194/se-12-15-2021, 2021
Short summary
Short summary
We develop a two-step methodology combining multiple surface deformation measurements above a salt extraction site (Vauvert, France) in order to overcome the difference in resolution and accuracy. Using this 3-D velocity field, we develop a model to determine the kinematics of the salt layer. The model shows a collapse of the salt layer beneath the exploitation. It also identifies a salt flow from the deepest and most external part of the salt layer towards the center of the exploitation.
Oswald Malcles, Philippe Vernant, Jean Chéry, Pierre Camps, Gaël Cazes, Jean-François Ritz, and David Fink
Solid Earth, 11, 241–258, https://doi.org/10.5194/se-11-241-2020, https://doi.org/10.5194/se-11-241-2020, 2020
Short summary
Short summary
We aim to better understand the challenging areas that are the intraplate regions using one example: the southern French Massif Central and its numerous hundreds of meters deep valleys. We apply a multidisciplinary approach there using geomorphology, geochronology, and numerical modeling.
Our dating results show that the canyon incisions are part of the Plio-Quaternary evolution with incision rate of ~ 80 m Ma−1. We propose then that this incision is possible due to an active regional uplift.
Christine Masson, Stephane Mazzotti, and Philippe Vernant
Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, https://doi.org/10.5194/se-10-329-2019, 2019
Short summary
Short summary
We use statistical analyses of synthetic position time series to estimate the potential precision of GPS velocities. Regression tree analyses show that the main factors controlling the velocity precision are the duration of the series, the presence of offsets, and the noise. Our analysis allows us to propose guidelines which can be applied to actual GPS data that constrain the velocity accuracies.
Cédric Champollion, Sabrina Deville, Jean Chéry, Erik Doerflinger, Nicolas Le Moigne, Roger Bayer, Philippe Vernant, and Naomi Mazzilli
Hydrol. Earth Syst. Sci., 22, 3825–3839, https://doi.org/10.5194/hess-22-3825-2018, https://doi.org/10.5194/hess-22-3825-2018, 2018
Short summary
Short summary
Gravity monitoring at the surface and in situ (in caves) has been conducted in a karst hydro-system in the south of France (Larzac plateau). Subsurface water storage is evidenced with a spatial variability probably associated with lithology differences and confirmed by MRS measurements. Gravity allows transient water storage to be estimated on the seasonal scale.
Hai Ninh Nguyen, Philippe Vernant, Stephane Mazzotti, Giorgi Khazaradze, and Eva Asensio
Solid Earth, 7, 1349–1363, https://doi.org/10.5194/se-7-1349-2016, https://doi.org/10.5194/se-7-1349-2016, 2016
Short summary
Short summary
We present a new 3-D GPS velocity solution for 182 sites for the region encompassing the Western Alps, Pyrenees. The only significant horizontal deformation (0.2 mm/yr over a distance of 50 km) is a NNE–SSW extension in the western Pyrenees. In contrast, significant uplift rates up to 2 mm/yr occur in the Western Alps but not in the Pyrenees. A correlation between site elevations and fast uplift rates in the Western Alps suggests that part of this uplift is induced by postglacial rebound.
Related subject area
Subject area: Tectonic plate interactions, magma genesis, and lithosphere deformation at all scales | Editorial team: Geodesy, gravity, and geomagnetism | Discipline: Geodesy
New insights into active tectonics and seismogenic potential of the Italian Southern Alps from vertical geodetic velocities
Asthenospheric anelasticity effects on ocean tide loading around the East China Sea observed with GPS
Letizia Anderlini, Enrico Serpelloni, Cristiano Tolomei, Paolo Marco De Martini, Giuseppe Pezzo, Adriano Gualandi, and Giorgio Spada
Solid Earth, 11, 1681–1698, https://doi.org/10.5194/se-11-1681-2020, https://doi.org/10.5194/se-11-1681-2020, 2020
Short summary
Short summary
The Venetian Southern Alps (Italy) are located in a slowly deforming plate-boundary region where strong earthquakes occurred in the past even if seismological and geomorphological evidence is not conclusive about the specific thrust faults involved. In this study, we integrate and model different geodetic datasets of ground velocity to constrain the seismogenic potential of the studied faults, giving an example of the importance of using vertical geodetic data for seismic hazard estimates.
Junjie Wang, Nigel T. Penna, Peter J. Clarke, and Machiel S. Bos
Solid Earth, 11, 185–197, https://doi.org/10.5194/se-11-185-2020, https://doi.org/10.5194/se-11-185-2020, 2020
Short summary
Short summary
Changes in the Earth's elastic strength at increasing timescales of deformation affect predictions of its response to the shifting weight of the oceans caused by tides. We show that these changes are detectable using GPS and must be accounted for but that 3-D or locally-tuned models of the Earth's behaviour around the East China Sea provide only slightly better predictions than a simpler model which varies only with depth. Use of this model worldwide will improve precise positioning by GPS.
Cited articles
Altamimi, Z., Rebischung, P., Métivier, L., and Collilieux, X.: ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions, J. Geophys. Res.-Sol. Ea., 121, 6109–6131, https://doi.org/10.1002/2016JB013098, 2016.
Baize, S., Cushing, E. M., Lemeille, F., and Jomard, H.: Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data, B. Soc. Geol. Fr., 184, 225–259, https://doi.org/10.2113/gssgfbull.184.3.225, 2013.
Banerjee, P., Bürgmann, R., Nagarajan, B., and Apel, E.: Intraplate deformation of the Indian subcontinent, Geophys. Res. Lett., 35, L18301, https://doi.org/10.1029/2008GL035468, 2008.
Battaglia, M., Murray, M. H., Serpelloni, E., and Bürgmann, R.: The Adriatic region: An independent microplate within the Africa-Eurasia collision zone, Geophys. Res. Lett., 31, L09605, https://doi.org/10.1029/2004GL019723, 2004.
Beavan, J., Wallace, L. M., Palmer, N., Denys, P., Ellis, S., Fournier, N., Hreinsdottir, S., Pearson, C., and Denham, M.: New Zealand GPS velocity field: 1995–2013, New Zeal. J. Geol. Geop., 59, 5–14, https://doi.org/10.1080/00288306.2015.1112817, 2016.
Boehm, J., Werl, B., and Schuh, H.: Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data: TROPOSPHERE MAPPING FUNCTIONS FROM ECMWF, J. Geophys. Res.-Sol. Ea., 111, B02406, https://doi.org/10.1029/2005JB003629, 2006.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.: Classification and regression trees, CRC Press, Chapman and Hall, Wadsworth, New York, 251–257, 1984.
Brockmann, E., Ineichen, D., Marti, U., Schaer, S., Schlatter, A., and Villiger, A.: Determination of Tectonic Movements in the Swiss Alps Using GNSS and Levelling, in: Geodesy for Planet Earth, Vol. 136, edited by: Kenyon, S., Pacino, M. C., and Marti, U., Springer Berlin Heidelberg, Berlin, Heidelberg, 689–695, 2012.
Calais, E. and Stein, S.: Time-Variable Deformation in the New Madrid Seismic Zone, Science, 323, 1442–1442, https://doi.org/10.1126/science.1168122, 2009.
Calvet, M., Sylvander, M., Margerin, L., and Villaseñor, A.: Spatial variations of seismic attenuation and heterogeneity in the Pyrenees: Coda Q and peak delay time analysis, Tectonophysics, 608, 428–439, https://doi.org/10.1016/j.tecto.2013.08.045, 2013.
Cara, M., Cansi, Y., Schlupp, A., Arroucau, P., Béthoux, N., Beucler, E., Bruno, S., Calvet, M., Chevrot, S., Deboissy, A., Delouis, B., Denieul, M., Deschamps, A., Doubre, C., Fréchet, J., Godey, S., Golle, O., Grunberg, M., Guilbert, J., Haugmard, M., Jenatton, L., Lambotte, S., Leobal, D., Maron, C., Mendel, V., Merrer, S., Macquet, M., Mignan, A., Mocquet, A., Nicolas, M., Perrot, J., Potin, B., Sanchez, O., Santoire, J.-P., Sèbe, O., Sylvander, M., Thouvenot, F., Van Der Woerd, J., and Van Der Woerd, K.: SI-Hex: a new catalogue of instrumental seismicity for metropolitan France, B. Soc. Geol. Fr., 186, 3–19, https://doi.org/10.2113/gssgfbull.186.1.3, 2015.
Carafa, M. M. C. and Bird, P.: Improving deformation models by discounting transient signals in geodetic data: 2. Geodetic data, stress directions, and long-term strain rates in Italy: Discounting Transient Signals: 2. Italy, J. Geophys. Res.-Sol. Ea., 121, 5557–5575, https://doi.org/10.1002/2016JB013038, 2016.
Cardozo, N. and Allmendinger, R. W.: SSPX: A program to compute strain from displacement/velocity data, Comput. Geosci., 35, 1343–1357, https://doi.org/10.1016/j.cageo.2008.05.008, 2009.
Chevrot, S., Sylvander, M., and Delouis, B.: A preliminary catalog of moment tensors for the Pyrenees, Tectonophysics, 510, 239–251, https://doi.org/10.1016/j.tecto.2011.07.011, 2011.
Chousianitis, K., Ganas, A., and Evangelidis, C. P.: Strain and rotation rate patterns of mainland Greece from continuous GPS data and comparison between seismic and geodetic moment release: Kinematics Of Mainland Greece, J. Geophys. Res.-Sol. Ea., 120, 3909–3931, https://doi.org/10.1002/2014JB011762, 2015.
Deichmann, N., Clinton, J., Husen, S., Edwards, B., Haslinger, F., Fäh, D., Giardini, D., Kästli, P., Kradolfer, U., and Wiemer, S.: Earthquakes in Switzerland and surrounding regions during 2011, Swiss J. Geosci., 105, 463–476, https://doi.org/10.1007/s00015-012-0116-2, 2012.
Delacou, B., Sue, C., Champagnac, J.-D., and Burkhard, M.: Present-day geodynamics in the bend of the western and central Alps as constrained by earthquake analysis, Geophys. J. Int., 158, 753–774, https://doi.org/10.1111/j.1365-246X.2004.02320.x, 2004.
Dow, J. M., Neilan, R. E., and Rizos, C.: The International GNSS Service in a changing landscape of Global Navigation Satellite Systems, J. Geodesy, 83, 191–198, https://doi.org/10.1007/s00190-008-0300-3, 2009.
Farolfi, G. and Del Ventisette, C.: Contemporary crustal velocity field in Alpine Mediterranean area of Italy from new geodetic data, GPS Solutions, 20, 715–722, https://doi.org/10.1007/s10291-015-0481-1, 2016.
Gazeaux, J., Williams, S., King, M., Bos, M., Dach, R., Deo, M., Moore, A. W., Ostini, L., Petrie, E., Roggero, M., Teferle, F. N., Olivares, G., and Webb, F. H.: Detecting offsets in GPS time series: First results from the detection of offsets in GPS experiment: Detecting Offsets In Gps Time Serie, J. Geophys. Res.-Sol. Ea., 118, 2397–2407, https://doi.org/10.1002/jgrb.50152, 2013.
Griffiths, J.: Combined orbits and clocks from IGS second reprocessing, J. Geodesy, 93, 177–195, https://doi.org/10.1007/s00190-018-1149-8, 2019.
Gunawan, E. and Widiyantoro, S.: Active tectonic deformation in Java, Indonesia inferred from a GPS-derived strain rate, J. Geodynam., 123, 49–54, https://doi.org/10.1016/j.jog.2019.01.004, 2019.
Hartigan, J. A. and Wong, M. A.: Algorithm AS 136: A K-Means Clustering Algorithm, J. R. Stat. Soc. C-Appl., 28, 100–108, 1979.
Héroux, P. and Kouba, J.: GPS Precise Point Positioning using IGS orbit pro- ducts, Phys. Chem. Earth, 26, 573–578, 2001.
Herring, T. A., King, R. W., and McCluskey, S. M.: Introduction to GAMIT/GLOBK, Release 10.35, mass. Instit. Tech., Cambridge, 1–45, 2009.
Houlié, N., Woessner, J., Giardini, D., and Rothacher, M.: Lithosphere strain rate and stress field orientations near the Alpine arc in Switzerland, Sci. Rep., 8, 1–14, https://doi.org/10.1038/s41598-018-20253-z, 2018.
Jomard, H., Cushing, E. M., Palumbo, L., Baize, S., David, C., and Chartier, T.: Transposing an active fault database into a seismic hazard fault model for nuclear facilities – Part 1: Building a database of potentially active faults (BDFA) for metropolitan France, Nat. Hazards Earth Syst. Sci., 17, 1573–1584, https://doi.org/10.5194/nhess-17-1573-2017, 2017.
Kouba, J.: A guide to using International GNSS Service (IGS) products, International GNSS Service, available at: http://acc.igs.org/UsingIGSProductsVer21.pdf, last access: 7 November 2009.
Kreemer, C., Hammond, W. C., and Blewitt, G.: A robust estimation of the 3-D intraplate deformation of the North American plate from GPS, J. Geophys. Res.-Sol. Ea., 123, 4388–4412, https://doi.org/10.1029/2017JB015257, 2018.
Larroque, C., Scotti, O., and Ioualalen, M.: Reappraisal of the 1887 Ligurian earthquake (western Mediterranean) from macroseismicity, active tectonics and tsunami modelling: Reappraisal of the 1887 Ligurian earthquake, Geophys. J. Int., 190, 87–104, https://doi.org/10.1111/j.1365-246X.2012.05498.x, 2012.
Larroque, C., Delouis, B., Sage, F., Régnier, M., Béthoux, N., Courboulex, F., and Deschamps, A.: The sequence of moderate-size earthquakes at the junction of the Ligurian basin and the Corsica margin (western Mediterranean): The initiation of an active deformation zone revealed?, Tectonophysics, 676, 135–147, https://doi.org/10.1016/j.tecto.2016.03.027, 2016.
Liu, S., Shen, Z.-K., and Bürgmann, R.: Recovery of secular deformation field of Mojave Shear Zone in Southern California from historical terrestrial and GPS measurements: Recovering Mojave Secular Deformation, J. Geophys. Res.-Sol. Ea, 120, 3965–3990, https://doi.org/10.1002/2015JB011941, 2015.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415, https://doi.org/10.1007/s10236-006-0086-x, 2006.
Mahalanobis, P. C.: On the Generalized Distance in Statistics, J. Genet., 41, 159–193, 1936.
Masson, C., Mazzotti, S., and Vernant, P.: Precision of continuous GPS velocities from statistical analysis of synthetic time series, Solid Earth, 10, 329–342, https://doi.org/10.5194/se-10-329-2019, 2019a.
Masson, C., Mazzotti, S., Vernant, P., and Doerflinger, E.: Data providers and velocity field, OSU OREME, https://doi.org/10.15148/2cdc72ec-1066-486c-aef7-9da36662f46d,
last access: 10 October 2019b.
Maurer, H. R., Burkhard, M., Deichmann, N., and Green, A. G.: Active tectonism in the central Alps: contrasting stress regimes north and south of the Rhone Valley, Terra Nova, 9, 91–94, 1997.
Mazabraud, Y., Béthoux, N., Guilbert, J., and Bellier, O.: Evidence for short-scale stress field variations within intraplate central-western France: Intraplate short-scale stress field variations, Geophys. J. Int., 160, 161–178, https://doi.org/10.1111/j.1365-246X.2004.02430.x, 2004.
Mazzotti, S., Leonard, L. J., Cassidy, J. F., Rogers, G. C., and Halchuk, S.: Seismic hazard in western Canada from GPS strain rates versus earthquake catalog, J. Geophys. Res., 116, B12310, https://doi.org/10.1029/2011JB008213, 2011.
Neres, M., Carafa, M. M. C., Fernandes, R. M. S., Matias, L., Duarte, J. C., Barba, S., and Terrinha, P.: Lithospheric deformation in the Africa-Iberia plate boundary: Improved neotectonic modeling testing a basal-driven Alboran plate: Neotectonic Modeling In Africa-Iberia, J. Geophys. Res.-Sol. Ea., 121, 6566–6596, https://doi.org/10.1002/2016JB013012, 2016.
Neres, M., Neves, M. C., Custódio, S., Palano, M., Fernandes, R., Matias, L., Carafa, M., and Terrinha, P.: Gravitational Potential Energy in Iberia: A Driver of Active Deformation in High-Topography Regions, J. Geophys. Res.-Sol. Ea., 123, 10277–10296, https://doi.org/10.1029/2017JB015002, 2018.
Nguyen, H. N., Vernant, P., Mazzotti, S., Khazaradze, G., and Asensio, E.: 3-D GPS velocity field and its implications on the present-day post-orogenic deformation of the Western Alps and Pyrenees, Solid Earth, 7, 1349–1363, https://doi.org/10.5194/se-7-1349-2016, 2016.
Nocquet, J.-M., Sue, C., Walpersdorf, A., Tran, T., Lenôtre, N., Vernant, P., Cushing, M., Jouanne, F., Masson, F., Baize, S., Chéry, J., and van der Beek, P. A.: Present-day uplift of the western Alps, Sci. Rep., 6, 220–242, https://doi.org/10.1038/srep28404, 2016.
Özdemir, S. and Karslıoğlu, M. O.: Soft clustering of GPS velocities from a homogeneous permanent network in Turkey, J. Geodesy, 93, 1171–1195, https://doi.org/10.1007/s00190-019-01235-z, 2019.
Palano, M., Rossi, M., and Cannavo, F.: Etna@ref: a geodetic reference frame for Mt. Etna
GPS networks, Ann. Geophys., 53, 49–57, 2010.
Palano, M., González, P., and Fernández, J.: The Diffuse Plate boundary of Nubia and Iberia in the Western Mediterranean: Crustal deformation evidence for viscous coupling and fragmented lithosphere, Earth Planet. Sc. Lett., 430, 439–447, https://doi.org/10.1016/j.epsl.2015.08.040, 2015.
Plenefisch, T. and Bonjer, K. P.: The stress field in the Rhine Graben area inferred from earthquake focal mechanisms and estimation of frictional parameters, Tectonophysics, 275, 71–97, 1997.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V., Gomez, F., Al-Ghazzi, R., and Karam, G.: GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions: EASTERN MEDITERRANEAN ACTIVE TECTONICS, J. Geophys. Res.-Sol. Ea., 111, B05411, https://doi.org/10.1029/2005JB004051, 2006.
Rigo, A., Vernant, P., Feigl, K. L., Goula, X., Khazaradze, G., Talaya, J., Morel, L., Nicolas, J., Baize, S., Chery, J., and Sylvander, M.: Present-day deformation of the Pyrenees revealed by GPS surveying and earthquake focal mechanisms until 2011, Geophys. J. Int., 201, 947–964, https://doi.org/10.1093/gji/ggv052, 2015.
Sánchez, L., Völksen, C., Sokolov, A., Arenz, H., and Seitz, F.: Present‐day surface deformation of the Alpine Region inferred from geodetic techniques, Earth Syst. Sci. Data, 10, 1503–1526. https://doi.org/10.5194/essd‐10‐1503‐2018, 2018.
Santamaría-Gómez, A., Bouin, M.-N., Collilieux, X., and Wöppelmann, G.: Correlated errors in GPS position time series: Implications for velocity estimates, J. Geophys. Res., 116, B01405, https://doi.org/10.1029/2010JB007701, 2011.
Savage, J. C. and Simpson, R. W.: Clustering of GPS velocities in the Mojave Block, southeastern California, J. Geophys. Res.-Sol. Ea., 118, 1747–1759, https://doi.org/10.1029/2012JB009699, 2013.
Savage, J. C.: Euler-Vector Clustering of GPS Velocities Defines Microplate Geometry in Southwest Japan, J. Geophys. Res.-Sol. Ea., 123, 1954–1968, https://doi.org/10.1002/2017JB014874, 2018.
Sternai, P., Sue, C., Husson, L., Serpelloni, E., Becker, T. W., Willett, S. D., Faccenna, C., Di Giulio, A., Spada, G., Jolivet, L., Valla, P., Petit, C., Nocquet, J.-M., Walpersdorf, A., and Castelltort, S.: Present-day uplift of the European Alps: Evaluating mechanisms and models of their relative contributions, Earth-Sci. Rev., 190, 589–604, https://doi.org/10.1016/j.earscirev.2019.01.005, 2019.
Sue, C., Thouvenot, F., Fréchet, J., and Tricart, P.: Widespread extension in the core of the western Alps revealed by earthquake analysis, J. Geophys. Res.-Sol. Ea., 104, 25611–25622, 1999.
Sue, C., Delacou, B., Champagnac, J. D., Allanic, C., and Burkhard, M.: Aseismic deformation in the Alps: GPS vs. seismic strain quantification, Terra Nova, 19, 182–188, 2007.
Tarayoun, A., Mazzotti, S., Craymer, M., and Henton, J.: Structural Inheritance Control on Intraplate Present-Day Deformation: GPS Strain Rate Variations in the Saint Lawrence Valley, Eastern Canada, J. Geophys. Res.-Sol. Ea., 123, 7004–7020, https://doi.org/10.1029/2017JB015417, 2018.
Tesauro, M., Hollenstein, C., Egli, R., Geiger, A., and Kahle, H.-G.: Analysis of central western Europe deformation using GPS and seismic data, J. Geodynam., 42, 194–209, https://doi.org/10.1016/j.jog.2006.08.001, 2006.
Tukey, J. W.: Exploratory Data Analysis. Reading, Massachusetts: Addison-Wesley, 1977.
Walpersdorf, A., Pinget, L., Vernant, P., Sue, C., Deprez, A., and the RENAG team: Does Long-Term GPS in the Western Alps Finally Confirm Earthquake Mechanisms?, Tectonics, 37, 3721–3737, https://doi.org/10.1029/2018TC005054, 2018.
Wdowinski, S., Bock, Y., Zhang, J., Fang, P., and Genrich, J.: Southern California permanent GPS geodetic array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake, J. Geophys. Res.-Sol. Ea., 102, 18057–18070, https://doi.org/10.1029/97JB01378, 1997.
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: Improved Version Released, Eos T. Am. Geophys. Union, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Williams, S. D. P.: The effect of coloured noise on the uncertainties of rates estimated from geodetic time series, J. Geodesy, 76, 483–494, https://doi.org/10.1007/s00190-002-0283-4, 2003.
Zhu, S. and Shi, Y.: Estimation of GPS strain rate and its error analysis in the Chinese continent, J. Asian Earth Sci., 40, 351–362, https://doi.org/10.1016/j.jseaes.2010.06.007, 2011.
Short summary
In using dense geodetic networks and large GPS datasets, we are able to extract regionally coherent velocities and deformation rates in France and neighboring western European countries. This analysis is combined with statistical tests on synthetic data to quantify the deformation detection thresholds and significance levels.
In using dense geodetic networks and large GPS datasets, we are able to extract regionally...