Articles | Volume 10, issue 3
https://doi.org/10.5194/se-10-663-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/se-10-663-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Relative timing of uplift along the Zagros Mountain Front Flexure (Kurdistan Region of Iraq): Constrained by geomorphic indices and landscape evolution modeling
Institute of Geological Sciences, Friedrich Schiller University Jena,
07749 Jena, Germany
Geology Department, Salahaddin University-Erbil, Erbil, 44002,
Kurdistan Region of Iraq
Christoph Grützner
Institute of Geological Sciences, Friedrich Schiller University Jena,
07749 Jena, Germany
Payman Navabpour
Institute of Geological Sciences, Friedrich Schiller University Jena,
07749 Jena, Germany
Kamil Ustaszewski
Institute of Geological Sciences, Friedrich Schiller University Jena,
07749 Jena, Germany
Related authors
No articles found.
Peter Biermanns, Benjamin Schmitz, Silke Mechernich, Christopher Weismüller, Kujtim Onuzi, Kamil Ustaszewski, and Klaus Reicherter
Solid Earth, 13, 957–974, https://doi.org/10.5194/se-13-957-2022, https://doi.org/10.5194/se-13-957-2022, 2022
Short summary
Short summary
We introduce two up to 7 km long normal fault scarps near the city of Bar (Montenegro). The fact that these widely visible seismogenic structures have never been described before is even less surprising than the circumstance that they apparently do not fit the tectonic setting that they are located in. By quantifying the age and movement of the newly discovered fault scarps and by partly re-interpreting local tectonics, we introduce approaches to explain how this is still compatible.
Christoph Grützner, Simone Aschenbrenner, Petra Jamšek
Rupnik, Klaus Reicherter, Nour Saifelislam, Blaž Vičič, Marko Vrabec, Julian Welte, and Kamil Ustaszewski
Solid Earth, 12, 2211–2234, https://doi.org/10.5194/se-12-2211-2021, https://doi.org/10.5194/se-12-2211-2021, 2021
Short summary
Short summary
Several large strike-slip faults in western Slovenia are known to be active, but most of them have not produced strong earthquakes in historical times. In this study we use geomorphology, near-surface geophysics, and fault excavations to show that two of these faults had surface-rupturing earthquakes during the Holocene. Instrumental and historical seismicity data do not capture the strongest events in this area.
Eline Le Breton, Sascha Brune, Kamil Ustaszewski, Sabin Zahirovic, Maria Seton, and R. Dietmar Müller
Solid Earth, 12, 885–913, https://doi.org/10.5194/se-12-885-2021, https://doi.org/10.5194/se-12-885-2021, 2021
Short summary
Short summary
The former Piemont–Liguria Ocean, which separated Europe from Africa–Adria in the Jurassic, opened as an arm of the central Atlantic. Using plate reconstructions and geodynamic modeling, we show that the ocean reached only 250 km width between Europe and Adria. Moreover, at least 65 % of the lithosphere subducted into the mantle and/or incorporated into the Alps during convergence in Cretaceous and Cenozoic times comprised highly thinned continental crust, while only 35 % was truly oceanic.
Michael Kettermann, Christoph von Hagke, Heijn W. van Gent, Christoph Grützner, and Janos L. Urai
Solid Earth, 7, 843–856, https://doi.org/10.5194/se-7-843-2016, https://doi.org/10.5194/se-7-843-2016, 2016
Short summary
Short summary
We present an analogue modeling study on the interaction of pre-existing joints and normal faults using cohesive powder. We vary the angle between joints and a rigid basement fault and analyze interpreted map-view photographs at maximum displacement for various parameters and compare to nature. Results show a clear effect of increasing angle between joints and faults on fault geometry, fracture density and connectivity. These information can help interpreting fractured layers in the subsurface.
M. Kettermann, C. Grützner, H. W. van Gent, J. L. Urai, K. Reicherter, and J. Mertens
Solid Earth, 6, 839–855, https://doi.org/10.5194/se-6-839-2015, https://doi.org/10.5194/se-6-839-2015, 2015
Short summary
Short summary
This paper combines fieldwork, ground-penetrating radar (GPR) and remote sensing in the jointed and faulted grabens area of Canyonlands National Park, Utah, USA. GPR profiles show that graben floors are subject to faulting, although the surface shows no scarps. We enhance evidence for the effect of preexisting joints on the formation of dilatant faults and provide a conceptual model for graben evolution. Correlating paleosols from outcrops and GPR adds to estimates of the age of the grabens.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Tectonics
Together but separate: decoupled Variscan (late Carboniferous) and Alpine (Late Cretaceous–Paleogene) inversion tectonics in NW Poland
Exhumation and erosion of the Northern Apennines, Italy: new insights from low-temperature thermochronometers
Conditional probability of distributed surface rupturing during normal-faulting earthquakes
Contrasting exhumation histories and relief development within the Three Rivers Region (south-east Tibet)
Subsidence associated with oil extraction, measured from time series analysis of Sentinel-1 data: case study of the Patos-Marinza oil field, Albania
Using seismic attributes in seismotectonic research: an application to the Norcia Mw = 6.5 earthquake (30 October 2016) in central Italy
Testing the effects of topography, geometry, and kinematics on modeled thermochronometer cooling ages in the eastern Bhutan Himalaya
Piotr Krzywiec, Mateusz Kufrasa, Paweł Poprawa, Stanisław Mazur, Małgorzata Koperska, and Piotr Ślemp
Solid Earth, 13, 639–658, https://doi.org/10.5194/se-13-639-2022, https://doi.org/10.5194/se-13-639-2022, 2022
Short summary
Short summary
Legacy 2-D seismic data with newly acquired 3-D seismic data were used to construct a new model of geological evolution of NW Poland over last 400 Myr. It illustrates how the destruction of the Caledonian orogen in the Late Devonian–early Carboniferous led to half-graben formation, how they were inverted in the late Carboniferous, how the study area evolved during the formation of the Permo-Mesozoic Polish Basin and how supra-evaporitic structures were inverted in the Late Cretaceous–Paleogene.
Erica D. Erlanger, Maria Giuditta Fellin, and Sean D. Willett
Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, https://doi.org/10.5194/se-13-347-2022, 2022
Short summary
Short summary
We present an erosion rate analysis on dated rock and sediment from the Northern Apennine Mountains, Italy, which provides new insights on the pattern of erosion rates through space and time. This analysis shows decreasing erosion through time on the Ligurian side but increasing erosion through time on the Adriatic side. We suggest that the pattern of erosion rates is consistent with the present asymmetric topography in the Northern Apennines, which has likely existed for several million years.
Maria Francesca Ferrario and Franz Livio
Solid Earth, 12, 1197–1209, https://doi.org/10.5194/se-12-1197-2021, https://doi.org/10.5194/se-12-1197-2021, 2021
Short summary
Short summary
Moderate to strong earthquakes commonly produce surface faulting, either along the primary fault or as distributed rupture on nearby faults. Hazard assessment for distributed normal faulting is based on empirical relations derived almost 15 years ago. In this study, we derive updated empirical regressions of the probability of distributed faulting as a function of distance from the primary fault, and we propose a conservative scenario to consider the full spectrum of potential rupture.
Xiong Ou, Anne Replumaz, and Peter van der Beek
Solid Earth, 12, 563–580, https://doi.org/10.5194/se-12-563-2021, https://doi.org/10.5194/se-12-563-2021, 2021
Short summary
Short summary
The low-relief, mean-elevation Baima Xueshan massif experienced slow exhumation at a rate of 0.01 km/Myr since at least 22 Ma and then regional rock uplift at 0.25 km/Myr since ~10 Ma. The high-relief, high-elevation Kawagebo massif shows much stronger local rock uplift related to the motion along a west-dipping thrust fault, at a rate of 0.45 km/Myr since at least 10 Ma, accelerating to 1.86 km/Myr since 1.6 Ma. Mekong River incision plays a minor role in total exhumation in both massifs.
Marianne Métois, Mouna Benjelloun, Cécile Lasserre, Raphaël Grandin, Laurie Barrier, Edmond Dushi, and Rexhep Koçi
Solid Earth, 11, 363–378, https://doi.org/10.5194/se-11-363-2020, https://doi.org/10.5194/se-11-363-2020, 2020
Short summary
Short summary
The Patos-Marinza oil field in Central Albania (40.71° N, 19.61° E) is one of the largest onshore oil fields in Europe. More than 7 million oil barrels are extracted per year from sandstone formations in western Albania. The regional seismicity culminated in December 2016, when a seismic sequence developed in the oil field, triggering the opening of a public inquiry. We take advantage of the Sentinel-1 radar images to show that a strong subsidence, probably induced, is taking place in the field.
Maurizio Ercoli, Emanuele Forte, Massimiliano Porreca, Ramon Carbonell, Cristina Pauselli, Giorgio Minelli, and Massimiliano R. Barchi
Solid Earth, 11, 329–348, https://doi.org/10.5194/se-11-329-2020, https://doi.org/10.5194/se-11-329-2020, 2020
Short summary
Short summary
We present a first application of seismic attributes, a well-known technique in the oil and gas industry, to vintage seismic reflection profiles in a seismotectonic study. Our results improve data interpretability, allowing us to detect peculiar geophysical signatures of faulting and a regional seismogenic layer. We suggest a new tool for both seismotectonic research and assessments of the seismic hazard, not only in the central Apennines (Italy), but also in seismically active areas abroad.
Michelle E. Gilmore, Nadine McQuarrie, Paul R. Eizenhöfer, and Todd A. Ehlers
Solid Earth, 9, 599–627, https://doi.org/10.5194/se-9-599-2018, https://doi.org/10.5194/se-9-599-2018, 2018
Short summary
Short summary
We examine the Himalayan Mountains of Bhutan by integrating balanced geologic cross sections with cooling ages from a suite of mineral systems. Interpretations of cooling ages are intrinsically linked to both the motion along faults as well as the location and magnitude of erosion. In this study, we use flexural and thermal kinematic models to understand the sensitivity of predicted cooling ages to changes in fault kinematics, geometry, and topography.
Cited articles
Abdulnaby, W., Mahdi, H., Numan, N. M. S., and Al-Shukri, H.: Seismotectonics
of the Bitlis–Zagros Fold and Thrust Belt in Northern Iraq and Surrounding
Regions from Moment Tensor Analysis, Pure Appl. Geophys., 171, 1237–1250,
https://doi.org/10.1007/s00024-013-0688-4, 2014.
Agard, P., Omrani, J., Jolivet, L., Whitechurch, H., Vrielynck, B., Spakman,
W., Monié, P., Meyer, B., and Wortel, R.: Zagros orogeny: A
subduction-dominated process, Geol. Mag., 148, 692–725,
https://doi.org/10.1017/S001675681100046X, 2011.
Al-Qayim, B., Omer, A., and Koyi, H.: Tectonostratigraphic overview of the
Zagros Suture Zone, Kurdistan Region, Northeast Iraq, GeoArabia, 17,
109–156, 2012.
Ameen, M. S.: Possible forced folding in the Taurus–Zagros Belt of northern
Iraq, Geol. Mag., 128, 561–584, https://doi.org/10.1017/S0016756800019695, 1991.
Ameen, M. S.: Effect of basement tectonics on hydrocarbon generation,
migration, and accumulation in Northern Iraq, Am. Assoc. Pet. Geol. Bull.,
76, 356–370, 1992.
Andreani, L. and Gloaguen, R.: Geomorphic analysis of transient landscapes in
the Sierra Madre de Chiapas and Maya Mountains (northern Central America):
Implications for the North American-Caribbean-Cocos plate boundary, Earth
Surf. Dynam., 4, 71–102, https://doi.org/10.5194/esurf-4-71-2016, 2016.
Andreani, L., Stanek, K. P., Gloaguen, R., Krentz, O., and
Domínguez-González, L.: DEM-based analysis of interactions between
tectonics and landscapes in the Ore Mountains and Eger Rift (East Germany and
NW Czech Republic), Remote Sens., 6, 7971–8001, https://doi.org/10.3390/rs6097971, 2014.
Aqrawi, A. A. M., Goff, J. C., Horbury, A. D., and Sadooni F. N.: The
Petroleum Geology of Iraq, Scientific Press, Beaconsfield, 424 pp., ISBN:
97809013603682010, 2010.
Berberian, M.: Master “blind” thrust faults hidden under the Zagros folds:
active basement tectonics and surface morphotectonics, Tectonophysics, 241,
193–224, https://doi.org/10.1016/0040-1951(94)00185-C, 1995.
Bishop, P.: Long-term landscape evolution: linking tectonics and surface
processes, Earth Surf. Proc. Land., 32, 329–365, https://doi.org/10.1002/esp.1493, 2007.
Blanc, E. J.-P., Allen, M. B., Inger, S., and Hassani, H.: Structural styles
in the Zagros Simple Folded Zone, Iran, J. Geol. Soc. London, 160, 401–412,
https://doi.org/10.1144/0016-764902-110, 2003.
Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel
method to solve the stream power equation governing fluvial incision and
landscape evolution, Geomorphology, 180/181, 170–179,
https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.
Bretis, B., Bartl, N., and Grasemann, B.: Lateral fold growth and linkage in
the Zagros fold and thrust belt (Kurdistan, NE Iraq), Basin Res., 23,
615–630, https://doi.org/10.1111/j.1365-2117.2011.00506.x, 2011.
Bull, W. B.: Tectonic Geomorphology of Mountains: A New Approach to
Paleoseismology, Wiley-Blackwell, Oxford, 316 pp., 2007.
Burbank, D. and Anderson, R.: Tectonic Geomorphology, 2nd Edn.,
Wiley-Blackwell, Chichester, UK, 454 pp., 2012.
Burberry, C. M.: The effect of basement fault reactivation on the
Triassic-Recent Geology of Kurdistan, North Iraq, J. Pet. Geol., 38, 37–58,
https://doi.org/10.1111/jpg.12597, 2015.
Chen, A., Darbon, J. Ô., and Morel, J. M.: Landscape evolution models: A
review of their fundamental equations, Geomorphology, 219, 68–86,
https://doi.org/10.1016/j.geomorph.2014.04.037, 2014.
Cheng, K. Y., Hung, J. H., Chang, H. C., Tsai, H., and Sung, Q. C.: Scale
independence of basin hypsometry and steady state topography, Geomorphology,
171/172, 1–11, https://doi.org/10.1016/j.geomorph.2012.04.022, 2012.
Collignon, M., Yamato, P., Castelltort, S., and Kaus, B. J. P.: Modeling of
wind gap formation and development of sedimentary basins during fold growth:
application to the Zagros Fold Belt, Iran, Earth Surf. Proc. Land., 41,
1521–1535, https://doi.org/10.1002/esp.3921, 2016.
Cowie, P. A., Attal, M., Tucker, G. E., Whittaker, A. C., Naylor, M., Ganas,
A., and Roberts, G. P.: Investigating the surface process response to fault
interaction and linkage using a numerical modelling approach, Basin Res., 18,
231–266, https://doi.org/10.1111/j.1365-2117.2006.00298.x, 2006.
Csontos, L., Sasvári, Á., Pocsai, T., Kósa, L., Salae, A. T., and
Ali, A.: Structural evolution of the northwestern Zagros, Kurdistan Region,
Iraq: Implications on oil migration, GeoArabia, 17, 81–116, 2012.
Culling, W. E. H.: Soil Creep and the Development of Hillside Slopes, J.
Geol., 71, 127–161, 1963.
Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., and
Şaroğlu, F.: Active Fault Map of Turkey with an Explanatory Text.
1:1,250,000 Scale, General Directorate of Mineral Research and Exploration,
Ankara, 2013.
Emami, H., Vergés, J., Nalpas, T., Gillespie, P., Sharp, I., Karpuz, R.,
Blanc, E. P., and Goodarzi, M. G. H.: Structure of the Mountain Front Flexure
along the Anaran anticline in the Pusht-e Kuh Arc (NW Zagros, Iran): insights
from sand box models, Geol. Soc. London, 330, 155–178, https://doi.org/10.1144/SP330.9,
2010.
Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffusive
processes: The timescale for equilibrium adjustments, Water Resour. Res., 33,
1307–1318, https://doi.org/10.1029/97WR00534, 1997.
Fouad, S. F. A.: Western Zagros Fold – Thrust Belt, Part II: The High Folded
Zone, Iraqi Bull. Geol. Min., 6, 53–71, 2014.
Grohmann, C. H.: Morphometric analysis in geographic information systems:
Applications of free software GRASS and R, Comput. Geosci., 30, 1055–1067,
https://doi.org/10.1016/j.cageo.2004.08.002, 2004.
Hancock, G. R. and Willgoose, G. R.: The use of a landscape simulator in the
validation of the Siberia landscape evolution model: Transient landforms,
Earth Surf. Proc. Land., 27, 1321–1334, https://doi.org/10.1002/esp.414, 2002.
Harel, M. A., Mudd, S. M., and Attal, M.: Global analysis of the stream power
law parameters based on worldwide 10Be denudation rates, Geomorphology, 268,
184–196, https://doi.org/10.1016/j.geomorph.2016.05.035, 2016.
Hessami, K., Koyi, H. A., Talbot, C. J., Tabashi, H. and Shabanian, E.:
Progressive unconformities within an evolving foreland fold-thrust belt,
Zagros Mountains, J. Geol. Soc. London, 158, 969–981,
https://doi.org/10.1144/0016-764901-007, 2001.
Hessami, K., Nilforoushan, F., and Talbot, C. J.: Active deformation within
the Zagros Mountains deduced from GPS measurements, J. Geol. Soc. London,
163, 143–148, https://doi.org/10.1144/0016-764905-031, 2006.
Hinsch, R. and Bretis, B.: A semi-balanced section in the northwestern Zagros
region: Constraining the structural architecture of the Mountain Front
Flexure in the Kirkuk Embayment, Iraq, GeoArabia, 20, 41–62, 2015.
Hobley, D. E. J., Adams, J. M., Siddhartha Nudurupati, S., Hutton, E. W. H.,
Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative computing
with Landlab: An open-source toolkit for building, coupling, and exploring
two-dimensional numerical models of Earth-surface dynamics, Earth Surf.
Dynam., 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.
Hobson, R. D.: Surface roughness in topography: quantitative approach, in:
Spatial analysis in geomorphology, edited by: Chorley, R. J., Methuen,
London, 225–245, 1972.
Homke, S., Vergés, J., Garcés, M., Emami, H., and Karpuz, R.:
Magnetostratigraphy of Miocene-Pliocene Zagros foreland deposits in the front
of the Push-e Kush Arc (Lurestan Province, Iran), Earth Planet. Sc. Lett.,
225, 397–410, https://doi.org/10.1016/j.epsl.2004.07.002, 2004.
Howard, A. D.: A detachment limited model of drainage basin evolution, Water
Resour. Res., 30, 2261–2285, https://doi.org/10.1029/94WR00757, 1994.
Jassim, S. Z. and Goff, J. C.: Geology of Iraq, Dolin, Prague and Moravian
Museum, Brno, Czech Rep., 341 pp., 2006.
Keller, E. A., Gurrola, L., and Tierney, T. E.: Geomorphic criteria to
determine direction of lateral propagation of reverse faulting and folding,
Geology, 27, 515–518, 1999.
Kent, W. N.: Structures of the Kirkuk Embayment, northern Iraq: Foreland
structures or Structures of the Kirkuk Embayment, northern Iraq: Foreland
structures or Zagros Fold Belt structures?, GeoArabia, 15, 147–157, 2010.
Koshnaw, R. I., Horton, B. K., Stockli, D. F., Barber, D. E., Tamar-Agha, M.
Y., and Kendall, J. J.: Neogene shortening and exhumation of the Zagros
fold-thrust belt and foreland basin in the Kurdistan region of northern Iraq,
Tectonophysics, 694, 332–355, https://doi.org/10.1016/j.tecto.2016.11.016, 2017.
Koukouvelas, I. K., Zygouri, V., Nikolakopoulos, K., and Verroios, S.:
Treatise on the tectonic geomorphology of active faults: The significance of
using a universal digital elevation model, J. Struct. Geol., 116, 241–252,
https://doi.org/10.1016/j.jsg.2018.06.007, 2018.
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M.,
and Zink, M.: TanDEM-X: A satellite formation for high-resolution SAR
interferometry, IEEE Trans. Geosci. Remote Sens., 45, 3317–3341,
https://https://doi.org/10.1109/TGRS.2007.900693, 2007.
Kwang, J. S. and Parker, G.: Landscape evolution models using the stream
power incision model show unrealistic behavior when m/n equals 0.5, Earth
Surf. Dynam., 5, 807–820, https://doi.org/10.5194/esurf-5-807-2017, 2017.
Law, A., Munn, D., Symms, A., Wilson, D., Hattingh, S., Boblecki, R., Al
Marei, K., Chernik, P., Parry, D., and Ho, J.: Competent Person's Report on
Certain Petroleum Interests of Gulf Keystone Petroleum and its Subsidiaries
in Kurdistan, Iraq, ERC Equipoise Ltd., Croydon,
https://www.gulfkeystone.com/media/79962/gkp_cpr-report-2014.pdf (last
access: 14 May 2019), 2014.
Leturmy, P., Molinaro, M., and de Lamotte, D. F.: Structure, timing and
morphological signature of hidden reverse basement faults in the Fars Arc of
the Zagros (Iran), Geol. Soc. London, 330, 121–138, https://doi.org/10.1144/SP330.7,
2010.
Mahmood, S. A. and Gloaguen, R.: Appraisal of active tectonics in Hindu Kush:
Insights from DEM derived geomorphic indices and drainage analysis, Geosci.
Front., 3, 407–428, https://doi.org/10.1016/j.gsf.2011.12.002, 2012.
Marshak, S. and Wilkerson, M. S.: Effect of overburden thickness on thrust
belt geometry and development, Tectonics, 11, 560–566,
https://doi.org/10.1029/92TC00175, 1992.
McClusky, S., Reilinger, R., Mahmoud, S., Ben Sari, D., and Tealeb, A.: GPS
constraints on Africa (Nubia) and Arabia plate motions, Geophys. J. Int.,
155, 126–138, https://doi.org/10.1046/j.1365-246X.2003.02023.x, 2003.
McQuarrie, N.: Crustal scale geometry of the Zagros fold-thrust belt, Iran,
J. Struct. Geol., 26, 519–535, https://doi.org/10.1016/j.jsg.2003.08.009, 2004.
Miller, S. R., Slingerland, R. L., and Kirby, E.: Characteristics of steady
state fluvial topography above fault-bend folds, J. Geophys. Res.-Earth, 112,
1–21, https://doi.org/10.1029/2007JF000772, 2007.
Molinaro, M., Leturmy, P., Guezou, J. C., Frizon de Lamotte, D., and
Eshraghi, S. A.: The structure and kinematics of the southeastern Zagros
fold-thrust belt, Iran: From thin-skinned to thick-skinned tectonics,
Tectonics, 24, 1–19, https://doi.org/10.1029/2004TC001633, 2005.
Moran, P. P.: Notes on continuous stochastic phenomena, Biometrika, 37,
17–23, https://doi.org/10.1093/biomet/37.1-2.17, 1950.
Mouthereau, F.: Timing of uplift in the Zagros belt/Iranian plateau and
accommodation of late Cenozoic Arabia-Eurasia convergence, Geol. Mag., 148,
726–738, https://doi.org/10.1017/S0016756811000306, 2011.
Mouthereau, F., Tensi, J., Bellahsen, N., Lacombe, O., De Boisgrollier, T.,
and Kargar, S.: Tertiary sequence of deformation in a
thin-skinned/thick-skinned collision belt: The Zagros Folded Belt (Fars,
Iran), Tectonics, 26, TC5006, https://doi.org/10.1029/2007TC002098, 2007.
Mouthereau, F., Lacombe, O., and Vergés, J.: Building the Zagros
collisional orogen: Timing, strain distribution and the dynamics of
Arabia/Eurasia plate convergence, Tectonophysics, 532, 27–60,
https://doi.org/10.1016/j.tecto.2012.01.022, 2012.
Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W. D., and Valters, D.
A.: A statistical framework to quantify spatial variation in channel
gradients using the integral method of channel profile analysis, J. Geophys.
Res.-Earth, 119, 138–152, https://doi.org/10.1002/2013JF002981, 2014.
NASA JPL: NASA Shuttle Radar Topography Mission Global 1 arc second, NASA
EOSDIS Land Processes DAAC, https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003, 2013.
Navabpour, P. and Barrier, E.: Stress states in the Zagros fold-and-thrust
belt from passive margin to collisional tectonic setting, in: Crustal
Stresses, Fractures, and Fault Zones: The Legacy of Jacques Angelier, edited
by: Gudmundsson, A. and Bergerat, F., Tectonophysics, 581, 76–83,
https://doi.org/10.1016/j.tecto.2012.01.011, 2012.
Navabpour, P., Angelier, J., and Barrier, E.: Stress state reconstruction of
oblique collision and evolution of deformation partitioning in W-Zagros
(Iran, Kermanshah), Geophys. J. Int., 175, 755–782,
2008.
Numan, N. M. S.: A plate tectonic scenario for the phanerozoic succession in
Iraq, J. Geol. Soc. Iraq, 30, 85–110, 1997.
Obaid, A. K. and Allen, M. B.: Landscape maturity, fold growth sequence and
structural style in the Kirkuk Embayment of the Zagros, northern Iraq,
Tectonophysics, 717, 27–40, https://doi.org/10.1016/j.tecto.2017.07.006, 2017.
Ohmori, H.: Changes in the hypsometric curve through mountain building
resulting from concurrent tectonics and denudation, Geomorphology, 8,
263–277, https://doi.org/10.1016/0169-555X(93)90023-U, 1993.
Ord, J. K. and Getis, A: Local Spatial Autocorrelation Statistics,
Distributional Issues and Application, Geogr. Anal., 27, 286–306,
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x, 1995.
Oveisi, B., Lavé, J., Van Der Beek, P., Carcaillet, J., Benedetti, L.,
and Aubourg, C.: Thick- and thin-skinned deformation rates in the central
Zagros simple folded zone (Iran) indicated by displacement of geomorphic
surfaces, Geophys. J. Int., 176, 627–654,
https://doi.org/10.1111/j.1365-246X.2008.04002.x, 2009.
Pérez-Peña, J. V., Azañón, J. M., Booth-Rea, G., Azor, A.,
and Delgado, J.: Differentiating geology and tectonics using a spatial
autocorrelation technique for the hypsometric integral, J. Geophys. Res.,
114, F02018, https://doi.org/10.1029/2008JF001092, 2009.
Pérez-Peña, J. V., Azañón, J. M., Azor, A., Booth-Rea, G.,
Galve, J. P., Roldán, F. J., Mancilla, F., Giaconia, F., Morales, J., and
Al-Awabdeh, M.: Quaternary landscape evolution driven by slab-pull mechanisms
in the Granada Basin (Central Betics), Tectonophysics, 663, 5–18,
https://doi.org/10.1016/j.tecto.2015.07.035, 2015.
Perron, J. T.: Climate and the Pace of Erosional Landscape Evolution, Annu.
Rev. Earth Planet. Sc., 45, 561–591,
https://doi.org/10.1146/annurev-earth-060614-105405, 2017.
Perron, J. T. and Royden, L.: An integral approach to bedrock river profile
analysis, Earth Surf. Proc. Land., 38, 570–576, https://doi.org/10.1002/esp.3302, 2013.
Pike, R. J. and Wilson, S. E.: Elevation-relief ratio, hypsometric integral,
and geomorphic area-altitude analysis, Bull. Geol. Soc. Am., 82, 1079–1084,
1971.
Ramsey, L. A., Walker, R. T., and Jackson, J.: Fold evolution and drainage
development in the Zagros mountains of Fars province, SE Iran, Basin Res.,
20, 23–48, https://doi.org/10.1111/j.1365-2117.2007.00342.x, 2008.
Refice, A., Giachetta, E., and Capolongo, D.: SIGNUM: A Matlab, TIN-based
landscape evolution model, Comput. Geosci., 45, 293–303,
https://doi.org/10.1016/j.cageo.2011.11.013, 2012.
Regard, V., Lagnous, R., Espurt, N., Darrozes, J., Baby, P., Roddaz, M.,
Calderon, Y., and Hermoza, W.: Geomorphic evidence for recent uplift of the
Fitzcarrald Arch (Peru): A response to the Nazca Ridge subduction,
Geomorphology, 107, 107–117, https://doi.org/10.1016/j.geomorph.2008.12.003, 2009.
Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak,
R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M.,
Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus,
A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V.,
Gomez, F., Al-Ghazzi, R., and Karam, G.: GPS constraints on continental
deformation in the Africa-Arabia-Eurasia continental collision zone and
implications for the dynamics of plate interactions, J. Geophys. Res.-Sol.
Ea., 111, 1–26, https://doi.org/10.1029/2005JB004051, 2006.
Salles, T. and Hardiman, L.: Badlands: An open-source, flexible and parallel
framework to study landscape dynamics, Comput. Geosci., 91, 77–89,
https://doi.org/10.1016/j.cageo.2016.03.011, 2016.
Sepehr, M., Cosgrove, J., and Moieni, M.: The impact of cover rock rheology
on the style of folding in the Zagros fold-thrust belt, Tectonophysics, 427,
265–281, https://doi.org/10.1016/j.tecto.2006.05.021, 2006.
Sherkati, S., Letouzey, J., and De Lamotte, D. F.: Central Zagros fold-thrust
belt (Iran): New insights from seismic data, field observation, and sandbox
modeling, Tectonics, 25, 1–27, https://doi.org/10.1029/2004TC001766, 2006.
Sissakian, V. K.: Geological Map of Arbeel and Mahabad Quadrangles Sheets
NJ-38- 14 and NJ-38-15, Scale 1:250.000, 1997.
Sklar, L. and Dietrich, W. E.: River Longitudinal Profiles and Bedrock
Incision Models: Stream Power and the Influence of Sediment Supply, in:
Rivers Over Rock: Fluvial Processes in Bedrock Channels, edited by: Tinkler,
K. J. and Wohl, E. E., American Geophysical Union, 237–260,
https://doi.org/10.1029/GM107p0237, 1998.
Stockhecke, M., Timmermann, A., Kipfer, R., Haug, G., Kwiecien, O.,
Friedrich, T., Menviel, L., Litt, T., Pickarski, N., and Anselmetti, F. S.:
Millennial to orbital-scale variations of drought intensity in the eastern
Mediterranean, Quaternary Sci. Rev., 133, 77–95,
https://doi.org/10.1016/j.quascirev.2015.12.016, 2016.
Strahler, A.: Hypsometric (Area-Altitude) Analysis of Erosional Topography,
GSA Bull., 63, 1117–1142,
https://doi.org/10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO;2, 1952.
Syan, S. H. A.: Tectonic Criteria from Shortening Estimation in different
geological time and space using Balancing Cross Sections in the Harir and
Khatibian Anticlines, Zagros Fold-Thrust Belt, Kurdistan of Iraq, MSc.
Thesis, Salahaddin University-Erbil, 2014.
Tarolli, P.: High-resolution topography for understanding Earth surface
processes: Opportunities and challenges, Geomorphology, 216, 295–312,
https://doi.org/10.1016/j.geomorph.2014.03.008, 2014.
Temme, A. J. A. M., Armitage, J., Attal, M., van Gorp, W., Coulthard, T. J.,
and Schoorl, J. M.: Developing, choosing and using landscape evolution models
to inform field-based landscape reconstruction studies, Earth Surf. Proc.
Land., 42, 2167–2183, https://doi.org/10.1002/esp.4162, 2017.
Tozer, R., Hertle, M., Petersen, H. I., and Zinck-Joergensen, K.: Quantifying
vertical movements in fold and thrust belts: subsidence uplift and erosion in
Kurdistan Northern Iraq, Geol. Soc. London, 490,
https://doi.org/10.1144/SP490-2019-118, 2019.
Tucker, G. E. and Bras, R. L.: Hillslope processes, drainage density, and
landscape morphology, Water Resour. Res., 34, 2751–2764,
https://doi.org/10.1029/98WR01474, 1998.
Tucker, G. E. and Hancock, G. R.: Modelling landscape evolution, Earth Surf.
Proc. Land., 35, 28–50, https://doi.org/10.1002/esp.1952, 2010.
Tucker, G., Lancaster, S., Gasparini, N., and Bras, R.: The channel hillslope
integrated landscape development model (CHILD), in: Landscape erosion and
evolution modeling, edited by: Harmon, R. S. and Doe III, W. W., Kluwer
Academic/Plenum Publishers, New York, USA, 349–388, 2001.
Tucker, G. E., Hobley, D. E. J., Hutton, E., Gasparini, N. M.,
Istanbulluoglu, E., Adams, J. M., and Siddartha Nudurupati, S.: CellLab-CTS
2015: Continuous-time stochastic cellular automaton modeling using Landlab,
Geosci. Model Dev., 9, 823–839, https://https://doi.org/10.5194/gmd-9-823-2016, 2016.
Vergés, J., Saura, E., Casciello, E., Fernàndez, M., Villaseñor,
A., Jiménez-Munt, I., and García-Castellanos, D.: Crustal-scale
cross-sections across the NW Zagros belt: Implications for the Arabian margin
reconstruction, Geol. Mag., 148, 739–761, https://doi.org/10.1017/S0016756811000331,
2011.
Vernant, P., Nilforoushan, F., Hatzfeld, D., Abbassi, M. R., Vigny, C.,
Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F.,
and Chéry, J.: Present-day crustal deformation and plate kinematics in
the Middle East constrained by GPS measurements in Iran and northern Oman,
Geophys. J. Int., 157, 381–398, https://doi.org/10.1111/j.1365246X.2004.02222.x, 2004.
Whipple, K. X.: Implications of sediment-flux-dependent river incision models
for landscape evolution, J. Geophys. Res., 107, 2039,
https://doi.org/10.1029/2000JB000044, 2002.
Whipple, K. X. and Tucker, G. E.: Dynamics of the stream-power river incision
model: Implications for height limits of mountain ranges, landscape response
timescales, and research needs, J. Geophys. Res.-Sol. Ea., 104, 17661–17674,
https://doi.org/10.1029/1999JB900120, 1999.
Whittaker, A. C.: How do landscapes record tectonics and climate?,
Lithosphere, 4, 160–164, https://doi.org/10.1130/RF.L003.1, 2012.
Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou,
K., Crosby, B., and Sheehan, D.: Tectonics from topography: procedurses,
promise, and pitfalls, Geol. Soc. Am. Spec. Pap., 398, 55–74,
https://doi.org/10.1130/2006.2398(04), 2006.
Zebari, M.: Geometry and Evolution of Fold Structures within the High Folded
Zone: Zagros Fold-Thrust Belt, Kurdistan Region-Iraq, University of
Nebraska-Lincoln, 91 pp., 2013.
Zebari, M. M. and Burberry, C. M.: 4-D evolution of anticlines and
implications for hydrocarbon exploration within the Zagros Fold- Thrust Belt,
Kurdistan Region, Iraq, GeoArabia, 20, 161–188, 2015.
Short summary
Here, we assessed the maturity level and then relative variation of uplift time of three anticlines along the hanging wall of the Zagros Mountain Front Flexure in the Kurdistan Region of Iraq. We also estimated the relative time difference between the uplift time of more mature anticlines and less mature ones to be around 200 kyr via building a landscape evolution model. These enabled us to reconstruct a spatial and temporal evolution of these anticlines.
Here, we assessed the maturity level and then relative variation of uplift time of three...