Aldanmaz, E.: Mantle source characteristics of alkali basalts and basanites
in an extensional intracontinental plate setting, western Anatolia, Turkey:
implications for multi-stage melting, Int. Geol. Rev., 44, 440–457, https://doi.org/10.2747/0020-6814.44.5.440, 2002.
Audétat, A. and Pettke, T.: Evolution of a Porphyry-Cu Mineralized Magma
System at Santa Rita, New Mexico (USA), J. Petrol., 47, 2021–2046, https://doi.org/10.5382/SP.16.21, 2006.
Audétat, A. and Simon A. C.: Magmatic controls on porphyry copper genesis,
in: Geology and Genesis of Major
Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe, edited by: Hedenquist, J. W. Harris, M., and Camus, F., Soc. Econ. Geol., 16, 553–572, 2012.
Baker, T., Bickford, D., Juras, S., Oztas, Y., Ross, K., Tukac, A.,
Rabayrol, F., Miskovic, A., Friedman, R., Creaser, A. R., and Spikings, R.: The
Geology of the Kişladağ porphyry gold deposit, Turkey, Soc. Econ. Geol., 19, 57–83, 2016.
Barnes, S. J., Holwell, D. A., and Le Vaillant, M.: Magmatic sulfide ore deposits,
Elements, 13, 91–97, https://doi.org/10.2113/gselements.13.2.89, 2017.
Berlo, K., van Hinsberg, V. J., Vigouroux, N., Gagnon, J. E., Williams-Jones, A. E.: Sulfide breakdown controls metal signature in volcanic gas at Kawah Ijen volcano, Indonesia, Chem. Geol., 371, 115–127, https://doi.org/10.1016/j.chemgeo.2014.02.009, 2014.
Blundy, J., Mavrogenes, J. A., Tattitch, B., Sparks, S., and Gilmer, A.:
Generation of porphyry copper deposits by gas–brine reaction in volcanic
arcs, Nat. Geosci., 8, 235–240, https://doi.org/10.1038/ngeo2351, 2015.
Brennecka, G.: Origin and metal content of magmatic sulfides in Cu-Au
mineralizing silicic magmas: Yerington, Nevada and Yanacocha, Peru, MS
thesis, Oregon State University, available at:
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/rn301373p (last access: 5 March 2006), 2006.
Cabri, L. J.: New data on phase relations in the Cu-Fe-S system, Econ. Geol.,
68, 443–454, https://doi.org/10.2113/gsecongeo.68.4.443, 1973.
Çemen, I., Catlos, E. J., Gogus, O. H., and Ozerdem, C.: Postcollisional
extensional tectonics and exhumation of the Menderes massif in the Western
Anatolia extended terrane, Turkey, Geol. Soc. Am., 409, 353–379, https://doi.org/10.1130/2006.2409(18), 2006.
Chang, J. and Audétat, A.: Petrogenesis and Metal Content of Hornblende-
Rich Xenoliths from Two Laramide-age Magma Systems in Southwestern USA:
Insights into the Metal Budget of Arc Magmas, J. Petrol., 59, 1869–1898,
https://doi.org/10.1093/petrology/egy083, 2018.
Chelle-Michou, C., Rottier, B., Caricchi, L., Simpson, G.: Tempo of magma
degassing and the genesis of porphyry copper deposits, Sci Rep.-UK, 7, 40566, https://doi.org/10.1038/srep40566, 2017.
Chiaradia, M.: Copper enrichment in arc magmas controlled by overriding
plate thickness, Nat. Geosci., 7, 43–46, https://doi.org/10.1038/ngeo2028, 2014.
Chiaradia, M. and Caricchi, L.: Stochastic modelling of deep magmatic controls
on porphyry copper deposit endowment, Sci. Rep.-UK, 7, 44523, https://doi.org/10.1038/srep44523, 2017.
Cline, J. S. and Bodnar, R. J.: Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?, J. Geophys. Res., 96, 8113–8126,
https://doi.org/10.1029/91JB00053, 1991.
Cocker, H. A., Valente, D. L., Park, J.-W., and Campbell, I. H.: Using platinum
group elements to identify sulfide saturation in a porphyry Cu system: the
El Abra porphyry Cu deposit, Northern Chile, J. Petrol., 56, 2491–2514,
2015.
Cooke, D. R., Hollings, P., and Walsh, J. L.: Giant porphyry deposits:
characteristics, distribution, and tectonic controls, Econ. Geol., 100,
801–818, https://doi.org/10.1093/petrology/egv076, 2005.
Core, P., Kesler, S. E., and Essene, E. J.: Unusually Cu-rich magmas associated
with giant porphyry copper deposits: Evidence from Bingham, Utah, Geology, 34, 41–44,
https://doi.org/10.1130/G21813.1, 2006.
Craig, J. R. and Kullerud, G.: Phase relations in the Cu-Fe-Ni-S system and
their application to magmatic ore deposits, Magmatic Ore Deposits, H. D. B. Wilson, 1969.
Craig, J. R. and Scott, S. D.: Sulfide phase equilibria, in:
Sulfide Mineralogy – Short Course Notes, 1, edited by: Ribbe, P. H., Mineralogical
Society of America, Southern Printing Co., Blacksburg, Virginia, CS1–110,
ISBN 13 978-0-939950-01-0, 1974.
Delibaş, O., Moritz, R., Ulianov, A., Chiaradia, M., Saraç, C.,
Revan, K. M., and Göç, D.: Cretaceous subduction-related magmatism and
associated porphyry-type Cu–Mo prospects in the Eastern Pontides, Turkey:
new constraints from geochronology and geochemistry, Lithos, 248, 119–137,
https://doi.org/10.1016/j.lithos.2016.01.020, 2016.
Delibaş, O., Moritz, R., Chiaradia, M., Selby, D., Ulianov, A., and Revan,
K. M.: Post-collisional magmatism and ore-forming systems in the Menderes
massif: new constraints from the Miocene porphyry Mo–Cu Pınarbaşı
system, Gediz–Kütahya, western Turkey, Miner. Deposita, 52, 1157–1178,
https://doi.org/10.1007/s00126-016-0711-7, 2017.
Dilek, Y. and Altunkaynak, Ş.: Cenozoic crustal evolution and mantle
dynamics of post-collisional magmatism in western Anatolia, Int. Geol. Rev.,
49, 431–453, https://doi.org/10.2747/0020-6814.49.5.431, 2007.
Dilek, Y., Imamverdiyev, N., and Altunkaynak, S.: Geochemistry and tectonics of
Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian
region: collision-induced mantle dynamics and its magmatic fingerprint,
Int. Geol. Rev., 52, 536–578, https://doi.org/10.1080/00206810903360422,
2010.
Doglioni, C., Agostini, S., Crespi, M.., Innocenti, F., Manetti, P.,
Riguzzi, F., and Savascin, Y.: On the extension in western Anatolia and the
Aegean Sea, J. Virtual Explorer, 8, 169–183, https://doi.org/10.3809/jvirtex.2002.00049, 2002.
Doglioni, C., Tonarini, S., and Innocenti, F.: Mantle wedge asymmetries and
geochemical signatures along W- and E–NE-directed subduction zones, Lithos,
113, 179–189, https://doi.org/10.1016/j.lithos.2009.01.012, 2009.
Du, Y., Qin, X., Barnes, C. G., Cao, Y., Dong, Q., and Du, Y.: Sulfide melt evolution in upper mantle to upper crust magmas Tongling, China, Geosci. Front., 5, 237–248, https://doi.org/10.1016/j.gsf.2013.06.003, 2014.
Ercan, T. and Oztunali, O.: Characteristic features and “base surges” bed forms
of Kula volcanics, Bull. Geol. Soc. Turkey,
25, 117–125, 1982 (in Turkish with English abstract).
Ercan, T., Dincel, A., Metin, S., Turkecan, A., and Gunay, E.: Geology of the
Neogene basins in the Usak region, Bull. Min. Res. Exploration., 21, 97–106, 1978 (in
Turkish).
Ercan, T., Türkecan, A., Dinçel, A., and Günay, A.: Geology of
Kula-Selendi (Manisa) area, Geol. Eng., 17, 3–28,
1983 (in Turkish).
Ersoy, E. Y., Helvacı, C., and Palmer, M. R.: Mantle source characteristics and
melting models for the early-middle Miocene mafic volcanism in Western
Anatolia: implications for enrichment processes of mantle lithosphere and
origin of K-rich volcanism in post-collisional settings, J. Volcanol
. Geoth.
Res., 198, 112–128, https://doi.org/10.1016/j.jvolgeores.2010.08.014, 2010.
Feininger, T. and Seguin, M. K.: Simple Bouguer gravity anomaly field and the
inferred crustal structure of continental Ecuador, Geology, 11, 40–44, https://doi.org/10.1130/0091-7613(1983)11<40:SBGAFA>2.0.CO;2, 1983.
Fontboté, L., Kouzmanov, K., Chiaradia, M., and Pokrovski, G. S.: Sulfide
minerals in hydrothermal deposits, Elements, 13, 97–103, https://doi.org/10.2113/gselements.13.2.97, 2017.
Fournelle, J., Carmody, R., and Daag, A. S.: Anhydrite-Bearing Pumices from the June 15, 1991, Eruption of Mount Pinatubo, Geochemistry, Mineralogy, and Petrology, available at:
https://pubs.usgs.gov/pinatubo/four/, last access: 6 October 1999.
Fulignati, P., Gioncada, A., Costa, S., Di Genova, D., Di Traglia, F., and
Pistolesi, M.: Magmatic sulfide immiscibility at an active
magmatic-hydrothermal system: The case of La Fossa (Vulcano, Italy), J.
Volcanol. Geoth. Res., 358, 45–57, https://doi.org/10.1016/j.jvolgeores.2018.06.009,
2018.
Georgatou, A. A. and Chiaradia, M.: Supplementary dataset to article Magmatic sulfides in high-potassium calc-alkaline to shoshonitic and alkaline rocks, Figshare data repository, https://doi.org/10.6084/m9.Figshare.8230787, 2019.
Georgatou, A. A., Chiaradia, M., Rezeau, H., and Walle, M.: Magmatic sulfides in
Quaternary Ecuadorian arc magmas, Lithos, 296–299, 580–599, https://doi.org/10.1016/j.lithos.2017.11.019, 2018.
Greaney, A. T., Rudnick, R. L., Helz, R. T., Gaschning, R. M., Piccoli, P. M., and Ash, R. D.: The behavior of chalcophile elements during magmatic differentiation as observed in Kilauea Iki lava lake, Hawaii, Geochim. Cosmochim. Ac., 210, 71–96, https://doi.org/10.1016/j.gca.2017.04.033, 2017.
Grutzner, T., Prelević, D., and Cüneyt, A.: Geochemistry and origin of
ultramafic enclaves and their basanitic host rock from Kula Volcano, Turkey,
Lithos, 180–181, 58–73, https://doi.org/10.1016/j.lithos.2013.08.001, 2013.
Guillier, B., Chatelain, J., Jaillard, E., Yepes, H., Poupinet, G., and Fels,
J.: Seismological evidence on the geometry of the orogenic system in
central-northern Ecuador (South America), Geophys. Res. Lett., 28,
3749–3752, https://doi.org/10.1029/2001GL013257, 2001.
Hall, D. J., Foster, R. P., Yildiz, B., and Redwood, S. D.: The Inlice
High-sulphidation Epithermal Gold Discovery: Defining a Potential New Gold
Belt in Turkey, in: Digging Deeper, edited by: Andrew, C. J., Proceedings of the Ninth Biennial Meeting of
the Society for Geology Applied to Mineral Deposits (January), 113–116,
2007.
Halter, W. E., Heinrich, C. A., and Pettke, T.: Magma evolution and the formation
of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt
inclusions, Miner. Deposita, 39, 845–863, https://doi.org/10.1007/s00126-004-0457-5,
2005.
Harmon, R. S., Hoefs, J., and Wedepohl, K. H.: Stable isotope (O, H, S)
relationships in Tertiary basalts and their mantle xenoliths from the Northern Hessian Depression, W. Germany., Contrib. Mineral. Petrol.,
95, 350–369, https://doi.org/10.1007/BF00371849, 1987.
Hattori, K.: High-sulfur magma, a product of fluid discharge from underlying
mafic magma: Evidence from Mount Pinatubo, Philippines, Geology, 21,
1083–1086, https://doi.org/10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2, 1993.
Hattori, K.: Occurrence and origin of sulfide and sulfate in the 1991 Mount
Pinatubo eruption products, in:
Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines, edited by: Newhall, C. G. and Punongbayan, R. S.,
University of Washington Press, 807–824, USGS, available at:
https://pubs.usgs.gov/pinatubo/hattori/ (last access: 6 October 1999), 1996.
Holwell, D. A. and McDonald, I.: A review of the behaviour of platinum group
elements within natural magmatic sulfide ore systems, Platin. Met. Rev., 54,
26–36, https://doi.org/10.1595/147106709X480913, 2010.
Holwell, D. A., Keays, R., McDonald, I., and Williams, M.: Extreme enrichment of
Se, Te, PGE and Au in Cu sulfide microdroplets: evidence from LA-ICP-MS
analysis of sulfides in the Skaergaard Intrusion, east Greenland, Contrib.
Mineral. Petr., 170, 53, https://doi.org/10.1007/s00410-015-1203-y, 2015.
Hou, Z., Zhang, H., Pan, X., and Yang, Z.: Porphyry Cu (–Mo–Au) deposits
related to melting of thickened mafic lower crust: examples from the eastern
Tethyan metallogenic domain, Ore Geol. Rev., 39, 21–45, https://doi.org/10.1016/j.oregeorev.2010.09.002, 2011.
Hou, Z., Zhou, Y., Wang, R., Zheng, Y., He, W., Zhao, M., Evans, N. J., and Weinberg, R. F.: Recycling of metal-fertilized lower continental crust: Origin of non-arc Au-rich porphyry deposits at cratonic edges, Geology, 45, 563–566, https://doi.org/10.1130/G38619.1, 2017.
Innocenti, F., Agostini, S., Di Vincenzo, G., Doglioni, C., Manetti, P.,
Savaşçin, M. Y., and Tonarini, S.: Neogene and Quaternary volcanism in
Western Anatolia: magma sources and geodynamic evolution, Mar. Geol., 221,
397–421, https://doi.org/10.1016/j.margeo.2005.03.016, 2005.
Jenner, F. E.: Cumulate causes for the low contents of sulfide-loving
elements in the continental crust, Nat. Geosci., 10, 524–529, https://doi.org/10.1038/ngeo2965, 2017.
Jenner, F. E., O'Neill, H. S. T. C., Arculus, R. J., and Mavrogenes, J. A.: The
magnetite crisis in the evolution of arc-related magmas and the initial
concentrations of Au, Ag, and Cu, J. Petrol., 51, 2445–2464,
https://doi.org/10.1093/petrology/egq063, 2010.
Jensen, E.: Pyrrhotite: melting relations and composition, Am. J. Sci., 240,
695–709, https://doi.org/10.2475/ajs.240.10.695, 1942.
Karaoğlu, Ö., Helvacı, C., and Ersoy, Y.: Petrogenesis and
40Ar∕39Ar
geochronology of the volcanic rocks of the Uşak-Güre basin, western
Türkiye, Lithos, 119, 193–210, https://doi.org/10.1016/j.lithos.2010.07.001, 2010.
Keith, J. D., Whitney, J. A., Hattori, K., Ballantyne, G. H., Christiansen,
E. H., Barr, D. L., Cannan, T. M., and Hook, C. J.: The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah,
J. Petrol., 3, 1679–1690, https://doi.org/10.1093/petroj/38.12.1679, 1997.
Keith, M., Haase, K., Klemd, R., Schwarz-Schampera, U., and Franke, H.:
Systematic variations in magmatic sulfide chemistry from mid-ocean ridges,
back-arc basins and island arcs, Chem. Geol., 451, 67–77, https://doi.org/10.1016/j.chemgeo.2016.12.028, 2017.
Keller, J., Burgath, K., Jung, D., and Wolff, F.: Geologie und petrologie des
neogenen kalkalkali-vulkanismus von Konya (Erenler Dag-Alaca Dag-Massiv,
Zentral-Anatolien), Geologisches Jahrbuch, 25, 37–117, 1977.
Kelley, K. A. and Cottrell, E.: Water and the oxidation state of subduction zone
magmas, Science, 325, 605–607, https://doi.org/10.1126/science.1174156, 2009.
Kitakaze, A.: Sulfide blebs in the andesite from Kasayama volcano, Hagi-city, Yamaguchi, Japan, 39, 190–192, https://doi.org/10.2465/gkk.091220, 2010.
Korkmaz, G., Kursad, A., Huseyin, K., and Ganerod, M.:
40Ar∕39Ar geochronology,
elemental and Sr-Nd-Pb isotope geochemistry of the Neogene bimodal volcanism
in the Yükselen area, NW Konya (Central Anatolia, Turkey), J. African
Earth Sci., 129, 427–444, 2017.
Kullerud, G., Yund, R. A., and Moh, G. H.: Phase relation in the Cu-Fe-Ni, Cu-Ni-S
and Fe-Ni-S systems, Econ. Geol., 4, 323–343, https://doi.org/10.1016/j.jafrearsci.2017.02.001, 1969.
Larocque, A. C., Stimac, J. A., Keith, J. D., and Huminicki, M. A.: Evidence for
open-system behavior in immiscible Fe–S–O liquids in silicate magmas:
implications for contributions of metals and sulfur to ore-forming fluids,
Can. Mineral., 38, 1233–1249, https://doi.org/10.2113/gscanmin.38.5.1233, 2000.
Lee, C.-T. A., Luffi, L. P., Chin, E. J., Bouchet, R., Dasgupta, R., Morton, D. M., Roux, V. L., Yin, Q., and Jin, D.: Copper Systematics in Arc Magmas and Implications for Crust-Mantle Differentiation, Science, 336, 64–68, https://doi.org/10.1126/science.1217313, 2012.
Li, J., Qin, K. Z., and Li, G.: Basic characteristics of gold-rich porphyry
copper deposits and their ore sources and evolving processes of high
oxidation magma and ore-forming fluid, Acta Petrol. Sin., 22, 678–688, 2006.
Lowczak, J. N., Campbell, I. H., Cocker, H., Park, J. W., and Cooke, D. R.: Platinum‐group element geochemistry of the Forest Reef Volcanics, Southeastern Australia: Implications for porphyry Au–Cu mineralisation, Geochim. Cosmochim. Ac., 220, 385–406, https://doi.org/10.1016/j.gca.2017.09.052, 2018.
Loucks, R. B.: Distinctive composition of copper-ore-forming arc magmas,
Aust. J. Earth Sci., 61, 5–16, https://doi.org/10.1080/08120099.2013.865676, 2014.
Mandon, C. L.: Volatile transport of metals in the andesitic
magmatic-hydrothermal system of White Island, MS thesis, Victoria
University of Wellington, available at:
http://hdl.handle.net/10063/6730 (last access: 9 December 2019), 2017.
Mathez, E. A. and Yeats, R. S.: Magmatic Sulfides in Basalt Glass from DSDP Hole 319A and Site 320, Nazca Plate, Geol., https://doi.org/10.2973/dsdp.proc.34.123.1976, 1976.
Metrich, N., Berry, A. J., O'Neill, H. S., and Susini, J.: The oxidation state of
sulfur in synthetic and natural glasses determined by X-ray absorption
spectroscopy, Geochim. Cosmochim. Ac., 73, 2382–2399, https://doi.org/10.1016/j.gca.2009.01.025, 2009.
Mungall, J. and Brenan, J.: Partitioning of platinum-group elements and Au
between sulfide liquid and basalt and the origins of mantle–crust
fractionation of the chalcophile elements, Geochim. Cosmochim. Ac., 125,
265–289, https://doi.org/10.1016/j.gca.2013.10.002, 2014.
Nadeau, O., Williams-Jones, A. E., and Stix, J.: Sulfide magma as a source of
metals in arc-related magmatic hydrothermal ore fluids, Nat. Geosci., 3,
501–505, https://doi.org/10.1038/ngeo899, 2010.
Naldrett, A.: Magmatic Sulfide Deposits Geology, Geochemistry and
Exploration, Chapter 2: Theoretical
considerations, Springer Science and Business Media, ISBN 978 3 662 08444 1, 2013.
Naldrett, A. and Gasparrini, E.: Archean nickel sulfide deposits in Canada:
their classification geological setting and genesis with some suggestions as
to exploration, Geol. Soc. Aust. S., 3, 201–226, https://doi.org/10.1007/978-3-662-08444-1. 1971.
Parat, F., Holtz, F., and Streck, M. J.: Sulfur-bearing Magmatic Accessory
Minerals, Rev. Mineral. Geochem., 73, 285–314, https://doi.org/10.2138/rmg.2011.73.10,
2011.
Park, J. W., Campbell, I., Kim, J., and Moon, J.-W.: The role of sulfide
saturation on formation of a Cu- and Au-rich magma: insights from the
platinum group element geochemistry of Niuatahi–Motutahi lavas, Tonga rear
arc, J. Petrol., 56, 59–81, https://doi.org/10.1093/petrology/egu071, 2015.
Park, J.-W., Campbell, I. H., Malaviarachchi, S. P. K., Cocker, H., Hao, H., and
Kay, S. M.: Chalcophile element fertility and the formation of porphyry Cu
± Au deposits, Miner. Deposita, 54, 657–670, https://doi.org/10.1007/s00126-018-0834-0, 2019.
Patten, C., Barnes, S. J., and Mathez, E. A.: Textural variations in MORB sulfide
droplets due to differences in crystallization history, Can. Mineral., 50,
675–692, https://doi.org/10.3749/canmin.50.3.675, 2012.
Pe-Piper, G. and Piper, D. J.: Late Cenozoic, post-collisional Aegean igneous
rocks: Nd, Pb and Sr isotopic constraints on petrogenetic and tectonic
models, Geol. Mag., 138, 653–668, https://doi.org/10.1017/S0016756801005957, 2001.
Prelević, D., Akal, C., Foley, S. F., Romer, R. L., Stracke, A., and Van Den
Bogaard, P.: Ultrapotassic mafic rocks as geochemical proxies for
post-collisional dynamics of orogenic lithospheric mantle: the case of
southwestern Anatolia, Turkey, J. Petrol., 53, 1019–1055, https://doi.org/10.1093/petrology/egs008, 2012.
Qin, X. L., Du, Y. S., Tian, S. H., Lee, H. K., Yin, J. W., and Kim, S. J.: Discovery of pyrrhotitechalcopyrite-bearing amphibole megacrysts in Tongling area, Anhui Province, J. China Univ. Geosci., 15, 36–45, 2004.
Rabayrol, F., Hart, C. J. R., and Thorkelson, D. J.: Temporal, spatial and
geochemical evolution of late Cenozoic post-subduction magmatism in central
and eastern Anatolia, Turkey, Lithos, 336–337, 67–96, https://doi.org/10.1016/j.lithos.2019.03.022, 2019.
Redwood, S. D.: Exploration of the Doğanbey Project, Konya, Turkey,
Report for Stratex International plc, 26 April 2006, London, 2006.
Richards, J. P.: Postsubduction porphyry Cu-Au and epithermal Au deposits:
Products of remelting of subduction-modified lithosphere, Geology, 37,
247–250, https://doi.org/10.1130/G25451A.1, 2009.
Richards, J. P.: High Sr/Y arc magmas and porphyry Cu Mo Au deposits: Just add
water, Econ. Geol., 106, 1075–1081, https://doi.org/10.2113/econgeo.106.7.1075, 2011.
Richards, J. P.: Giant ore deposits form by optimal alignments and
combinations of geological processes, Nat. Geosci., 6, 911–916, https://doi.org/10.1038/ngeo1920, 2013.
Richards, J. P. and Kerrich, R.: Special Paper: Adakite-Like Rocks: Their
Diverse Origins and Questionable Role in Metallogenesis, Econ. Geol., 102,
537–576, https://doi.org/10.2113/gsecongeo.102.4.537, 2007.
Richardson-Bunbury, J. M.: The Kula volcanic field,
western Turkey; the development of a Holocene alkali basalt province and the
adjacent normal-faulting graben, Geol. Mag., 133, 275–283, https://doi.org/10.1017/S0016756800009018, 1996.
Rohrlach, B. D. and Loucks, R. P.: Multi-million-year cyclic ramp-up of volatiles
in a lower crustal magma reservoir trapped below the Tampakan copper-gold
deposit by Mio-Pliocene crustal compression in the southern Philippines, in: Super Porphyry Copper & Gold Deposits – A Global Perspective, edited by: Porter, T. M., PGC Publishing, Adelaide, 2, 369–407, 2005.
Savelyev, D. P., Kamenetsky, V. S., Danyushevsky, L. V., Botcharnikov, R. E.,
Kamenetsky, M. B., Park, J.-W., Portnyagin, M. V., Olin, P., Krasheninnikov,
S. P., and Hauff, F.: Immiscible sulfide melts in primitive oceanic magmas:
Evidence and implications from picrite lavas (Eastern Kamchatka, Russia),
Am. Mineral., 103, 886–898, https://doi.org/10.2138/am-2018-6352, 2018.
Schütte, P., Chiaradia, M., Barra, F., Villagómez, D., and Beate, B.:
Metallogenic features of Miocene porphyry Cu and porphyry-related mineral
deposits in Ecuador revealed by Re–Os,
40Ar∕39Ar, and U–Pb geochronology,
Miner. Deposita, 47, 383–410, https://doi.org/10.1007/s00126-011-0378-z, 2012.
Seyitoglu, G.: Late Cenozoic tectono-sedimentary development of the Selendi
and Usak-Güre basins: a contribution to the discussion on the
development of east–west and north trending basins in western Turkey, Geol.
Mag., 134, 163–175, https://doi.org/10.1017/S0016756897006705, 1997.
Shafiei, B., Haschke, M., and Shahabpour, J.: Recycling of orogenic arc crust
triggers porphyry Cu mineralisation in Kerman Cenozoic arc rocks,
south-eastern Iran, Miner. Deposita, 44, 265–283, https://doi.org/10.1007/s00126-008-0216-0, 2009.
Sillitoe, R. H.: A Plate Tectonic Model for the Origin of Porphyry Copper
Deposits, Econ. Geol., 67, 184–197, https://doi.org/10.2113/gsecongeo.67.2.184, 1972.
Sillitoe, R. H.: Gold-rich porphyry copper deposits: Geological model and
exploration implications, Geol. Assoc. Can. S., 40, 465–478,
1993.
Sillitoe, R. H.: Some metallogenic features of gold and copper deposits
related to alkaline rocks and consequences for exploration, Miner.
Deposita, 37, 4–13, https://doi.org/10.1007/s00126-001-0227-6, 2002.
Sillitoe, R. H.: Copper provinces, in: Geology
and Genesis of Major Copper Deposits and Districts of the World: A Tribute
to Richard H. Sillitoe, edited by: Hedenquist, J. W., Harris, M., and Camus, F., Soc. Econ. Geol., 16, 1–18, 2012.
Stone, W. E. and Fleet, M. E.: Nickel-copper sulfides from the 1959 eruption of Kilauea Volcano, Hawaii: Constraining compositions and phase relations in eruption pumice and Kilauea Oki lava lake, Am. Mineral., 76, 1363–1372, 1991.
Stone, W. E., Fleet, M. E., and MacRae, N. D.: Two-phase nickeliferous monosulfide solid solution (mss) in megacrysts from Mount Shasta, California: A natural laboratory for nickel-copper sulfides, Am. Mineral., 74, 981–993, 1989.
Temel, A.: Post-collisional Miocene alkaline volcanism in the oglakçi
region, Turkey, Petrol. Geochem. Int. Geol. Rev., 43, 640–660, https://doi.org/10.1080/00206810109465038, 2001.
Temel, A., Gundogdu, M. N., and Gourgaud, A.: Petrological and geochemical
characteristics of Cenozoic high-K calc-alkaline volcanism in Konya, Central
Anatolia, Turkey, J. Volcanol. Geoth. Res., 85, 327–354, https://doi.org/10.1016/S0377-0273(98)00062-6, 1998.
Tokçaer, M., Agostini, S., and Savaşçın, M. Y.: Geotectonic setting
and origin of the youngest Kula volcanics (western Anatolia), with a new
emplacement model, Turk. J. Earth Sci., 14, 145–166, 2005.
Tsujimura, T. and Kitakaze, A.: New phase relations in the Cu–Fe–S system at
800
∘C; constraint of fractional crystallization of a sulfide
liquid, Neues Jb. Miner. Monat., 10, 433–444, https://doi.org/10.1127/0028-3649/2004/2004-0433, 2004.
Westaway, R., Pringle, M., Yurtmen, S., Demir, T., Bridgland, D., Rowbotham,
G., and Maddy, D.: Pliocene and Quaternary regional uplift in western Turkey:
the Gediz River terrace staircase and the volcanism at Kula, Tectonophysics,
391, 121–169, https://doi.org/10.1016/j.tecto.2004.07.013, 2004.
Whitney, J. A. and Stormer, J. C.: Igneous sulfides in the Fish Canyon Tuff and the role of sulfur in calc-alkaline magmas, Geology, 11, 2, https://doi.org/10.1130/0091-7613(1983)11<99:ISITFC>2.0.CO;2, 1983.
Wilke, M., Klimm, K., and Kohn, S. C.: Spectroscopic Studies on Sulfur Speciation
in Synthetic and Natural Glasses, Rev. Mineral. Geochem., 73, 41–78, https://doi.org/10.2138/rmg.2011.73.3, 2011.
Wilkinson, J. J.: Triggers for the formation of porphyry ore deposits in
magmatic arcs, Nat. Geosci., 6, 917–925, https://doi.org/10.1038/ngeo1940, 2013.
Yund, R. and Kullerud, G.: Thermal stability of assemblages in Cu-Fe-S system,
J. Petrol., 7, 456–488, https://doi.org/10.1093/petrology/7.3.454, 1966.
Zelenski, M., Kamenetsky, V. S., Mavrogenes, J. A., Gurekno, A. A., and
Danyushevsky, L. V.: Silicate–sulfide liquid immiscibility in modern arc
basalt (Tolbachik volcano, Kamchatka): part I. Occurrence and compositions
of sulfide melts, Chem. Geol., 471, 92–110, https://doi.org/10.1016/j.chemgeo.2017.09.019, 2017.
Zhang, D. and Audétat A.: Chemistry, mineralogy and crystallization
conditions of porphyry Mo-forming magmas at Urad-Henderson and silver creek,
Colorado, USA, J. Petrol., 58, 277–296, https://doi.org/10.1093/petrology/egx016, 2017.
Zürcher, L., Bookstrom, A. A., Hammarstrom, J. M., Mars, J. C., Ludington,
S., Zientek, M. L., Dunlap, P., Wallis, J. C., with contributions from Drew,
L. J., Sutphin, D. M., Berger, B. R., Herrington, R. J., Billa, M., Kuşcu,
I., Moon, C. J., and Richards, J. P.: Porphyry copper assessment of the Tethys
region of western and southern Asia, U.S. Geol. Surv. Sci. Invest. Rep.,
2010-5090, 232, and spatial data, https://doi.org/10.3133/sir20105090V, 2015.