Articles | Volume 11, issue 4
https://doi.org/10.5194/se-11-1361-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-1361-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Stress field orientation controls on fault leakage at a natural CO2 reservoir
Johannes M. Miocic
CORRESPONDING AUTHOR
Institute of Earth and Environmental Sciences, University of Freiburg,
Albertstr. 23b, 79104 Freiburg, Germany
Gareth Johnson
Department of Civil and Environmental Engineering, University of
Strathclyde, James Weir Building, Glasgow, G1 1XJ, UK
Stuart M. V. Gilfillan
School of Geosciences, University of Edinburgh, Grant
Institute, James Hutton Road, The King's Buildings, Edinburgh, EH9 3FE, UK
Related authors
Michael Kühn, Viktor J. Bruckman, Sonja Martens, Johannes Miocic, and Giorgia Stasi
Adv. Geosci., 62, 67–69, https://doi.org/10.5194/adgeo-62-67-2024, https://doi.org/10.5194/adgeo-62-67-2024, 2024
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5, https://doi.org/10.5194/adgeo-54-1-2020, https://doi.org/10.5194/adgeo-54-1-2020, 2020
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, https://doi.org/10.5194/se-10-951-2019, 2019
Short summary
Short summary
When carbon dioxide is introduced into the subsurface it will migrate upwards and can encounter faults, which, depending on their hydrogeological properties and composition, can form barriers or pathways for the migrating fluid. We analyse uncertainties associated with these properties in order to better understand the implications for the retention of CO2 in the subsurface. We show that faults that form seals for other fluids may not be seals for CO2, which has implications for storage sites.
Michael Kühn, Viktor J. Bruckman, Sonja Martens, Johannes Miocic, and Giorgia Stasi
Adv. Geosci., 62, 67–69, https://doi.org/10.5194/adgeo-62-67-2024, https://doi.org/10.5194/adgeo-62-67-2024, 2024
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5, https://doi.org/10.5194/adgeo-54-1-2020, https://doi.org/10.5194/adgeo-54-1-2020, 2020
Juan Alcalde, Clare E. Bond, Gareth Johnson, Armelle Kloppenburg, Oriol Ferrer, Rebecca Bell, and Puy Ayarza
Solid Earth, 10, 1651–1662, https://doi.org/10.5194/se-10-1651-2019, https://doi.org/10.5194/se-10-1651-2019, 2019
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, https://doi.org/10.5194/se-10-951-2019, 2019
Short summary
Short summary
When carbon dioxide is introduced into the subsurface it will migrate upwards and can encounter faults, which, depending on their hydrogeological properties and composition, can form barriers or pathways for the migrating fluid. We analyse uncertainties associated with these properties in order to better understand the implications for the retention of CO2 in the subsurface. We show that faults that form seals for other fluids may not be seals for CO2, which has implications for storage sites.
Related subject area
Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Structural geology
Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy
Fault-controlled fluid circulation and diagenesis along basin-bounding fault systems in rifts – insights from the East Greenland rift system
Towards the application of Stokes flow equations to structural restoration simulations
Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks
Diagenetic evolution of fault zones in Urgonian microporous carbonates, impact on reservoir properties (Provence – southeast France)
Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects
The role of mechanical stratigraphy on the refraction of strike-slip faults
Influence of basement heterogeneity on the architecture of low subsidence rate Paleozoic intracratonic basins (Reggane, Ahnet, Mouydir and Illizi basins, Hoggar Massif)
David J. Anastasio, Frank J. Pazzaglia, Josep M. Parés, Kenneth P. Kodama, Claudio Berti, James A. Fisher, Alessandro Montanari, and Lorraine K. Carnes
Solid Earth, 12, 1125–1142, https://doi.org/10.5194/se-12-1125-2021, https://doi.org/10.5194/se-12-1125-2021, 2021
Short summary
Short summary
The anisotropy of magnetic susceptibility (AMS) technique provides an effective way to interpret deforming mountain belts. In both the Betics, Spain, and Apennines, Italy, weak but well-organized AMS fabrics were recovered from young unconsolidated and unburied rocks that could not be analyzed with more traditional methods. Collectively, these studies demonstrate the novel ways that AMS can be combined with other data to resolve earthquake hazards in space and time.
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013, https://doi.org/10.5194/se-11-1987-2020, https://doi.org/10.5194/se-11-1987-2020, 2020
Short summary
Short summary
This study focuses on the impact of major rift border faults on fluid circulation and hanging wall sediment diagenesis by investigating a well-exposed example in NE Greenland using field observations, U–Pb calcite dating, clumped isotope, and minor element analyses. We show that fault-proximal sediments became calcite cemented quickly after deposition to form a near-impermeable barrier along the fault, which has important implications for border fault zone evolution and reservoir assessments.
Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon
Solid Earth, 11, 1909–1930, https://doi.org/10.5194/se-11-1909-2020, https://doi.org/10.5194/se-11-1909-2020, 2020
Short summary
Short summary
This paper presents a numerical method for restoring models of the subsurface to a previous state in their deformation history, acting as a numerical time machine for geological structures. The method relies on the assumption that rock layers can be modeled as highly viscous fluids. It shows promising results on simple setups, including models with faults and non-flat topography. While issues still remain, this could open a way to add more physics to reverse time structural modeling.
Romesh Palamakumbura, Maarten Krabbendam, Katie Whitbread, and Christian Arnhardt
Solid Earth, 11, 1731–1746, https://doi.org/10.5194/se-11-1731-2020, https://doi.org/10.5194/se-11-1731-2020, 2020
Short summary
Short summary
The aim of this paper is to describe, evaluate and develop a simple but robust low-cost method for capturing 2-D fracture network data in GIS and make them more accessible to a broader range of users in both academia and industry. We present a breakdown of the key steps in the methodology, which provides an understanding of how to avoid error and improve the accuracy of the final dataset. The 2-D digital method can be used to interpret traces of 2-D linear features on a wide variety of scales.
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641, https://doi.org/10.5194/se-11-1617-2020, https://doi.org/10.5194/se-11-1617-2020, 2020
Short summary
Short summary
This paper reports a multiproxy approach to reconstruct the depth, timing, and extent of the past fluid flow during the formation of a fold-and-thrust belt in the Northern Apennines, Italy. The unique combination of paleopiezometry and absolute dating returns the absolute timing of the sequence of deformation. Combined with burial models, this leads to predict the expected temperatures for fluid, highlighting a limited hydrothermal fluid flow we relate to the large-scale subsurface geometry.
Irène Aubert, Philippe Léonide, Juliette Lamarche, and Roland Salardon
Solid Earth, 11, 1163–1186, https://doi.org/10.5194/se-11-1163-2020, https://doi.org/10.5194/se-11-1163-2020, 2020
Short summary
Short summary
In carbonate rocks, fault zones influence the fluid flows and lead to important diagenetic processes modifying reservoir properties. The aim of this study is to identify the impact of two polyphase fault zones on fluid flows and reservoir properties during basin history. We determined petro-physic and diagenetic properties on 92 samples. This study highlights that fault zones acted as drains at their onset and induced fault zone cementation, which has strongly altered local reservoir properties.
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, https://doi.org/10.5194/se-10-951-2019, 2019
Short summary
Short summary
When carbon dioxide is introduced into the subsurface it will migrate upwards and can encounter faults, which, depending on their hydrogeological properties and composition, can form barriers or pathways for the migrating fluid. We analyse uncertainties associated with these properties in order to better understand the implications for the retention of CO2 in the subsurface. We show that faults that form seals for other fluids may not be seals for CO2, which has implications for storage sites.
Mirko Carlini, Giulio Viola, Jussi Mattila, and Luca Castellucci
Solid Earth, 10, 343–356, https://doi.org/10.5194/se-10-343-2019, https://doi.org/10.5194/se-10-343-2019, 2019
Short summary
Short summary
Physical properties of layered sedimentary rocks affect nucleation and propagation of discontinuities therein. Fractures developing through sedimentary sequences characterized by the alternation of strong and weak layers are strongly deviated along their track at layers’ boundaries, and depending on the layer they cross-cut, they show very thick (strong layers) or very thin (weak layers) infills of precipitated minerals, potentially representing pathways for ore deposits and oil/water resources.
Paul Perron, Michel Guiraud, Emmanuelle Vennin, Isabelle Moretti, Éric Portier, Laetitia Le Pourhiet, and Moussa Konaté
Solid Earth, 9, 1239–1275, https://doi.org/10.5194/se-9-1239-2018, https://doi.org/10.5194/se-9-1239-2018, 2018
Short summary
Short summary
In this paper we present an original multidisciplinary workflow involving various tools (e.g., seismic profiles, satellite images, well logs) and techniques (e.g., photogeology, seismic interpretation, well correlation, geophysics, geochronology, backstripping) as a basis for discussing the potential factors controlling the tectono-stratigraphic architecture within the Palaeozoic intracratonic basins of the Saharan Platform using the Reggane, Ahnet, Mouydir and Illizi basins as examples.
Cited articles
Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, C.
E., Scott, V., Gilfillan, S. M. V., Ogaya, X., and Haszeldine, R. S.:
Estimating geological CO2 storage security to deliver on climate
mitigation, Nat. Commun., 9, 2201,
https://doi.org/10.1038/s41467-018-04423-1, 2018.
Aldrich, M. J. and Laughlin, A. W.: A model for the tectonic development of
the Southeastern Colorado Plateau Boundary, J. Geophys. Res.-Sol. Ea., 89, 10207–10218, https://doi.org/10.1029/JB089iB12p10207,
1984.
Allan, U. S.: Model for hydrocarbon migration and entrapment within faulted
structures, AAPG Bull., 73, 803–811, 1989.
Allis, R., Bergfeld, D., Moore, J., McClure, K., Morgan, C., Chidsey, T.,
Heath, J., and McPherson, B.: Implications of results from CO2 flux surveys
over known CO2 systems for long-term monitoring, in: Fourth Annual Conference
on Carbon Capture and Sequestration, DOE/NETL, Alexandria, Virginia, USA, 2005.
Allis, R. G., Moore, J., and White, S. P.: Reactive Multiphase behavior of
CO2 in Saline Aquifers beneath the Colorado Plateau, Quaterly Technical
Report, University of Utah, Salt Lake City, 2004.
Asquith, G. B. and Krygowski, D.: Basic Well Log Analysis, 2nd Edn., AAPG,
Tulsa, OK, USA, 2004.
Backers, T. and Moeck, I.: Fault tips as favorable drilling targets for
geothermal prospecting – a fracture mechanical perspective, International
Society for Rock Mechanics and Rock Engineering, Salzburg, Austria, 2015.
Bao, J., Xu, Z., Lin, G., and Fang, Y.: Evaluating the impact of aquifer
layer properties on geomechanical response during CO2 geological
sequestration, Comput. Geosci., 54, 28–37,
https://doi.org/10.1016/j.cageo.2013.01.015, 2013.
Barton, C. A., Zoback, M. D., and Moos, D.: Fluid flow along potentially
active faults in crystalline rock, Geology, 23, 683–686,
https://doi.org/10.1130/0091-7613(1995)023<0683:FFAPAF>2.3.CO;2, 1995.
Bashir, L., Gao, S. S., Liu, K. H., and Mickus, K.: Crustal structure and
evolution beneath the Colorado Plateau and the southern Basin and Range
Province: Results from receiver function and gravity studies, Geochem.
Geophy. Geosy., 12, Q06008, https://doi.org/10.1029/2011GC003563, 2011.
Becker, I., Müller, B., Bastian, K., Jelinek, W., and Hilgers, C.:
Present-day stress control on fluid migration pathways: Case study of the
Zechstein fractured carbonates, NW-Germany – ScienceDirect, Mar.
Petrol. Geol., 103, 320–330, https://doi.org/10.1016/j.marpetgeo.2019.03.002, 2019.
Bond, C. E., Wightman, R., and Ringrose, P. S.: The influence of fracture
anisotropy on CO2 flow, Geophys. Res. Lett., 40, 1284–1289,
https://doi.org/10.1002/grl.50313, 2013.
Bond, C. E., Kremer, Y., Johnson, G., Hicks, N., Lister, R., Jones, D. G.,
Haszeldine, R. S., Saunders, I., Gilfillan, S. M. V., Shipton, Z. K., and
Pearce, J.: The physical characteristics of a CO2 seeping fault: The
implications of fracture permeability for carbon capture and storage
integrity, Int. J. Greenh. Gas Con., 61, 49–60,
https://doi.org/10.1016/j.ijggc.2017.01.015, 2017.
Brogi, A., Capezzuoli, E., Aqué, R., Branca, M., and Voltaggio, M.:
Studying travertines for neotectonics investigations: Middle–Late
Pleistocene syn-tectonic travertine deposition at Serre di Rapolano
(Northern Apennines, Italy), Int. J. Earth Sci. (Geol. Rundsch.), 99,
1383–1398, https://doi.org/10.1007/s00531-009-0456-y, 2010.
Burnside, N. M., Shipton, Z. K., Dockrill, B., and Ellam, R. M.: Man-made
versus natural CO2 leakage: A 400 k.y. history of an analogue for engineered
geological storage of CO2, Geology, 41, 471–474,
https://doi.org/10.1130/G33738.1, 2013.
Byerlee, J.: Friction of rocks, PAGEOPH, 116, 615–626,
https://doi.org/10.1007/BF00876528, 1978.
Caillet, G.: The caprock of the Snorre Field, Norway: a possible leakage by
hydraulic fracturing, Mar. Petrol. Geol., 10, 42–50,
https://doi.org/10.1016/0264-8172(93)90098-D, 1993.
Caine, J. S., Evans, J. P., and Forster, C. B.: Fault zone architecture and
permeability structure, Geology, 24, 1025–1028, 1996.
Cappa, F.: Modelling fluid transfer and slip in a fault zone when
integrating heterogeneous hydromechanical characteristics in its internal
structure, Geophys. J. Int., 178, 1357–1362,
https://doi.org/10.1111/j.1365-246X.2009.04291.x, 2009.
Cavanagh, A. J., Haszeldine, R. S., and Nazarian, B.: The Sleipner CO2
storage site: using a basin model to understand reservoir simulations of
plume dynamics, First Break, 33, 61–68, 2015.
Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., and Zweigel, P.:
Best practice for the storage of CO2 in saline aquifers – observations and
guidelines from the SACS and CO2STORE projects, British Geological Survey,
Nottingham, UK, 2008.
Chester, F. M. and Logan, J. M.: Implications for mechanical properties of
brittle faults from observations of the Punchbowl fault zone, California,
PAGEOPH, 124, 79–106, https://doi.org/10.1007/BF00875720, 1986.
Chiaramonte, L., Zoback, M. D., Friedmann, J., and Stamp, V.: Seal integrity
and feasibility of CO2 sequestration in the Teapot Dome EOR pilot:
geomechanical site characterization, Environ. Geol., 54, 1667–1675,
https://doi.org/10.1007/s00254-007-0948-7, 2008.
Choi, J.-H., Edwards, P., Ko, K., and Kim, Y.-S.: Definition and
classification of fault damage zones: A review and a new methodological
approach, Earth-Sci. Rev., 152, 70–87,
https://doi.org/10.1016/j.earscirev.2015.11.006, 2016.
Condit, C. D. and Connor, C. B.: Recurrence rates of volcanism in basaltic
volcanic fields: An example from the Springerville volcanic field, Arizona,
Geol. Soc. Am. Bull., 108, 1225–1241,
https://doi.org/10.1130/0016-7606(1996)108<1225:RROVIB>2.3.CO;2, 1996.
Condit, C. D., Crumpler, L. S., and Aubele, J. C.: Lithologic, age group,
magnetopolarity, and geochemical maps of the Springerville Volcanic Field,
East-Central Arizona, U.S. Dept. of the Interior, U.S. Geological Survey,
1993.
Connor, C. B., Condit, C. D., Crumpler, L. S., and Aubele, J. C.: Evidence of
regional structural controls on vent distribution: Springerville Volcanic
Field, Arizona, J. Geophys. Res., 97, 12349–12359,
https://doi.org/10.1029/92JB00929, 1992.
Crumpler, L. S., Aubele, J. C., and Condit, C. D.: Volcanics and
neotectoniccharacteristics of the Springerville volcanic field, Arizona, in:
New Mexico Geological Society Guidebook, 45th Field Conference, edited by: Chamberlin, R.
M., Kues, B. S., Cather, S. M., Barker, J. M., and McIntosh, W. C.,
New Mexico Geological Society, Scorro, New Mexico, USA, 147–164, 1994.
Davatzes, N. C. and Aydin, A.: Distribution and nature of fault architecture
in a layered sandstone and shale sequence: An example from the Moab fault,
Utah, AAPG Memoir., 85, 153–180, 2005.
Dockrill, B. and Shipton, Z. K.: Structural controls on leakage from a
natural CO2 geologic storage site: Central Utah, U.S.A, J.
Struct. Geol., 32, 1768–1782,
https://doi.org/10.1016/j.jsg.2010.01.007, 2010.
Eichhubl, P., Davatz, N. C., and Becker, S. P.: Structural and diagenetic
control of fluid migration and cementation along the Moab fault, Utah, AAPG
Bull., 93, 653–681, https://doi.org/10.1306/02180908080, 2009.
Embid, E. H.: U-series dating, geochemistry, and geomorphic studies of
travertines and springs of the Springerville area, east-central Arizona, and
tectonic implications, MSc thesis, The University of New Mexico,
Albuquerque, 2009.
Faulkner, D. R. and Rutter, E. H.: Can the maintenance of overpressured
fluids in large strike-slip fault zones explain their apparent weakness?,
Geology, 29, 503–506,
https://doi.org/10.1130/0091-7613(2001)029<0503:CTMOOF>2.0.CO;2, 2001.
Faulkner, D. R., Lewis, A. C., and Rutter, E. H.: On the internal structure
and mechanics of large strike-slip fault zones: field observations of the
Carboneras fault in southeastern Spain, Tectonophysics, 367, 235–251,
https://doi.org/10.1016/S0040-1951(03)00134-3, 2003.
Faulkner, D. R., Jackson, C. A. L., Lunn, R. J., Schlische, R. W., Shipton,
Z. K., Wibberley, C. A. J., and Withjack, M. O.: A review of recent
developments concerning the structure, mechanics and fluid flow properties
of fault zones, J. Struct. Geol., 32, 1557–1575,
https://doi.org/10.1016/j.jsg.2010.06.009, 2010.
Fernandez, O., Jones, S., Armstrong, N., Johnson, G., Ravaglia, A., and
Muñoz, J. A.: Automated tools within workflows for 3D structural
construction from surface and subsurface data, Geoinformatica, 13, 291,
https://doi.org/10.1007/s10707-008-0059-y, 2008.
Frery, E., Gratier, J.-P., Ellouz-Zimmerman, N., Loiselet, C., Braun, J.,
Deschamps, P., Blamart, D., Hamelin, B., and Swennen, R.: Evolution of fault
permeability during episodic fluid circulation: Evidence for the effects of
fluid–rock interactions from travertine studies (Utah–USA),
Tectonophysics, 651–652, 121–137, https://doi.org/10.1016/j.tecto.2015.03.018, 2015.
Gilfillan, S., Haszedline, S., Stuart, F., Gyore, D., Kilgallon, R., and
Wilkinson, M.: The application of noble gases and carbon stable isotopes in
tracing the fate, migration and storage of CO2, Enrgy. Proced., 63,
4123–4133, https://doi.org/10.1016/j.egypro.2014.11.443, 2014.
Gilfillan, S. M. V., Ballentine, C. J., Holland, G., Blagburn, D., Lollar,
B. S., Stevens, S., Schoell, M., and Cassidy, M.: The noble gas geochemistry
of natural CO2 gas reservoirs from the Colorado Plateau and Rocky Mountain
provinces, USA, Geochim. Cosmochim. Ac., 72, 1174–1198,
https://doi.org/10.1016/j.gca.2007.10.009, 2008.
Gilfillan, S. M. V., Lollar, B. S., Holland, G., Blagburn, D., Stevens, S.,
Schoell, M., Cassidy, M., Ding, Z., Zhou, Z., Lacrampe-Couloume, G., and
Ballentine, C. J.: Solubility trapping in formation water as dominant CO2
sink in natural gas fields, Nature, 458, 614–618,
https://doi.org/10.1038/nature07852, 2009.
Gilfillan, S. M. V., Wilkinson, M., Haszeldine, R. S., Shipton, Z. K.,
Nelson, S. T., and Poreda, R. J.: He and Ne as tracers of natural CO2
migration up a fault from a deep reservoir, Int. J.
Greenh. Gas Con., 5, 1507–1516,
https://doi.org/10.1016/j.ijggc.2011.08.008, 2011.
Guglielmi, Y., Cappa, F., and Amitrano, D.: High-definition analysis of
fluid-induced seismicity related to the mesoscale hydromechanical properties
of a fault zone, Geophys. Res. Lett., 35, L06306,
https://doi.org/10.1029/2007GL033087, 2008.
Handin, J., Hager, R. V., Friedman, M., and Feather, J. N.: Experimental
deformation of sedimentary rocks under confining pressure; pore pressure
tests, AAPG Bull., 47, 717–755, 1963.
Harris, R. C.: A review and bibliography of karst features of the Colorado
Plateau, Arizona, Open-File Report, Arizona Geological Survey, Tuscon, AZ, USA, 2002.
Heidbach, O., Rajabi, M., Reiter, K., Ziegler, M., and WSM Team: World Stress
Map Database Release 2016. V.1.1, GFZ Data Service,
https://doi.org/10.5880/WSM.2016.001, 2016.
Hendricks, J. D. and Plescia, J. B.: A review of the regional geophysics of
the Arizona Transition Zone, J. Geophys. Res.-Sol. Ea.,
96, 12351–12373, https://doi.org/10.1029/90JB01781, 1991.
Henk, A.: Pre-drilling prediction of the tectonic stress field with
geomechanical models, First Break, 23, 53–57, 2005.
Hickman, S., Sibson, R., and Bruhn, R.: Introduction to Special Section:
Mechanical Involvement of Fluids in Faulting, J. Geophys. Res., 100,
12831–12840, https://doi.org/10.1029/95JB01121, 1995.
Hillis, R. R.: Pore pressure/stress coupling and its implications for rock
failure, Geol. Soc. Lond. Spec. Publ., 216, 359–368,
https://doi.org/10.1144/GSL.SP.2003.216.01.23, 2003.
IEA GHG: CCS Site Characterisation Criteria, IEA Greenhouse Gas R&D
Programme, Cheltanham, UK, 2009.
IPCC: IPCC Special report on Carbon Dioxide Capture and Storage, Cambridge
University Press, New York, USA, Cambridge, UK, 2005.
Ito, T. and Zoback, M. D.: Fracture permeability and in situ stress to 7 km
depth in the KTB scientific drillhole, Geophys. Res. Lett., 27,
1045–1048, https://doi.org/10.1029/1999GL011068, 2000.
Karolytė, R., Johnson, G., Yielding, G., and Gilfillan, S. M. V.: Fault
seal modelling – the influence of fluid properties on fault sealing
capacity in hydrocarbon and CO2 systems, Petrol. Geosci., 126,
https://doi.org/10.1144/petgeo2019-126, 2020.
Keating, E., Newell, D., Dempsey, D., and Pawar, R.: Insights into
interconnections between the shallow and deep systems from a natural CO2
reservoir near Springerville, Arizona, Int. J. Greenh.
Gas Con., 25, 162–172, https://doi.org/10.1016/j.ijggc.2014.03.009,
2014.
Kreemer, C., Blewitt, G., and Bennett, R. A.: Present-day motion and
deformation of the Colorado Plateau, Geophys. Res. Lett., 37, L10311,
https://doi.org/10.1029/2010GL043374, 2010.
Lehner, F. K. and Pilaar, W. F.: The emplacement of clay smears in
synsedimentary normal faults: inferences from field observations near
Frechen, Germany, in: Norwegian Petroleum Society Special Publications, Vol. 7, edited by: Møller-Pedersen, P. and Koestler, A. G., 39–50,
Elsevier, Oslo, 1997.
Lindsay, N. G., Murphy, F. C., Walsh, J. J., and Watterson, J.: Outcrop
Studies of Shale Smears on Fault Surface, in: The Geological Modelling of
Hydrocarbon Reservoirs and Outcrop Analogues, 113–123, Blackwell
Publishing Ltd., https://doi.org/10.1002/9781444303957.ch6, 1993.
Marshak, S., Karlstrom, K., and Timmons, J. M.: Inversion of Proterozoic
extensional faults: An explanation for the pattern of Laramide and Ancestral
Rockies intracratonic deformation, United States, Geology, 28, 735–738,
https://doi.org/10.1130/0091-7613(2000)28<735:IOPEFA>2.0.CO;2, 2000.
Matos, C. R., Carneiro, J. F., and Silva, P. P.: Overview of Large-Scale
Underground Energy Storage Technologies for Integration of Renewable
Energies and Criteria for Reservoir Identification, Journal of Energy
Storage, 21, 241–258, https://doi.org/10.1016/j.est.2018.11.023, 2019.
McFarland, J. M., Morris, A. P., and Ferrill, D. A.: Stress inversion using
slip tendency, Comput. Geosci., 41, 40–46,
https://doi.org/10.1016/j.cageo.2011.08.004, 2012.
Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma,
S., and Aiken, T.: Geological storage of CO2 in saline aquifers – A review of
the experience from existing storage operations, Int. J.
Greenh. Gas Con., 4, 659–667,
https://doi.org/10.1016/j.ijggc.2009.12.011, 2010.
Michie, E. A. H., Yielding, G., and Fisher, Q. J.: Predicting
transmissibilities of carbonate-hosted fault zones, Geol. Soc.
Lond. Spec. Publ., 459, 121–137,
https://doi.org/10.1144/SP459.9, 2018.
Min, K.-B., Rutqvist, J., Tsang, C.-F., and Jing, L.: Stress-dependent
permeability of fractured rock masses: a numerical study, Int.
J. Rock Mech. Min., 41, 1191–1210,
https://doi.org/10.1016/j.ijrmms.2004.05.005, 2004.
Miocic, J. M., Gilfillan, S. M. V., Roberts, J. J., Edlmann, K., McDermott,
C. I., and Haszeldine, R. S.: Controls on CO2 storage security in natural
reservoirs and implications for CO2 storage site selection, Int. J. Greenh.
Gas Con., 51, 118–125, https://doi.org/10.1016/j.ijggc.2016.05.019, 2016.
Miocic, J. M., Gilfillan, S. M. V., Frank, N., Schroeder-Ritzrau, A.,
Burnside, N. M., and Haszeldine, R. S.: 420,000 year assessment of fault
leakage rates shows geological carbon storage is secure, Sci. Rep.-UK, 9,
769, https://doi.org/10.1038/s41598-018-36974-0, 2019a.
Miocic, J. M., Johnson, G., and Bond, C. E.: Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects, Solid Earth, 10, 951–967, https://doi.org/10.5194/se-10-951-2019, 2019b.
Mitchell, T. M. and Faulkner, D. R.: The nature and origin of off-fault
damage surrounding strike-slip fault zones with a wide range of
displacements: A field study from the Atacama fault system, northern Chile,
J. Struct. Geol., 31, 802–816,
https://doi.org/10.1016/j.jsg.2009.05.002, 2009.
Moeck, I., Kwiatek, G., and Zimmermann, G.: Slip tendency analysis, fault
reactivation potential and induced seismicity in a deep geothermal
reservoir, J. Struct. Geol., 31, 1174–1182,
https://doi.org/10.1016/j.jsg.2009.06.012, 2009.
Moore, J., Adams, M., Allis, R., Lutz, S., and Rauzi, S.: Mineralogical and
geochemical consequences of the long-term presence of CO2 in natural
reservoirs: An example from the Springerville–St. Johns Field, Arizona, and
New Mexico, U.S.A., Chem. Geol., 217, 365–385,
https://doi.org/10.1016/j.chemgeo.2004.12.019, 2005.
Morris, A., Ferrill, D. A., and Henderson, D. B.: Slip-tendency analysis and
fault reactivation, Geology, 24, 275–278, 1996.
Neal, J. T. and Colpitts, R. M.: Richard Lake, an evaporite-karst depression
in the Holbrook Basin, Arizona, Carbonates Evaporites, 12, 91–97,
https://doi.org/10.1007/BF03175807, 1997.
Ogata, K., Senger, K., Braathen, A., and Tveranger, J.: Fracture corridors as
seal-bypass systems in siliciclastic reservoir-cap rock successions:
Field-based insights from the Jurassic Entrada Formation (SE Utah, USA),
J. Struct. Geol., 66, 162–187,
https://doi.org/10.1016/j.jsg.2014.05.005, 2014.
Pluymakers, A. M. H. and Spiers, C. J.: Compaction creep of simulated
anhydrite fault gouge by pressure solution: theory v. experiments and
implications for fault sealing, Geol. Soc. Lond. Spec.
Publ., 409, SP409.6, https://doi.org/10.1144/SP409.6, 2014.
Priewisch, A., Crossey, L. J., Karlstrom, K. E., Polyak, V. J., Asmerom, Y.,
Nereson, A., and Ricketts, J. W.: U-series geochronology of large-volume
Quaternary travertine deposits of the southeastern Colorado Plateau:
Evaluating episodicity and tectonic and paleohydrologic controls, Geosphere,
10, 401–423, https://doi.org/10.1130/GES00946.1, 2014.
Qashqai, M. T., Afonso, J. C., and Yang, Y.: The crustal structure of the
Arizona Transition Zone and southern Colorado Plateau from multiobservable
probabilistic inversion, Geochem. Geophy. Geosy., 17,
4308–4332, https://doi.org/10.1002/2016GC006463, 2016.
Rauzi, S.: Carbon Dioxide in the St. Johns-Springervile Area, Apache County,
Arizona, Open File Report, Arizona Geological Survey, Tuscon, AZ, USA, 1999.
Rauzi, S. L.: Permian Salt in the Holbrook Basin, Arizona, Open-File Report,
Arizona Geological Survey, Tuscon, AZ, USA, 2000.
Rutqvist, J., Vasco, D. W. and Myer, L.: Coupled reservoir-geomechanical
analysis of CO2 injection and ground deformations at In Salah, Algeria,
Int. J. Greenh. Gas Con., 4, 225–230,
https://doi.org/10.1016/j.ijggc.2009.10.017, 2010.
Schulz, S. E. and Evans, J. P.: Spatial variability in microscopic
deformation and composition of the Punchbowl fault, southern California:
implications for mechanisms, fluid–rock interaction, and fault morphology,
Tectonophysics, 295, 223–244,
https://doi.org/10.1016/S0040-1951(98)00122-X, 1998.
Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., and Haszeldine, R. S.:
Last chance for carbon capture and storage, Nat. Clim. Change, 3,
105–111, 2013.
Shipton, Z. K., Evans, J. P., Robeson, K. R., Forster, C. B., and Snelgrove,
S.: Structural Heterogeneity and Permeability in Faulted Eolian Sandstone:
Implications for Subsurface Modeling of Faults, AAPG Bull., 86,
863–883, https://doi.org/10.1306/61EEDBC0-173E-11D7-8645000102C1865D, 2002.
Shipton, Z. K., Evans, J. P., Kirschner, D., Kolesar, P. T., Williams, A. P.,
and Heath, J.: Analysis of CO2 leakage through “low-permeability” faults
from natural reservoirs in the Colorado Plateau, east-central Utah,
Geol. Soc. Lond. Spec. Publ., 233, 43–58,
https://doi.org/10.1144/GSL.SP.2004.233.01.05, 2004.
Sibson, R. H.: Conditions for fault-valve behaviour, Geol. Soc.
Lond. Spec. Publ., 54, 15–28,
https://doi.org/10.1144/GSL.SP.1990.054.01.02, 1990.
Sibson, R. H.: Brittle-failure controls on maximum sustainable overpressure
in different tectonic regimes, AAPG Bull., 87, 901–908, 2003.
Sirrine, G. K.: Geology of the Springerville-St. Johns area, Apache County,
Arizona, PhD thesis, University of Texas, Austin, Texas, 1958.
Soden, A. M., Shipton, Z. K., Lunn, R. J., Pytharouli, S. I., Kirkpatrick,
J. D., Do Nascimento, A. F., and Bezerra, F. H. R.: Brittle structures
focused on subtle crustal heterogeneities: implications for flow in
fractured rocks, J. Geol. Soc., 171, 509–524,
https://doi.org/10.1144/jgs2013-051, 2014.
Song, J. and Zhang, D.: Comprehensive Review of Caprock-Sealing Mechanisms
for Geologic Carbon Sequestration, Environ. Sci. Technol., 47, 9–22,
https://doi.org/10.1021/es301610p, 2012.
Stork, A. L., Verdon, J. P., and Kendall, J. M.: The microseismic response at
the In Salah Carbon Capture and Storage (CCS) site, Int. J.
Greenh. Gas Con., 32, 159–171,
https://doi.org/10.1016/j.ijggc.2014.11.014, 2015.
Terzaghi, K.: Dei Berechnung der Durchlässigkeitsziffer des Tones aus
dem Verlauf der Hydrodynamischen Spannungserscheinungen, Sitzungsberichte
der Akademie der Wissenschaften in Wien, 132, 125–138, 1923.
Vrolijk, P. J., Urai, J. L., and Kettermann, M.: Clay smear: Review of
mechanisms and applications, J. Struct. Geol., 86, 95–152,
https://doi.org/10.1016/j.jsg.2015.09.006, 2016.
White, J. A., Chiaramonte, L., Ezzedine, S., Foxall, W., Hao, Y., Ramirez,
A., and McNab, W.: Geomechanical behavior of the reservoir and caprock system
at the In Salah CO2 storage project, P. Natl. Acad.
Sci. USA, 111, 8747–8752, 2014.
Wiprut, D. and Zoback, M. D.: Fault reactivation and fluid flow along a
previously dormant normal fault in the northern North Sea, Geology, 28,
595–598, https://doi.org/10.1130/0091-7613(2000)28<595:FRAFFA>2.0.CO;2, 2000.
Wong, I. G. and Humphrey, J.: Contemporary seismicity, faulting, and the
state of stress in the Colorado Plateau, Geol. Soc. Am.
Bull., 101, 1127–1146,
https://doi.org/10.1130/0016-7606(1989)101<1127:CSFATS>2.3.CO;2, 1989.
Yielding, G. and Freeman, B.: 3-D Seismic-Structural Workflows – Examples
Using the Hat Creek Fault System, in: 3-D Structural Interpretation, edited
by: Krantz, B., Ormand, C., and Freeman, B., 155–171, American Association
of Petroleum Geologists, 2016.
Yielding, G., Freeman, B., and Needham, D. T.: Quantitative fault seal
prediction, AAPG Bull., 81, 897–917, 1997.
Zhang, Y., Schaubs, P. M., Zhao, C., Ord, A., Hobbs, B. E., and Barnicoat, A.
C.: Fault-related dilation, permeability enhancement, fluid flow and mineral
precipitation patterns: numerical models, Geol. Soc. Lond.
Spec. Publ., 299, 239–255, https://doi.org/10.1144/SP299.15,
2008.
Ziegler, M. O. and Heidbach, O.: The 3D stress state from
geomechanical–numerical modelling and its uncertainties: a case study in
the Bavarian Molasse Basin, Geothermal Energy, 8, 11,
https://doi.org/10.1186/s40517-020-00162-z, 2020.
Short summary
At the St. Johns Dome, Arizona, CO2 naturally occurs in the subsurface, but there are travertine rocks on the surface which are an expression of CO2 leakage to the surface. These travertine deposits occur along faults, zones where the rock layers are fractured and displaced. In our research, we use geomechanical analysis to show that the CO2 leakage occurs at points where the faults are likely to be permeable due to the orientation of the geological stress field in the subsurface.
At the St. Johns Dome, Arizona, CO2 naturally occurs in the subsurface, but there are travertine...
Special issue