Articles | Volume 11, issue 4
Research article
22 Jul 2020
Research article |  | 22 Jul 2020

Stress field orientation controls on fault leakage at a natural CO2 reservoir

Johannes M. Miocic, Gareth Johnson, and Stuart M. V. Gilfillan

Related authors

Preface to the special issue of the Division Energy, Resources and the Environment at the EGU General Assembly 2023
Michael Kühn, Viktor J. Bruckman, Sonja Martens, Johannes Miocic, and Giorgia Stasi
Adv. Geosci., 62, 67–69,,, 2024
Preface: Special issue from the Division on Energy, Resources and the Environment at EGU2020: Sharing geoscience online
Sonja Martens, Maren Brehme, Viktor J. Bruckman, Christopher Juhlin, Johannes Miocic, Antonio P. Rinaldi, and Michael Kühn
Adv. Geosci., 54, 1–5,,, 2020
Uncertainty in fault seal parameters: implications for CO2 column height retention and storage capacity in geological CO2 storage projects
Johannes M. Miocic, Gareth Johnson, and Clare E. Bond
Solid Earth, 10, 951–967,,, 2019
Short summary

Related subject area

Subject area: The evolving Earth surface | Editorial team: Rock deformation, geomorphology, morphotectonics, and paleoseismology | Discipline: Structural geology
Application of anisotropy of magnetic susceptibility (AMS) fabrics to determine the kinematics of active tectonics: examples from the Betic Cordillera, Spain, and the Northern Apennines, Italy
David J. Anastasio, Frank J. Pazzaglia, Josep M. Parés, Kenneth P. Kodama, Claudio Berti, James A. Fisher, Alessandro Montanari, and Lorraine K. Carnes
Solid Earth, 12, 1125–1142,,, 2021
Short summary
Fault-controlled fluid circulation and diagenesis along basin-bounding fault systems in rifts – insights from the East Greenland rift system
Eric Salomon, Atle Rotevatn, Thomas Berg Kristensen, Sten-Andreas Grundvåg, Gijs Allard Henstra, Anna Nele Meckler, Richard Albert, and Axel Gerdes
Solid Earth, 11, 1987–2013,,, 2020
Short summary
Towards the application of Stokes flow equations to structural restoration simulations
Melchior Schuh-Senlis, Cedric Thieulot, Paul Cupillard, and Guillaume Caumon
Solid Earth, 11, 1909–1930,,, 2020
Short summary
Data acquisition by digitizing 2-D fracture networks and topographic lineaments in geographic information systems: further development and applications
Romesh Palamakumbura, Maarten Krabbendam, Katie Whitbread, and Christian Arnhardt
Solid Earth, 11, 1731–1746,,, 2020
Short summary
Regional-scale paleofluid system across the Tuscan Nappe–Umbria–Marche Apennine Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite–vein networks
Nicolas E. Beaudoin, Aurélie Labeur, Olivier Lacombe, Daniel Koehn, Andrea Billi, Guilhem Hoareau, Adrian Boyce, Cédric M. John, Marta Marchegiano, Nick M. Roberts, Ian L. Millar, Fanny Claverie, Christophe Pecheyran, and Jean-Paul Callot
Solid Earth, 11, 1617–1641,,, 2020
Short summary

Cited articles

Alcalde, J., Flude, S., Wilkinson, M., Johnson, G., Edlmann, K., Bond, C. E., Scott, V., Gilfillan, S. M. V., Ogaya, X., and Haszeldine, R. S.: Estimating geological CO2 storage security to deliver on climate mitigation, Nat. Commun., 9, 2201,, 2018. 
Aldrich, M. J. and Laughlin, A. W.: A model for the tectonic development of the Southeastern Colorado Plateau Boundary, J. Geophys. Res.-Sol. Ea., 89, 10207–10218,, 1984. 
Allan, U. S.: Model for hydrocarbon migration and entrapment within faulted structures, AAPG Bull., 73, 803–811, 1989. 
Allis, R., Bergfeld, D., Moore, J., McClure, K., Morgan, C., Chidsey, T., Heath, J., and McPherson, B.: Implications of results from CO2 flux surveys over known CO2 systems for long-term monitoring, in: Fourth Annual Conference on Carbon Capture and Sequestration, DOE/NETL, Alexandria, Virginia, USA, 2005. 
Allis, R. G., Moore, J., and White, S. P.: Reactive Multiphase behavior of CO2 in Saline Aquifers beneath the Colorado Plateau, Quaterly Technical Report, University of Utah, Salt Lake City, 2004. 
Short summary
At the St. Johns Dome, Arizona, CO2 naturally occurs in the subsurface, but there are travertine rocks on the surface which are an expression of CO2 leakage to the surface. These travertine deposits occur along faults, zones where the rock layers are fractured and displaced. In our research, we use geomechanical analysis to show that the CO2 leakage occurs at points where the faults are likely to be permeable due to the orientation of the geological stress field in the subsurface.