Articles | Volume 11, issue 6
https://doi.org/10.5194/se-11-2463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/se-11-2463-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Birth and closure of the Kallipetra Basin: Late Cretaceous reworking of the Jurassic Pelagonian–Axios/Vardar contact (northern Greece)
Lydia R. Bailey
CORRESPONDING AUTHOR
Department of Geosciences, University of Arizona, Tucson, AZ 85721,
USA
Department of Earth Sciences, Institute of Geology, ETH Zurich, 8092
Zurich, Switzerland
Filippo L. Schenker
Institute of Earth Sciences, University of Applied Sciences and Arts
of Southern Switzerland, 6952 Canobbio, Switzerland
Maria Giuditta Fellin
Department of Earth Sciences, Institute of Geology, ETH Zurich, 8092
Zurich, Switzerland
Miriam Cobianchi
Department of Earth and Environmental Sciences, University of Pavia,
Pavia, 27100, Italy
Thierry Adatte
Institute of Earth Sciences, University of Lausanne, 1015 Lausanne,
Switzerland
Vincenzo Picotti
Department of Earth Sciences, Institute of Geology, ETH Zurich, 8092
Zurich, Switzerland
Related authors
No articles found.
Emanuele Scaramuzzo, Franz A. Livio, Maria Giuditta Fellin, and Colin Maden
Solid Earth, 16, 619–640, https://doi.org/10.5194/se-16-619-2025, https://doi.org/10.5194/se-16-619-2025, 2025
Short summary
Short summary
We address the transition between the Paleozoic Variscan and Alpine Mesozoic–Cenozoic cycles using tectono-stratigraphy and thermochronology. This transition unfolds through a multi-phase rifting history. An initial rifting stage occurred in the early Permian, followed in the early–middle Permian by a phase of transcurrent tectonics. This was succeeded by a period of erosion/non-deposition in the middle Permian. Crustal stretching in the Middle Triassic marked the onset of the Alpine cycle.
Rocio Jaimes-Gutierrez, Marine Prieur, David J. Wilson, Philip A. E. Pogge von Strandmann, Emmanuelle Pucéat, Thierry Adatte, Jorge E. Spangenberg, and Sébastien Castelltort
EGUsphere, https://doi.org/10.5194/egusphere-2025-2619, https://doi.org/10.5194/egusphere-2025-2619, 2025
Short summary
Short summary
This study examines how weathering in the Southern Pyrenees responded to a significant global warming event that occurred 56 million years ago. We found that changes in rainfall and erosion significantly influenced how minerals break down, and that the weathering response evolved from the continental interior to the marine environment. These results highlight regional variations in Earth's surface response to climatic perturbations and the processes at play in response to global warming.
Nikhil Sharma, Jorge E. Spangenberg, Thierry Adatte, Torsten Vennemann, László Kocsis, Jean Vérité, Luis Valero, and Sébastien Castelltort
Clim. Past, 20, 935–949, https://doi.org/10.5194/cp-20-935-2024, https://doi.org/10.5194/cp-20-935-2024, 2024
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) is an enigmatic global warming event with scarce terrestrial records. To contribute, this study presents a new comprehensive geochemical record of the MECO in the fluvial Escanilla Formation, Spain. In addition to identifying the regional preservation of the MECO, results demonstrate continental sedimentary successions, as key archives of past climate and stable isotopes, to be a powerful tool in correlating difficult-to-date fluvial successions.
Cécile Charles, Nora Khelidj, Lucia Mottet, Bao Ngan Tu, Thierry Adatte, Brahimsamba Bomou, Micaela Faria, Laetitia Monbaron, Olivier Reubi, Natasha de Vere, Stéphanie Grand, and Gianalberto Losapio
EGUsphere, https://doi.org/10.5194/egusphere-2024-991, https://doi.org/10.5194/egusphere-2024-991, 2024
Preprint archived
Short summary
Short summary
We found that novel ecosystems created by glacier retreat are first characterized by an increase in plant diversity that is driven by a shift in soil texture. Plant diversity in turn increases soil organic matter and nutrient. Soils gradually acidifies and leads to a final stage where a dominance of few plant species reduces plant diversity. Understanding plant–soil interactions is crucial to anticipate how glacier retreat shapes biodiversity and landscapes.
Morgan T. Jones, Ella W. Stokke, Alan D. Rooney, Joost Frieling, Philip A. E. Pogge von Strandmann, David J. Wilson, Henrik H. Svensen, Sverre Planke, Thierry Adatte, Nicolas Thibault, Madeleine L. Vickers, Tamsin A. Mather, Christian Tegner, Valentin Zuchuat, and Bo P. Schultz
Clim. Past, 19, 1623–1652, https://doi.org/10.5194/cp-19-1623-2023, https://doi.org/10.5194/cp-19-1623-2023, 2023
Short summary
Short summary
There are periods in Earth’s history when huge volumes of magma are erupted at the Earth’s surface. The gases released from volcanic eruptions and from sediments heated by the magma are believed to have caused severe climate changes in the geological past. We use a variety of volcanic and climatic tracers to assess how the North Atlantic Igneous Province (56–54 Ma) affected the oceans and atmosphere during a period of extreme global warming.
Sabí Peris Cabré, Luis Valero, Jorge E. Spangenberg, Andreu Vinyoles, Jean Verité, Thierry Adatte, Maxime Tremblin, Stephen Watkins, Nikhil Sharma, Miguel Garcés, Cai Puigdefàbregas, and Sébastien Castelltort
Clim. Past, 19, 533–554, https://doi.org/10.5194/cp-19-533-2023, https://doi.org/10.5194/cp-19-533-2023, 2023
Short summary
Short summary
The Middle Eocene Climatic Optimum (MECO) was a global warming event that took place 40 Myr ago and lasted ca. 500 kyr, inducing physical, chemical, and biotic changes on the Earth. We use stable isotopes to identify the MECO in the Eocene deltaic deposits of the Southern Pyrenees. Our findings reveal enhanced deltaic progradation during the MECO, pointing to the important impact of global warming on fluvial sediment transport with implications for the consequences of current climate change.
Robin Fentimen, Eline Feenstra, Andres Rüggeberg, Efraim Hall, Valentin Rime, Torsten Vennemann, Irka Hajdas, Antonietta Rosso, David Van Rooij, Thierry Adatte, Hendrik Vogel, Norbert Frank, and Anneleen Foubert
Clim. Past, 18, 1915–1945, https://doi.org/10.5194/cp-18-1915-2022, https://doi.org/10.5194/cp-18-1915-2022, 2022
Short summary
Short summary
The investigation of a 9 m long sediment core recovered at ca. 300 m water depth demonstrates that cold-water coral mound build-up within the East Melilla Coral Province (southeastern Alboran Sea) took place during both interglacial and glacial periods. Based on the combination of different analytical methods (e.g. radiometric dating, micropaleontology), we propose that corals never thrived but rather developed under stressful environmental conditions.
Erica D. Erlanger, Maria Giuditta Fellin, and Sean D. Willett
Solid Earth, 13, 347–365, https://doi.org/10.5194/se-13-347-2022, https://doi.org/10.5194/se-13-347-2022, 2022
Short summary
Short summary
We present an erosion rate analysis on dated rock and sediment from the Northern Apennine Mountains, Italy, which provides new insights on the pattern of erosion rates through space and time. This analysis shows decreasing erosion through time on the Ligurian side but increasing erosion through time on the Adriatic side. We suggest that the pattern of erosion rates is consistent with the present asymmetric topography in the Northern Apennines, which has likely existed for several million years.
Moussa Moustapha, Loris Deirmendjian, David Sebag, Jean-Jacques Braun, Stéphane Audry, Henriette Ateba Bessa, Thierry Adatte, Carole Causserand, Ibrahima Adamou, Benjamin Ngounou Ngatcha, and Frédéric Guérin
Biogeosciences, 19, 137–163, https://doi.org/10.5194/bg-19-137-2022, https://doi.org/10.5194/bg-19-137-2022, 2022
Short summary
Short summary
We monitor the spatio-temporal variability of organic and inorganic carbon (C) species in the tropical Nyong River (Cameroon), across groundwater and increasing stream orders. We show the significant contribution of wetland as a C source for tropical rivers. Thus, ignoring the river–wetland connectivity might lead to the misrepresentation of C dynamics in tropical watersheds. Finally, total fluvial carbon losses might offset ~10 % of the net C sink estimated for the whole Nyong watershed.
Elena T. Bruni, Richard F. Ott, Vincenzo Picotti, Negar Haghipour, Karl W. Wegmann, and Sean F. Gallen
Earth Surf. Dynam., 9, 771–793, https://doi.org/10.5194/esurf-9-771-2021, https://doi.org/10.5194/esurf-9-771-2021, 2021
Short summary
Short summary
The Klados River catchment contains seemingly overlarge, well-preserved alluvial terraces and fans. Unlike previous studies, we argue that the deposits formed in the Holocene based on their position relative to a paleoshoreline uplifted in 365 CE and seven radiocarbon dates. We also find that constant sediment supply from high-lying landslide deposits disconnected the valley from regional tectonics and climate controls, which resulted in fan and terrace formation guided by stochastic events.
Vincent F. Verwater, Eline Le Breton, Mark R. Handy, Vincenzo Picotti, Azam Jozi Najafabadi, and Christian Haberland
Solid Earth, 12, 1309–1334, https://doi.org/10.5194/se-12-1309-2021, https://doi.org/10.5194/se-12-1309-2021, 2021
Short summary
Short summary
Balancing along geological cross sections reveals that the Giudicarie Belt comprises two kinematic domains. The SW domain accommodated at least ~ 18 km Late Oligocene to Early Miocene shortening. Since the Middle Miocene, the SW domain experienced at least ~ 12–22 km shortening, whereas the NE domain underwent at least ~ 25–35 km. Together, these domains contributed to ~ 40–47 km of sinistral offset of the Periadriatic Fault along the Northern Giudicarie Fault since the Late Oligocene.
Louis Honegger, Thierry Adatte, Jorge E. Spangenberg, Miquel Poyatos-Moré, Alexandre Ortiz, Magdalena Curry, Damien Huyghe, Cai Puigdefàbregas, Miguel Garcés, Andreu Vinyoles, Luis Valero, Charlotte Läuchli, Andrés Nowak, Andrea Fildani, Julian D. Clark, and Sébastien Castelltort
Solid Earth Discuss., https://doi.org/10.5194/se-2021-12, https://doi.org/10.5194/se-2021-12, 2021
Publication in SE not foreseen
Cited articles
Abad, I.: Physical meaning and applications of the illite Kübler Index:
measuring reaction progress in low-grade metamorphism, Semin. la Soc.
Española Mineral., 3, 53–64, 2007.
Árkai, P., Mählmann, R. F., Suchý, V., Balogh, K.,
Sýkorová, I., and Frey, M.: Possible effects of tectonic shear strain
on phyllosilicates: a case study from the Kandersteg area, Helvetic domain,
Central Alps, Switzerland, Schweizerische Mineral. und Petrogr.
Mitteilungen, 82, 273–290, 2002.
Aubouin, J.: Contribution à l'étude géologique de la Grèce septentrionale: les confins de l'Epire et de la Thessalie, Ann. Geol. Pays Hell., 10, 1–483, 1959.
Aubouin, J.: Des tectoniques superposées et de leur signification par
rapport aux modèlesmodeles géophysiques; l'exemple des Dinarides;
paleotectonique, tectonique, tarditectonique, neotectonique, Bull. la
Société géologique Fr., 7, 426–460, 1973.
Baumgartner, P. O.: Jurassic sedimentary evolution and nappe emplacement in
the Argolis Peninsula (Peloponnesus, Greece), Mem. Soc. Helv. Sci. Nat., 99,
1–111, 1985.
Beaufort, D., Rigault, C., Billon, S., Billault, V., Inoue, A., Inoue, S.,
and Patrier, P.: Chlorite and chloritization processes through mixed-layer
mineral series in low-temperature geological systems – a review, Clay
Miner., 50, 497–523, https://doi.org/10.1180/claymin.2015.050.4.06, 2015.
Bernoulli, D. and Laubscher, H.: The palinspatic problem of the Hellenides
The Palinspastic Problem of the Hellenides, Eclogae Geol. Helv., 65,
107–118, 1972.
Bonneau, M., Godfriaux, I., Moulas, Y., Fourcade, E., and Masse, J.:
Stratigraphie et structure de la Bordure orientale de la double fenetre du
Paikon (Macedoine, Grece), Bull. Geol. Soc. Greece, 30, 105–114, 1994.
Boudagher-Fadel, M. and Price, G.: Global evolution and paleogeographic distribution of mid-Cretaceous orbitolinids, UCL Open Environ., 1, doi:10.14324/111.444/ucloe.000001, 2019.
Bortolotti, V., Kodra, A., Marroni, M., Mustafa, F., Pandolfi, L., Principi,
G., and Saccani, E.: Geology and petrology of ophiolitic sequences in the
Mirdita Region (Northern Albania), Ofioliti, 21, 3–20, 1996.
Bortolotti, V., Marroni, M., Pandolfi, L., and Principi, G.: Mesozoic to
tertiary tectonic history of the Mirdita ophiolites, northern Albania, Isl.
Arc, 14, 471–493, https://doi.org/10.1111/j.1440-1738.2005.00479.x, 2005.
Brandon, M. T., Roden-Tice, M. K., and Garver, J. I.: Late Cenozoic
exhumation of the Cascadia accretionary wedge in the Olympic Mountains,
northwest Washington State, GSA Bull., 110, 985–1009,
https://doi.org/10.1130/0016-7606(1998)110<0985:LCEOTC>2.3.CO;2,
1998.
Brown, S. A. M. and Robertson, A. H. F.: Sedimentary geology as a key to
understanding the tectonic evolution of the Mesozoic-Early Tertiary Paikon
Massif, Vardar suture zone, N Greece, Sediment. Geol., 160, 179–212,
https://doi.org/10.1016/S0037-0738(02)00376-7, 2003.
Brown, S. A. M. and Robertson, A. H. F.: Evidence for Neotethys rooted
within the Vardar suture zone from the Voras Massif, northernmost Greece,
Tectonophysics, 381, 143–173, https://doi.org/10.1016/j.tecto.2002.06.001, 2004.
Brun, J. P. and Sokoutis, D.: Kinematics of the Southern Rhodope Core Complex (North Greece), Int. J. Earth Sci., 96, 1079–1099, doi:10.1007/s00531-007-0174-2, 2007.
Brunn, J. H.: Geological Map of Greece, Veroia Sheet 1:50.000, IGME., Athens, Greece, 1982.
Burg, J. P.: Rhodope: From mesozoic convergence to cenozoic extension.
Review of petro-structural data in the geochronological frame, J. Virtual
Explor., 42, 1–44, https://doi.org/10.3809/jvirtex.2011.00270, 2012.
Burg, J. P., Ricou, L. E., Ivanov, Z., Godfriaux, I., Dimov, D., and Klain, L.: Syn-metamorphic nappe complex in the rhodope massif. Structure and kinematics, Terra Nov., 8, 6–15, doi:10.1111/j.1365-3121.1996.tb00720.x, 1996.
Burnett, J. A., Gallagher, L. T., and Hampton, M. J.: Upper Cretaceous, in: Calcareous nannofossil biostratigraphy, edited by: Bown, P. R., 132–199, Chapman and Hall, London, 1998.
Camoin, G.: Nature and Origin of Late Cretaceous Mud-Mounds, North Africa,
in: Carbonate Mud-Mounds: Their Origin and Evolution, edited by: Monty, C. L., Bosence, D. W., Bridges, P. H., and Pratt, B. R., Blackwell
Publishing Ltd, Oxford, UK, 385–400, 1995.
Channell, J. E. and Hovarth, F.: The African/Adriatic promontory as a
palaeogeographical premise for the Alpine orogeny and plate movements in the
Carpatho-Balkan region, Tectonophysics, 35, 71–101, 1976.
Chiari, M., Baumgartner, P. O., Bernoulli, D., Bortolotti, V., Marcucci, M.,
Photiades, A., and Principi, G.: Late Triassic, Early and Middle Jurassic
Radiolaria from ferromanganese-chert “nodules” (Angelokastron, Argolis,
Greece): Evidence for prolonged radiolarite sedimentation in the
Maliac-Vardar Ocean, Facies, 59, 391–424, https://doi.org/10.1007/s10347-012-0314-4,
2013.
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X.: The ICS
international chronostratigraphic chart, Episodes, 36, 199–204, 2013.
Coutand, I., Walsh, M., Louis, B., Chanier, F., Ferrière, J. and Reynaud, J. Y.: Neogene upper-crustal cooling of the Olympus range (northern Aegean): Major role of Hellenic back-arc extension over propagation of the North Anatolia Fault Zone, Terra Nov., 26, 287–297, doi:10.1111/ter.12099, 2014.
Dellisanti, F., Pini, G. A., Tateo, F., and Baudin, F.: The role of tectonic shear strain on the illitization mechanism of mixed-layers illite-smectite. A case study from a fault zone in the Northern Apennines, Italy, Int. J. Earth Sci., 97, 601–616, doi:10.1007/s00531-007-0180-4, 2008.
Dimitrijevic, M. D.: Dinarides: an outline of tectonics, Earth Evol. Sci.,
2, 4–23, 1982.
Dimo-Lahitte, A., Monié, P., and Vergély, P.: Metamorphic soles from
the Albanian ophiolites: Petrology, 40Ar ∕ 39Ar geochronology, and geodynamic
evolution, Tectonics, 20, 78–96, 2001.
Dinter, D. A. and Royden, L.: Late Cenozoic extension in northeastern
Greece: Strymon Valley detachment system and Rhodope metamorphic core
complex, Geology, 21, 45–48, 1993.
Ferriere, J., Baumgartner, P. O., and Chanier, F.: The Maliac Ocean: the
origin of the Tethyan Hellenic ophiolites, Int. J. Earth Sci., 105,
1941–1963, https://doi.org/10.1007/s00531-016-1303-6, 2016.
Froitzheim, N., Jahn-Awe, S., Frei, D., Wainwright, A. N., Maas, R.,
Georgiev, N., Nagel, T. J., and Pleuger, J.: Age and composition of
meta-ophiolite from the Rhodope Middle Allochthon (Satovcha, Bulgaria): A
test for the maximum-allochthony hypothesis of the Hellenides, Tectonics,
33, 1477–1500, 2014.
Furlong, K. P. and Edman, J. D.: Hydrocarbon maturation in thrust belts:
Thermal considerations, in: Origin and Evolution of Sedimentary Basins and Their Energy and Mineral Resources, edited by: Price, R. A., American Geophysical Union, Washington, D.C., USA, 137–144, 1989.
Galbraith, R. F.: On statistical models for fission track counts, J. Int.
Assoc. Math. Geol., 13, 471–478, https://doi.org/10.1007/BF01034498, 1981.
Gautier, P., Brun, J. P., and Jolivet, L.: Structure and kinematics of Upper
Cenozoic extensional detachment on Naxos and Paros (Cyclades Islands,
Greece), Tectonics, 12, 1180–1194, 1993.
Gautier, P., Brun, J. P., Moriceau, R., Sokoutis, D., Martinod, J., and
Jolivet, L.: Timing, kinematics and cause of Aegean extension: A scenario
based on a comparison with simple analogue experiments, Tectonophysics,
315, 31–72, https://doi.org/10.1016/S0040-1951(99)00281-4, 1999.
Gili, E., Masse, J.-P., and Skelton, P. W.: Rudists as gregarious
sediment-dwellers, not reef-builders , on Cretaceous carbonate platforms,
Palaeogeogr. Palaeocl., 118, 245–267, 1995.
Godfriaux, I. and Ricou, L. E.: Le Paikon, une fenêtre tectonique dans
les Hellènides internes (Macédoine, Grèce), Comptes rendus
l'Académie des Sci. Série 2, Mécanique, Phys. Chim. Sci.
l'univers, Sci. la Terre, 313, 1479–1484, 1991.
Godfriaux, I., Ferriere, J., and Schmitt, A.: Le développement en
contexte continental d'un métamorphisme HP/BT: les “schistes bleus”
tertiaires Thessaliens, Bull. Geol. Soc. Greece, XX, 175–192, 1988.
Graham, C. M. and England, P. C.: Thermal regimes and regional metamorphism
in the vicinity of overthrust faults: an example of shear heating and
inverted metamorphic zonation from Southern California, Earth, 31, 142–152,
1976.
Grubić, A., Radoičić, R., Knežević, M., and Cvijić,
R.: Occurrence of Upper Cretaceous pelagic carbonates within
ophiolite-related pillow basalts in the Mt. Kozara area of the Vardar zone
western belt, northern Bosnia, Lithos, 108, 126–130, 2009.
Haq, B. U.: Cretaceous eustasy revisited, Global Planet. Change, 113,
44–58, 2014.
Jaboyedoff, M., Kubler, B., Sartori, M., and Thelin, P.: Basis for meaningful
illite crystallinity measurements: an example from the Swiss Prealps,
Schweizerische Mineral. und Petrogr. Mitteilungen, 80, 75–83, 2000.
Jolivet, L. and Brun, J. P.: Cenozoic geodynamic evolution of the Aegean,
Int. J. Earth Sci., 99, 109–138, https://doi.org/10.1007/s00531-008-0366-4, 2010.
Katrivanos, E., Kilias, A., and Mountrakis, D.: Kinematics of deformation and
structural evolution of the Paikon Massif (Central Macedonia, Greece): A
Pelagonian tectonic window?, Neues Jahrb. für Geol. und
Paläontologie-Abhandlungen, 269, 149–171, 2013.
Kilias, A., Frisch, W., Avgerinas, A., Dunkl, I., Falalakis, G., and Gawlick,
H. J.: Alpine architecture and kinematics of deformation of the northern
Pelagonian nappe pile in the Hellenides, Austrian J. Earth Sci., 103,
4–28, 2010.
Kossmat, F.: Geologie der zentralen Balkanhalbinsel: Mit einer Übersicht des dinarischen Gebirgsbaus, 12th ed., Gebrüder Bornträger, Berlin, 1924.
Kübler, B. and Jaboyedoff, M.: Illite crystallinity, Comptes Rendus
l'Académie Sci. – Ser. IIa Sci. la Terre des Planetes, 331, 75–89,
https://doi.org/10.1016/S1251-8050(00)01395-1, 2000.
Lacassin, R., Arnaud, N., Leloup, P., Armijo, R., and Meyer, B.: Syn- and
post-orogenic exhumation of metamorphic rocks in North Aegean, eEarth, 2,
51–63, 2007.
Lips, A. L. W., White, S. H., and Wijbrans, J. R.: 40Ar ∕ 39Ar laserprobe
direct dating of discrete deformational events: A continuous record of early
Alpine tectonics in the Pelagonian Zone, NW Aegean area, Greece,
Tectonophysics, 298, 133–153, https://doi.org/10.1016/S0040-1951(98)00181-4,
1998.
Lips, A. L. W., Wijbrans, J. R., and White, S. H.: New insights from 40Ar ∕ 39Ar laserprobe dating of white mica fabrics from the Pelion Massif, Pelagonian Zone, Internal Hellenides, Greece: implications for the timing of metamorphic episodes and tectonic events in the Aegean region, Geol. Soc. Spec. Publ., 156, 457–474, doi:10.1144/GSL.SP.1999.156.01.21, 1999.
Lister, G. S., Banga, G., and Feenstra, A.: Metamorphic core complexes of
Cordilleran type in the Cyclades, Aegean Sea, Greece, Geology, 12,
221–225, https://doi.org/10.1130/0091-7613(1984)12<221:MCCOCT>2.0.CO;2, 1984.
Luciani, V. and Cobianchi, M.: The Bonarelli Level and other black shales in
the Cenomanian-Turonian of the northeastern Dolomites (Italy): calcareous
nannofossil and foraminiferal data, Cretac. Res., 20, 135–167,
https://doi.org/10.1006/cres.1999.0146, 1999.
Matthews, K. J., Seton, M., and Müller, R. D.: A global-scale plate
reorganization event at 105–100 Ma, Earth Planet. Sc. Lett.,
355/356, 283–298, 2012.
Mercier, J.: Etude géologique des zones internes des Hellénides en Macédoine centrale (Grece), Ann. Geol. Pays Hell., 20, 1–792, 1968.
Mercier, J. and Vergely, P.: The Paikon massif revisited, comments on the late Cretaceous-Paleogene geodynamics of the Axios-Vardar zone: how many Jurassic ophiolitic basins? (Hellenides, Macedonia, Greece), Bull. Geol. Soc. Greece, 24, 2099–2112, https://doi.org/10.12681/bgsg.16852, 2002.
Mercier, J. L., Sorel, D. and Simeakis, K.: Changes in the state of stress in the overriding plate of a subduction zone: the Aegean Arc from the Pliocene to the Present, Ann. Tectonicae, 1, 20–39, 1987.
Merriman, R. J. and Peacor, D. R.: Very Low‐Grade Metapelites: Mineralogy, Microfabrics and Measuring Reaction Progress, in Low‐Grade Metamorphism, edited by: M. Frey and D. Robinson, Blackwell Science Ltd, Oxford, 10–60, https://doi.org/10.1002/9781444313345.ch2, 1998.
Mort, H., Jacquat, O., Adatte, T., Steinmann, P., Föllmi, K., Matera,
V., Berner, Z., and Stüben, D.: The Cenomanian/Turonian anoxic event at
the Bonarelli Level in Italy and Spain: enhanced productivity and/or better
preservation?, Cretac. Res., 28, 597–612,
https://doi.org/10.1016/j.cretres.2006.09.003, 2007.
Most, T.: Geodynamic evolution of the Eastern Pelagonian Zone in northwestern Greece and the Republic of Macedonia: Implications from U/Pb, Rb/Sr, K/Ar, 40Ar/39Ar geochronology and fission track thermochronology, Ph. D. thesis, Eberhardt-Karls-Universität Tübingen, Germany, 98 pp., 2003.
Moulas, E., Schenker, F. L., Burg, J. P., and Kostopoulos, D.: Metamorphic conditions and structural evolution of the Kesebir-Kardamos dome: Rhodope metamorphic complex (Greece-Bulgaria), Int. J. Earth Sci., 106, 2667–2685, doi:10.1007/s00531-017-1452-2, 2017.
Negra, M. H., Purser, B. H., and M'Rabet, A.: Sedimentation, Diagenesis and
Syntectonic Erosion of Upper Cretaceous Rudist Mounds in Central Tunisia, in:
Carbonate Mud-Mounds: Their Origin and Evolution, edited by: Monty, C. L.,
Bosence, D. W., Bridges, P. H., and Pratt, B. R., Blackwell
Publishing Ltd, Oxford, UK, 401–419, 1995.
Negri, A., Cobianchi, M., Luciani, V., Fraboni, R., Milani, A., and Claps,
M.: Tethyan Cenomanian pelagic rhythmic sedimentation and Pleistocene
Mediterranean sapropels: Is the biotic signal comparable?, Palaeogeogr.
Palaeocl., 190, 373–397,
https://doi.org/10.1016/S0031-0182(02)00615-6, 2003.
Nirta, G., Moratti, G., Piccardi, L., Montanari, D., Catanzariti, R.,
Carras, N., and Papini, M.: The boeotian flysch revisited: New constraints on
ophiolite obduction in central Greece, Ofioliti, 40, 107–123,
https://doi.org/10.4454/ofioliti.v40i2.438, 2015.
Nirta, G., Moratti, G., Piccardi, L., Montanari, D., Carras, N.,
Catanzariti, R., Chiari, M., and Marcucci, M.: From obduction to continental
collision: New data from Central Greece, Geol. Mag., 155, 377–421,
https://doi.org/10.1017/S0016756817000942, 2018.
Papanikolau, D.: Are the medial crystalline massifs of the Eastern
Mediterranean drifted Gondwanian fragments?, Geol. Soc. Greece Spec. Publ.,
1, 63–90, 1989.
Papanikolaou, D.: The tectonostratigraphic terranes of the Hellenides, Annales géologiques des pays Helléniques, 37, 495–514,
1997.
Papanikolaou, D.: Timing of tectonic emplacement of the ophiolites and
terrane paleogeography in the Hellenides, Lithos, 108, 262–280,
https://doi.org/10.1016/j.lithos.2008.08.003, 2009.
Papanikolaou, D. J. and Royden, L. H.: Disruption of the Hellenic arc: Late
Miocene extensional detachment faults and steep Pliocene-Quaternary normal
faults – Or what happened at Corinth?, Tectonics, 26, 1–16,
https://doi.org/10.1029/2006TC002007, 2007.
Picotti, V., Cobianchi, M., Luciani, V., Blattmann, F., Schenker, T.,
Mariani, E., Bernasconi, S. M., and Weissert, H.: Change from rimmed to ramp
platform forced by regional and global events in the Cretaceous of the
Friuli-Adriatic Platform (Southern Alps, Italy), Cretaceous Res., 104, https://doi.org/10.1016/j.cretres.2019.07.007, 104177, 2019.
Reiners, P. W. and Brandon, M. T.: Using Thermochronology To Understand
Orogenic Erosion, Annu. Rev. Earth Planet. Sci., 34, 419–466,
https://doi.org/10.1146/annurev.earth.34.031405.125202, 2006.
Ricou, L.-E. and Godfriaux, I.: Mise au point sur la fenêtre multiple du
Paikon et la structure du Vardar en Grèce, Comptes rendus l'Académie
des Sci. Série 2, Sci. la terre des planètes, 321, 601–608,
1995.
Ricou, L. E., Dercourt, J., Geyssant, J., Grandjacquet, C., Lepvrier, C., and Biju-Duval, B.: Geological constraints on the alpine evolution of the Mediterranean Tethys, Tectonophysics, 123, 83–86, doi:10.1016/0040-1951(86)90194-0, 1986.
Ricou, L. E., Burg, J. P., Godfriaux, I., and Ivanov, Z.: Rhodope and Vardar: The metamorphic and the olistostromic paired belts related to the Cretaceous subduction under Europe, Geodin. Acta, 11, 285–309, doi:10.1016/S0985-3111(99)80018-7, 1998.
Riding, R.: Microbial carbonates: The geological record of calcified bacterial-algal mats and biofilms, Sedimentology, 47, 179–214, doi:10.1046/j.1365-3091.2000.00003.x, 2000.
Ring, U., Glodny, J., Will, T., and Thomson, S.: The Hellenic subduction
system: high-pressure metamorphism, exhumation, normal faulting, and
large-scale extension, Annu. Rev. Earth Planet. Sci., 38, 45–76, 2010.
Robertson, A. H. F. and Dixon, J. E.: Introduction: aspects of the
geological evolution of the Eastern Mediterranean, Geol. Evol. East.
Mediterr., 17, 1–74, https://doi.org/10.1144/GSL.SP.1984.017.01.02, 1984.
Sanders, D.: Upper Cretaceous “Rudist” formations, Geol. Mitteilungen
Innsbruck, 23, 37–59, 1998.
Sanders, D. and Höfling, R.: Carbonate deposition in mixed-siliciclastic-carbonate environments on top of an orogenic wedge (Late Cretaceous,
Northern Calcareous Alps, Austria), Sed. Geol., 137, 127–146, 2000.
Sanders, D. and Pons, J. M.: Rudist formations in mixed
siliciclastic-carbonate depositional environments, Upper Cretaceous,
Austria: Stratigraphy, sedimentology, and models of development,
Palaeogeogr. Palaeocl., 148, 249–284,
https://doi.org/10.1016/S0031-0182(98)00186-2, 1999.
Schenker, F. L.: Thermo-mechanical evolution of the Pelagonian Gneiss Dome (Greece): Insights from numerical modeling and new geological and geochronological data, Ph. D thesis, ETH Zurich, Switzerland, 186 pp., 2013.
Schenker, F. L., Burg, J. P., Kostopoulos, D., Moulas, E., Larionov, A., and
Von Quadt, A.: From mesoproterozoic magmatism to collisional cretaceous
anatexis: Tectonomagmatic history of the Pelagonian Zone, Greece, Tectonics,
33, 1552–1576, https://doi.org/10.1002/2014TC003563, 2014.
Schenker, F. L., Fellin, M. G., and Burg, J.-P.: Polyphase evolution of Pelagonia (northern Greece) revealed by geological and fission-track data, Solid Earth, 6, 285–302, https://doi.org/10.5194/se-6-285-2015, 2015.
Schenker, F. L., Burg, J.-P., Kostopoulos, D., Baumgartner, L. P., and
Bouvier, A.-S.: Carbonatitic dykes during Pangaea transtension (Pelagonian
Zone, Greece), Lithos, 302/303, 329–340, https://doi.org/10.1016/j.lithos.2018.01.011,
2018.
Schermer, E. R.: Geometry and kinematics of continental basement deformation
during the Alpine orogeny, Mt. Olympos region, Greece, J. Struct. Geol.,
15, 571–591, https://doi.org/10.1016/0191-8141(93)90149-5, 1993.
Schermer, E. R., Lux, D. R., and Clark Burchfiel, B.: Temperature-time
history of subducted continental crust, Mount Olympus region, Greece,
Tectonics, 9, 1165–1195, 1990.
Schmid, S. M., Bernoulli, D., Fügenschuh, B., Matenco, L., Schefer, S.,
Schuster, R., Tischler, M., and Ustaszewski, K.: The
Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of
tectonic units, Swiss J. Geosci., 101, 139–183,
https://doi.org/10.1007/s00015-008-1247-3, 2008.
Schmid, S. M., Fügenschuh, B., Kounov, A., Maţenco, L., Nievergelt,
P., Oberhänsli, R., Pleuger, J., Schefer, S., Schuster, R., and
Tomljenović, B.: Tectonic units of the Alpine collision zone between
Eastern Alps and western Turkey, Gondwana Res., 78, 308–374, 2020.
Scott, R. W.: Evolution of Late Jurassic and Early Cretaceous Reef Biotas,
Palaios, 3, 184–193, 1988.
Sharp, I. R. and Robertson, A. H. F.: Tectonic-sedimentary evolution of the
western margin of the Mesozoic Vardar Ocean: evidence from the Pelagonian
and Almopias zones, northern Greece, Geol. Soc. London, Spec. Publ., 260,
373–412, https://doi.org/10.1144/GSL.SP.2006.260.01.16, 2006.
Smith, A. G., Hynes, A. J., Menzies, M., Nisbet, E. G., Price, I., Welland,
M. J., and Ferrière, J.: The stratigraphy of the Othris Mountains,
eastern central Greece: a deformed Mesozoic continental margin sequence,
Eclogae Geol. Helv., 68, 463–481, 1975.
Ustaszewski, K., Schmid, S. M., Lugović, B., Schuster, R., Schaltegger,
U., Bernoulli, D., Hottinger, L., Kounov, A., Fügenschuh, B., and
Schefer, S.: Late Cretaceous intra-oceanic magmatism in the internal
Dinarides (northern Bosnia and Herzegovina): Implications for the collision
of the Adriatic and European plates, Lithos, 108, 106–125,
https://doi.org/10.1016/j.lithos.2008.09.010, 2009.
Van Hinsbergen, D. J. J., Hafkenscheid, E., Spakman, W., Meulenkamp, J. E.,
and Wortel, R.: Nappe stacking resulting from subduction of oceanic and
continental lithosphere below Greece, Geology, 33, 325–328, 2005.
Vergély, P. and Mercier, J.-L.: New data concerning thrusting subsequent to
the Late Cretaceous in the Paikon massif (Axios-Vardar zone, Macedonia,
Greece): A new structural model [Données nouvelles sur les
chevauchements d'âge post-Crétacé supérieur dans le massif
du Paikon (zone de l'Axios-Vardar, Macédoine, Grèce): Un nouveau
modèle structural], Comptes Rendus de l'Académie de Sciences –
Série IIa: Sciences de la Terre et des Planètes, 330, 555–561, 2000
Vermeesch, P.: On the visualisation of detrital age distributions, Chem.
Geol., 312/313, 190–194, https://doi.org/10.1016/j.chemgeo.2012.04.021, 2012.
Voigt, S., Hay, W. W., Höfling, R., and DeConto, R. M.: Biogeographic
distribution of late early to Late Cretaceous rudist-reefs in the
mediterranean as climate indicators, Spec. Pap. Geol. Soc. Am., 332,
91–103, https://doi.org/10.1130/0-8137-2332-9.91, 1999.
Zimmerman, J. J. J. and Ross, J. J. V.: Structural evolution of the Vardar
root zone, northern Greece, Geol. Soc. Am. Bull., 87, 1547–1550,
https://doi.org/10.1130/0016-7606(1976)87<1547:SEOTVR>2.0.CO;2, 1976.
Short summary
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar contact in the Hellenides, is described for the first time. We document how and when the basin evolved in response to tectonic forcings and basin inversion. Cenomanian extension and basin widening was followed by Turonian compression and basin inversion. Thrusting occurred earlier than previously reported in the literature, with a vergence to the NE, at odds with the regional SW vergence of the margin.
The Kallipetra Basin, formed in the Late Cretaceous on the reworked Pelagonian–Axios–Vardar...
Special issue